Properties

Label 289.3.e.d.65.1
Level $289$
Weight $3$
Character 289.65
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 65.1
Root \(-0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 289.65
Dual form 289.3.e.d.249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.03153 + 0.841487i) q^{2} +(-0.0315301 + 0.158513i) q^{3} +(0.590587 - 0.590587i) q^{4} +(4.46088 - 2.98067i) q^{5} +(-0.0693320 - 0.348555i) q^{6} +(-5.19212 - 3.46927i) q^{7} +(2.66313 - 6.42935i) q^{8} +(8.29078 + 3.43416i) q^{9} +(-6.55423 + 9.80910i) q^{10} +(-14.3240 + 2.84923i) q^{11} +(0.0749942 + 0.112237i) q^{12} +(-4.79884 - 4.79884i) q^{13} +(13.4673 + 2.67881i) q^{14} +(0.331821 + 0.801088i) q^{15} +18.6433i q^{16} -19.7328 q^{18} +(-23.0841 + 9.56175i) q^{19} +(0.874196 - 4.39488i) q^{20} +(0.713631 - 0.713631i) q^{21} +(26.7021 - 17.8418i) q^{22} +(-2.55513 - 12.8455i) q^{23} +(0.935165 + 0.624858i) q^{24} +(1.44803 - 3.49585i) q^{25} +(13.7871 + 5.71082i) q^{26} +(-1.61388 + 2.41534i) q^{27} +(-5.11530 + 1.01750i) q^{28} +(-18.3520 - 27.4657i) q^{29} +(-1.34821 - 1.34821i) q^{30} +(-1.19090 - 0.236886i) q^{31} +(-5.03558 - 12.1570i) q^{32} -2.36038i q^{33} -33.5022 q^{35} +(6.92459 - 2.86826i) q^{36} +(9.06812 - 45.5885i) q^{37} +(38.8500 - 38.8500i) q^{38} +(0.911984 - 0.609368i) q^{39} +(-7.28387 - 36.6185i) q^{40} +(-26.1505 - 17.4732i) q^{41} +(-0.849251 + 2.05027i) q^{42} +(-67.3441 - 27.8948i) q^{43} +(-6.77687 + 10.1423i) q^{44} +(47.2203 - 9.39270i) q^{45} +(16.0002 + 23.9459i) q^{46} +(10.4882 + 10.4882i) q^{47} +(-2.95520 - 0.587825i) q^{48} +(-3.82915 - 9.24438i) q^{49} +8.32041i q^{50} -5.66826 q^{52} +(-4.77624 + 1.97838i) q^{53} +(1.24616 - 6.26489i) q^{54} +(-55.4053 + 55.4053i) q^{55} +(-36.1324 + 24.1429i) q^{56} +(-0.787813 - 3.96061i) q^{57} +(60.3947 + 40.3544i) q^{58} +(-10.8115 + 26.1013i) q^{59} +(0.669081 + 0.277142i) q^{60} +(45.9135 - 68.7144i) q^{61} +(2.61870 - 0.520891i) q^{62} +(-31.1328 - 46.5935i) q^{63} +(-32.2713 - 32.2713i) q^{64} +(-35.7108 - 7.10332i) q^{65} +(1.98623 + 4.79518i) q^{66} -44.5324i q^{67} +2.11674 q^{69} +(68.0607 - 28.1917i) q^{70} +(-11.3064 + 56.8410i) q^{71} +(44.1588 - 44.1588i) q^{72} +(1.12032 - 0.748576i) q^{73} +(19.9400 + 100.245i) q^{74} +(0.508479 + 0.339755i) q^{75} +(-7.98612 + 19.2802i) q^{76} +(84.2570 + 34.9004i) q^{77} +(-1.33995 + 2.00537i) q^{78} +(-29.1507 + 5.79844i) q^{79} +(55.5694 + 83.1655i) q^{80} +(56.7774 + 56.7774i) q^{81} +(67.8290 + 13.4920i) q^{82} +(25.7951 + 62.2748i) q^{83} -0.842922i q^{84} +160.285 q^{86} +(4.93230 - 2.04303i) q^{87} +(-19.8280 + 99.6823i) q^{88} +(-90.1397 + 90.1397i) q^{89} +(-88.0256 + 58.8169i) q^{90} +(8.26771 + 41.5646i) q^{91} +(-9.09541 - 6.07736i) q^{92} +(0.0750988 - 0.181304i) q^{93} +(-30.1327 - 12.4814i) q^{94} +(-74.4751 + 111.460i) q^{95} +(2.08580 - 0.414892i) q^{96} +(37.5767 + 56.2374i) q^{97} +(15.5581 + 15.5581i) q^{98} +(-128.542 - 25.5687i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{3} + 32 q^{6} + 8 q^{7} - 40 q^{8} + 8 q^{9} + 32 q^{10} - 24 q^{11} - 8 q^{12} - 16 q^{13} + 24 q^{14} + 56 q^{18} - 48 q^{19} - 80 q^{20} + 64 q^{21} + 48 q^{22} + 24 q^{23} - 120 q^{24}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{9}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.03153 + 0.841487i −1.01577 + 0.420744i −0.827555 0.561385i \(-0.810269\pi\)
−0.188210 + 0.982129i \(0.560269\pi\)
\(3\) −0.0315301 + 0.158513i −0.0105100 + 0.0528376i −0.985684 0.168601i \(-0.946075\pi\)
0.975174 + 0.221438i \(0.0710751\pi\)
\(4\) 0.590587 0.590587i 0.147647 0.147647i
\(5\) 4.46088 2.98067i 0.892177 0.596134i −0.0227553 0.999741i \(-0.507244\pi\)
0.914932 + 0.403607i \(0.132244\pi\)
\(6\) −0.0693320 0.348555i −0.0115553 0.0580926i
\(7\) −5.19212 3.46927i −0.741732 0.495609i 0.126378 0.991982i \(-0.459665\pi\)
−0.868109 + 0.496373i \(0.834665\pi\)
\(8\) 2.66313 6.42935i 0.332891 0.803669i
\(9\) 8.29078 + 3.43416i 0.921198 + 0.381573i
\(10\) −6.55423 + 9.80910i −0.655423 + 0.980910i
\(11\) −14.3240 + 2.84923i −1.30219 + 0.259021i −0.796995 0.603986i \(-0.793578\pi\)
−0.505192 + 0.863007i \(0.668578\pi\)
\(12\) 0.0749942 + 0.112237i 0.00624952 + 0.00935306i
\(13\) −4.79884 4.79884i −0.369141 0.369141i 0.498023 0.867164i \(-0.334060\pi\)
−0.867164 + 0.498023i \(0.834060\pi\)
\(14\) 13.4673 + 2.67881i 0.961950 + 0.191344i
\(15\) 0.331821 + 0.801088i 0.0221214 + 0.0534058i
\(16\) 18.6433i 1.16520i
\(17\) 0 0
\(18\) −19.7328 −1.09627
\(19\) −23.0841 + 9.56175i −1.21495 + 0.503250i −0.895802 0.444454i \(-0.853398\pi\)
−0.319151 + 0.947704i \(0.603398\pi\)
\(20\) 0.874196 4.39488i 0.0437098 0.219744i
\(21\) 0.713631 0.713631i 0.0339824 0.0339824i
\(22\) 26.7021 17.8418i 1.21373 0.810991i
\(23\) −2.55513 12.8455i −0.111093 0.558500i −0.995737 0.0922345i \(-0.970599\pi\)
0.884645 0.466266i \(-0.154401\pi\)
\(24\) 0.935165 + 0.624858i 0.0389652 + 0.0260357i
\(25\) 1.44803 3.49585i 0.0579211 0.139834i
\(26\) 13.7871 + 5.71082i 0.530274 + 0.219647i
\(27\) −1.61388 + 2.41534i −0.0597733 + 0.0894570i
\(28\) −5.11530 + 1.01750i −0.182689 + 0.0363392i
\(29\) −18.3520 27.4657i −0.632828 0.947093i −0.999857 0.0168842i \(-0.994625\pi\)
0.367030 0.930209i \(-0.380375\pi\)
\(30\) −1.34821 1.34821i −0.0449403 0.0449403i
\(31\) −1.19090 0.236886i −0.0384163 0.00764147i 0.175845 0.984418i \(-0.443734\pi\)
−0.214261 + 0.976776i \(0.568734\pi\)
\(32\) −5.03558 12.1570i −0.157362 0.379905i
\(33\) 2.36038i 0.0715267i
\(34\) 0 0
\(35\) −33.5022 −0.957206
\(36\) 6.92459 2.86826i 0.192350 0.0796739i
\(37\) 9.06812 45.5885i 0.245084 1.23212i −0.640614 0.767863i \(-0.721320\pi\)
0.885699 0.464260i \(-0.153680\pi\)
\(38\) 38.8500 38.8500i 1.02237 1.02237i
\(39\) 0.911984 0.609368i 0.0233842 0.0156248i
\(40\) −7.28387 36.6185i −0.182097 0.915463i
\(41\) −26.1505 17.4732i −0.637817 0.426176i 0.194172 0.980967i \(-0.437798\pi\)
−0.831989 + 0.554792i \(0.812798\pi\)
\(42\) −0.849251 + 2.05027i −0.0202203 + 0.0488161i
\(43\) −67.3441 27.8948i −1.56614 0.648717i −0.579999 0.814617i \(-0.696947\pi\)
−0.986142 + 0.165901i \(0.946947\pi\)
\(44\) −6.77687 + 10.1423i −0.154020 + 0.230507i
\(45\) 47.2203 9.39270i 1.04934 0.208727i
\(46\) 16.0002 + 23.9459i 0.347829 + 0.520564i
\(47\) 10.4882 + 10.4882i 0.223153 + 0.223153i 0.809825 0.586672i \(-0.199562\pi\)
−0.586672 + 0.809825i \(0.699562\pi\)
\(48\) −2.95520 0.587825i −0.0615666 0.0122464i
\(49\) −3.82915 9.24438i −0.0781458 0.188661i
\(50\) 8.32041i 0.166408i
\(51\) 0 0
\(52\) −5.66826 −0.109005
\(53\) −4.77624 + 1.97838i −0.0901178 + 0.0373280i −0.427287 0.904116i \(-0.640531\pi\)
0.337169 + 0.941444i \(0.390531\pi\)
\(54\) 1.24616 6.26489i 0.0230771 0.116017i
\(55\) −55.4053 + 55.4053i −1.00737 + 1.00737i
\(56\) −36.1324 + 24.1429i −0.645222 + 0.431123i
\(57\) −0.787813 3.96061i −0.0138213 0.0694843i
\(58\) 60.3947 + 40.3544i 1.04129 + 0.695766i
\(59\) −10.8115 + 26.1013i −0.183246 + 0.442394i −0.988632 0.150356i \(-0.951958\pi\)
0.805386 + 0.592751i \(0.201958\pi\)
\(60\) 0.669081 + 0.277142i 0.0111513 + 0.00461904i
\(61\) 45.9135 68.7144i 0.752680 1.12647i −0.235306 0.971921i \(-0.575609\pi\)
0.987986 0.154544i \(-0.0493908\pi\)
\(62\) 2.61870 0.520891i 0.0422370 0.00840147i
\(63\) −31.1328 46.5935i −0.494171 0.739579i
\(64\) −32.2713 32.2713i −0.504239 0.504239i
\(65\) −35.7108 7.10332i −0.549397 0.109282i
\(66\) 1.98623 + 4.79518i 0.0300944 + 0.0726543i
\(67\) 44.5324i 0.664663i −0.943163 0.332332i \(-0.892165\pi\)
0.943163 0.332332i \(-0.107835\pi\)
\(68\) 0 0
\(69\) 2.11674 0.0306774
\(70\) 68.0607 28.1917i 0.972296 0.402738i
\(71\) −11.3064 + 56.8410i −0.159245 + 0.800577i 0.815759 + 0.578391i \(0.196319\pi\)
−0.975004 + 0.222186i \(0.928681\pi\)
\(72\) 44.1588 44.1588i 0.613317 0.613317i
\(73\) 1.12032 0.748576i 0.0153469 0.0102545i −0.547873 0.836561i \(-0.684562\pi\)
0.563220 + 0.826307i \(0.309562\pi\)
\(74\) 19.9400 + 100.245i 0.269460 + 1.35466i
\(75\) 0.508479 + 0.339755i 0.00677973 + 0.00453007i
\(76\) −7.98612 + 19.2802i −0.105081 + 0.253687i
\(77\) 84.2570 + 34.9004i 1.09425 + 0.453252i
\(78\) −1.33995 + 2.00537i −0.0171788 + 0.0257099i
\(79\) −29.1507 + 5.79844i −0.368996 + 0.0733979i −0.376106 0.926577i \(-0.622737\pi\)
0.00710935 + 0.999975i \(0.497737\pi\)
\(80\) 55.5694 + 83.1655i 0.694618 + 1.03957i
\(81\) 56.7774 + 56.7774i 0.700956 + 0.700956i
\(82\) 67.8290 + 13.4920i 0.827183 + 0.164537i
\(83\) 25.7951 + 62.2748i 0.310784 + 0.750298i 0.999676 + 0.0254351i \(0.00809712\pi\)
−0.688893 + 0.724863i \(0.741903\pi\)
\(84\) 0.842922i 0.0100348i
\(85\) 0 0
\(86\) 160.285 1.86377
\(87\) 4.93230 2.04303i 0.0566931 0.0234831i
\(88\) −19.8280 + 99.6823i −0.225319 + 1.13275i
\(89\) −90.1397 + 90.1397i −1.01281 + 1.01281i −0.0128890 + 0.999917i \(0.504103\pi\)
−0.999917 + 0.0128890i \(0.995897\pi\)
\(90\) −88.0256 + 58.8169i −0.978063 + 0.653521i
\(91\) 8.26771 + 41.5646i 0.0908540 + 0.456754i
\(92\) −9.09541 6.07736i −0.0988632 0.0660582i
\(93\) 0.0750988 0.181304i 0.000807514 0.00194951i
\(94\) −30.1327 12.4814i −0.320561 0.132781i
\(95\) −74.4751 + 111.460i −0.783949 + 1.17326i
\(96\) 2.08580 0.414892i 0.0217271 0.00432180i
\(97\) 37.5767 + 56.2374i 0.387388 + 0.579767i 0.972995 0.230828i \(-0.0741435\pi\)
−0.585606 + 0.810596i \(0.699144\pi\)
\(98\) 15.5581 + 15.5581i 0.158756 + 0.158756i
\(99\) −128.542 25.5687i −1.29841 0.258269i
\(100\) −1.20941 2.91979i −0.0120941 0.0291979i
\(101\) 34.6405i 0.342975i −0.985186 0.171488i \(-0.945143\pi\)
0.985186 0.171488i \(-0.0548573\pi\)
\(102\) 0 0
\(103\) 151.166 1.46763 0.733817 0.679347i \(-0.237737\pi\)
0.733817 + 0.679347i \(0.237737\pi\)
\(104\) −43.6333 + 18.0735i −0.419551 + 0.173784i
\(105\) 1.05633 5.31052i 0.0100603 0.0505764i
\(106\) 8.03830 8.03830i 0.0758330 0.0758330i
\(107\) 7.93047 5.29897i 0.0741166 0.0495231i −0.517960 0.855405i \(-0.673308\pi\)
0.592076 + 0.805882i \(0.298308\pi\)
\(108\) 0.473332 + 2.37960i 0.00438271 + 0.0220334i
\(109\) −96.7260 64.6303i −0.887395 0.592938i 0.0261584 0.999658i \(-0.491673\pi\)
−0.913553 + 0.406720i \(0.866673\pi\)
\(110\) 65.9347 159.180i 0.599406 1.44710i
\(111\) 6.94044 + 2.87483i 0.0625265 + 0.0258993i
\(112\) 64.6785 96.7982i 0.577487 0.864270i
\(113\) −64.6835 + 12.8663i −0.572420 + 0.113861i −0.472809 0.881165i \(-0.656760\pi\)
−0.0996113 + 0.995026i \(0.531760\pi\)
\(114\) 4.93327 + 7.38315i 0.0432743 + 0.0647645i
\(115\) −49.6863 49.6863i −0.432055 0.432055i
\(116\) −27.0593 5.38243i −0.233270 0.0464003i
\(117\) −23.3062 56.2660i −0.199198 0.480906i
\(118\) 62.1233i 0.526468i
\(119\) 0 0
\(120\) 6.03416 0.0502847
\(121\) 85.2709 35.3203i 0.704718 0.291904i
\(122\) −35.4523 + 178.231i −0.290593 + 1.46091i
\(123\) 3.59425 3.59425i 0.0292216 0.0292216i
\(124\) −0.843234 + 0.563431i −0.00680027 + 0.00454380i
\(125\) 22.2063 + 111.639i 0.177650 + 0.893109i
\(126\) 102.455 + 68.4583i 0.813135 + 0.543319i
\(127\) −36.5576 + 88.2580i −0.287855 + 0.694945i −0.999975 0.00711395i \(-0.997736\pi\)
0.712119 + 0.702059i \(0.247736\pi\)
\(128\) 141.344 + 58.5465i 1.10425 + 0.457395i
\(129\) 6.54505 9.79536i 0.0507368 0.0759330i
\(130\) 78.5249 15.6196i 0.604038 0.120151i
\(131\) −23.8328 35.6683i −0.181930 0.272277i 0.729284 0.684211i \(-0.239853\pi\)
−0.911214 + 0.411934i \(0.864853\pi\)
\(132\) −1.39401 1.39401i −0.0105607 0.0105607i
\(133\) 153.028 + 30.4391i 1.15058 + 0.228866i
\(134\) 37.4735 + 90.4690i 0.279653 + 0.675142i
\(135\) 15.5850i 0.115444i
\(136\) 0 0
\(137\) −63.8232 −0.465863 −0.232931 0.972493i \(-0.574832\pi\)
−0.232931 + 0.972493i \(0.574832\pi\)
\(138\) −4.30022 + 1.78121i −0.0311610 + 0.0129073i
\(139\) 50.9824 256.306i 0.366780 1.84393i −0.151160 0.988509i \(-0.548301\pi\)
0.517940 0.855417i \(-0.326699\pi\)
\(140\) −19.7860 + 19.7860i −0.141328 + 0.141328i
\(141\) −1.99320 + 1.33181i −0.0141362 + 0.00944549i
\(142\) −24.8617 124.988i −0.175083 0.880200i
\(143\) 82.4117 + 55.0658i 0.576306 + 0.385075i
\(144\) −64.0239 + 154.567i −0.444610 + 1.07338i
\(145\) −163.732 67.8201i −1.12919 0.467725i
\(146\) −1.64605 + 2.46349i −0.0112743 + 0.0168732i
\(147\) 1.58608 0.315492i 0.0107897 0.00214620i
\(148\) −21.5685 32.2795i −0.145733 0.218105i
\(149\) 83.6010 + 83.6010i 0.561080 + 0.561080i 0.929614 0.368534i \(-0.120140\pi\)
−0.368534 + 0.929614i \(0.620140\pi\)
\(150\) −1.31889 0.262344i −0.00879261 0.00174896i
\(151\) −10.5977 25.5851i −0.0701833 0.169437i 0.884895 0.465790i \(-0.154230\pi\)
−0.955079 + 0.296352i \(0.904230\pi\)
\(152\) 173.880i 1.14395i
\(153\) 0 0
\(154\) −200.539 −1.30220
\(155\) −6.01857 + 2.49297i −0.0388295 + 0.0160837i
\(156\) 0.178721 0.898490i 0.00114565 0.00575955i
\(157\) 55.8958 55.8958i 0.356024 0.356024i −0.506321 0.862345i \(-0.668995\pi\)
0.862345 + 0.506321i \(0.168995\pi\)
\(158\) 54.3412 36.3096i 0.343932 0.229808i
\(159\) −0.163003 0.819474i −0.00102518 0.00515392i
\(160\) −58.6990 39.2214i −0.366869 0.245134i
\(161\) −31.2979 + 75.5599i −0.194397 + 0.469316i
\(162\) −163.123 67.5676i −1.00693 0.417084i
\(163\) 30.8428 46.1595i 0.189220 0.283187i −0.724715 0.689049i \(-0.758029\pi\)
0.913935 + 0.405862i \(0.133029\pi\)
\(164\) −25.7636 + 5.12469i −0.157095 + 0.0312481i
\(165\) −7.03551 10.5294i −0.0426394 0.0638144i
\(166\) −104.807 104.807i −0.631367 0.631367i
\(167\) −50.6674 10.0784i −0.303398 0.0603495i 0.0410439 0.999157i \(-0.486932\pi\)
−0.344441 + 0.938808i \(0.611932\pi\)
\(168\) −2.68770 6.48868i −0.0159982 0.0386231i
\(169\) 122.942i 0.727470i
\(170\) 0 0
\(171\) −224.222 −1.31124
\(172\) −56.2468 + 23.2982i −0.327016 + 0.135455i
\(173\) 3.60353 18.1162i 0.0208296 0.104718i −0.968972 0.247171i \(-0.920499\pi\)
0.989802 + 0.142453i \(0.0454991\pi\)
\(174\) −8.30094 + 8.30094i −0.0477066 + 0.0477066i
\(175\) −19.6464 + 13.1273i −0.112265 + 0.0750130i
\(176\) −53.1190 267.047i −0.301812 1.51731i
\(177\) −3.79649 2.53674i −0.0214491 0.0143318i
\(178\) 107.270 258.973i 0.602641 1.45490i
\(179\) 57.8989 + 23.9825i 0.323457 + 0.133980i 0.538503 0.842624i \(-0.318990\pi\)
−0.215046 + 0.976604i \(0.568990\pi\)
\(180\) 22.3405 33.4349i 0.124114 0.185749i
\(181\) 102.589 20.4063i 0.566792 0.112742i 0.0966274 0.995321i \(-0.469194\pi\)
0.470165 + 0.882579i \(0.344194\pi\)
\(182\) −51.7722 77.4825i −0.284462 0.425728i
\(183\) 9.44444 + 9.44444i 0.0516090 + 0.0516090i
\(184\) −89.3930 17.7814i −0.485831 0.0966378i
\(185\) −95.4324 230.394i −0.515851 1.24537i
\(186\) 0.431520i 0.00232000i
\(187\) 0 0
\(188\) 12.3883 0.0658954
\(189\) 16.7589 6.94177i 0.0886715 0.0367289i
\(190\) 57.5064 289.104i 0.302665 1.52160i
\(191\) 137.930 137.930i 0.722145 0.722145i −0.246897 0.969042i \(-0.579411\pi\)
0.969042 + 0.246897i \(0.0794109\pi\)
\(192\) 6.13293 4.09789i 0.0319423 0.0213432i
\(193\) −17.2466 86.7045i −0.0893606 0.449246i −0.999397 0.0347181i \(-0.988947\pi\)
0.910037 0.414528i \(-0.136053\pi\)
\(194\) −123.661 82.6278i −0.637429 0.425916i
\(195\) 2.25193 5.43664i 0.0115484 0.0278802i
\(196\) −7.72105 3.19816i −0.0393931 0.0163172i
\(197\) −142.990 + 214.000i −0.725838 + 1.08629i 0.266631 + 0.963799i \(0.414089\pi\)
−0.992469 + 0.122495i \(0.960911\pi\)
\(198\) 282.653 56.2232i 1.42754 0.283956i
\(199\) −126.364 189.117i −0.634996 0.950338i −0.999815 0.0192597i \(-0.993869\pi\)
0.364819 0.931079i \(-0.381131\pi\)
\(200\) −18.6198 18.6198i −0.0930988 0.0930988i
\(201\) 7.05896 + 1.40411i 0.0351192 + 0.00698564i
\(202\) 29.1495 + 70.3732i 0.144305 + 0.348382i
\(203\) 206.273i 1.01612i
\(204\) 0 0
\(205\) −168.736 −0.823103
\(206\) −307.099 + 127.204i −1.49077 + 0.617498i
\(207\) 22.9294 115.274i 0.110770 0.556879i
\(208\) 89.4660 89.4660i 0.430125 0.430125i
\(209\) 303.414 202.735i 1.45174 0.970023i
\(210\) 2.32277 + 11.6774i 0.0110608 + 0.0556065i
\(211\) −6.72473 4.49332i −0.0318708 0.0212954i 0.539533 0.841965i \(-0.318601\pi\)
−0.571404 + 0.820669i \(0.693601\pi\)
\(212\) −1.65238 + 3.98919i −0.00779423 + 0.0188169i
\(213\) −8.65353 3.58441i −0.0406269 0.0168282i
\(214\) −11.6520 + 17.4384i −0.0544485 + 0.0814879i
\(215\) −383.559 + 76.2947i −1.78400 + 0.354859i
\(216\) 11.2311 + 16.8086i 0.0519959 + 0.0778174i
\(217\) 5.36151 + 5.36151i 0.0247074 + 0.0247074i
\(218\) 250.887 + 49.9046i 1.15086 + 0.228920i
\(219\) 0.0833348 + 0.201188i 0.000380524 + 0.000918667i
\(220\) 65.4433i 0.297469i
\(221\) 0 0
\(222\) −16.5188 −0.0744092
\(223\) 45.3315 18.7769i 0.203280 0.0842014i −0.278720 0.960372i \(-0.589910\pi\)
0.482001 + 0.876171i \(0.339910\pi\)
\(224\) −16.0304 + 80.5902i −0.0715642 + 0.359778i
\(225\) 24.0106 24.0106i 0.106714 0.106714i
\(226\) 120.580 80.5687i 0.533538 0.356499i
\(227\) 32.7870 + 164.831i 0.144436 + 0.726129i 0.983329 + 0.181833i \(0.0582031\pi\)
−0.838893 + 0.544296i \(0.816797\pi\)
\(228\) −2.80435 1.87381i −0.0122998 0.00821846i
\(229\) −47.5197 + 114.723i −0.207510 + 0.500972i −0.993030 0.117864i \(-0.962395\pi\)
0.785520 + 0.618836i \(0.212395\pi\)
\(230\) 142.750 + 59.1289i 0.620651 + 0.257082i
\(231\) −8.18879 + 12.2554i −0.0354493 + 0.0530536i
\(232\) −225.460 + 44.8469i −0.971812 + 0.193305i
\(233\) 196.158 + 293.571i 0.841880 + 1.25996i 0.963587 + 0.267396i \(0.0861632\pi\)
−0.121707 + 0.992566i \(0.538837\pi\)
\(234\) 94.6943 + 94.6943i 0.404677 + 0.404677i
\(235\) 78.0483 + 15.5248i 0.332120 + 0.0660628i
\(236\) 9.02993 + 21.8002i 0.0382624 + 0.0923737i
\(237\) 4.80358i 0.0202683i
\(238\) 0 0
\(239\) 206.527 0.864131 0.432066 0.901842i \(-0.357785\pi\)
0.432066 + 0.901842i \(0.357785\pi\)
\(240\) −14.9349 + 6.18624i −0.0622287 + 0.0257760i
\(241\) −56.1919 + 282.496i −0.233161 + 1.17218i 0.669827 + 0.742517i \(0.266368\pi\)
−0.902989 + 0.429665i \(0.858632\pi\)
\(242\) −143.509 + 143.509i −0.593011 + 0.593011i
\(243\) −32.5282 + 21.7347i −0.133861 + 0.0894430i
\(244\) −13.4659 67.6977i −0.0551881 0.277450i
\(245\) −44.6358 29.8247i −0.182187 0.121733i
\(246\) −4.27731 + 10.3263i −0.0173875 + 0.0419770i
\(247\) 156.662 + 64.8915i 0.634259 + 0.262719i
\(248\) −4.69455 + 7.02589i −0.0189296 + 0.0283302i
\(249\) −10.6847 + 2.12531i −0.0429103 + 0.00853539i
\(250\) −139.055 208.111i −0.556221 0.832444i
\(251\) −191.096 191.096i −0.761337 0.761337i 0.215227 0.976564i \(-0.430951\pi\)
−0.976564 + 0.215227i \(0.930951\pi\)
\(252\) −45.9041 9.13089i −0.182159 0.0362337i
\(253\) 73.1996 + 176.720i 0.289327 + 0.698496i
\(254\) 210.062i 0.827014i
\(255\) 0 0
\(256\) −153.856 −0.601002
\(257\) −48.7819 + 20.2061i −0.189813 + 0.0786230i −0.475565 0.879680i \(-0.657756\pi\)
0.285753 + 0.958303i \(0.407756\pi\)
\(258\) −5.05380 + 25.4071i −0.0195884 + 0.0984773i
\(259\) −205.242 + 205.242i −0.792439 + 0.792439i
\(260\) −25.2854 + 16.8952i −0.0972517 + 0.0649815i
\(261\) −57.8310 290.736i −0.221575 1.11393i
\(262\) 78.4315 + 52.4062i 0.299357 + 0.200024i
\(263\) 194.228 468.907i 0.738509 1.78292i 0.126654 0.991947i \(-0.459576\pi\)
0.611854 0.790970i \(-0.290424\pi\)
\(264\) −15.1757 6.28599i −0.0574838 0.0238106i
\(265\) −15.4094 + 23.0617i −0.0581485 + 0.0870254i
\(266\) −336.495 + 66.9329i −1.26502 + 0.251628i
\(267\) −11.4462 17.1304i −0.0428696 0.0641588i
\(268\) −26.3003 26.3003i −0.0981353 0.0981353i
\(269\) 172.869 + 34.3858i 0.642637 + 0.127828i 0.505642 0.862743i \(-0.331256\pi\)
0.136995 + 0.990572i \(0.456256\pi\)
\(270\) −13.1146 31.6614i −0.0485725 0.117264i
\(271\) 464.255i 1.71312i 0.516050 + 0.856559i \(0.327402\pi\)
−0.516050 + 0.856559i \(0.672598\pi\)
\(272\) 0 0
\(273\) −6.84919 −0.0250886
\(274\) 129.659 53.7064i 0.473207 0.196009i
\(275\) −10.7811 + 54.2004i −0.0392041 + 0.197093i
\(276\) 1.25012 1.25012i 0.00452941 0.00452941i
\(277\) −146.824 + 98.1048i −0.530051 + 0.354169i −0.791618 0.611017i \(-0.790761\pi\)
0.261567 + 0.965185i \(0.415761\pi\)
\(278\) 112.106 + 563.594i 0.403258 + 2.02732i
\(279\) −9.06003 6.05372i −0.0324732 0.0216979i
\(280\) −89.2206 + 215.398i −0.318645 + 0.769277i
\(281\) 369.073 + 152.875i 1.31343 + 0.544040i 0.925883 0.377811i \(-0.123323\pi\)
0.387545 + 0.921851i \(0.373323\pi\)
\(282\) 2.92854 4.38287i 0.0103849 0.0155421i
\(283\) 350.746 69.7677i 1.23938 0.246529i 0.468477 0.883476i \(-0.344803\pi\)
0.770908 + 0.636947i \(0.219803\pi\)
\(284\) 26.8921 + 40.2469i 0.0946906 + 0.141715i
\(285\) −15.3196 15.3196i −0.0537530 0.0537530i
\(286\) −213.759 42.5193i −0.747409 0.148669i
\(287\) 75.1574 + 181.446i 0.261872 + 0.632216i
\(288\) 118.084i 0.410013i
\(289\) 0 0
\(290\) 389.697 1.34378
\(291\) −10.0991 + 4.18320i −0.0347050 + 0.0143753i
\(292\) 0.219549 1.10375i 0.000751880 0.00377995i
\(293\) 169.002 169.002i 0.576800 0.576800i −0.357220 0.934020i \(-0.616275\pi\)
0.934020 + 0.357220i \(0.116275\pi\)
\(294\) −2.95670 + 1.97560i −0.0100568 + 0.00671973i
\(295\) 29.5704 + 148.660i 0.100239 + 0.503933i
\(296\) −268.955 179.710i −0.908633 0.607129i
\(297\) 16.2354 39.1958i 0.0546647 0.131972i
\(298\) −240.187 99.4888i −0.805997 0.333855i
\(299\) −49.3818 + 73.9051i −0.165157 + 0.247174i
\(300\) 0.500956 0.0996463i 0.00166985 0.000332154i
\(301\) 252.884 + 378.468i 0.840147 + 1.25737i
\(302\) 43.0590 + 43.0590i 0.142579 + 0.142579i
\(303\) 5.49096 + 1.09222i 0.0181220 + 0.00360468i
\(304\) −178.262 430.363i −0.586389 1.41567i
\(305\) 443.380i 1.45370i
\(306\) 0 0
\(307\) 409.955 1.33536 0.667679 0.744450i \(-0.267288\pi\)
0.667679 + 0.744450i \(0.267288\pi\)
\(308\) 70.3727 29.1493i 0.228483 0.0946407i
\(309\) −4.76629 + 23.9618i −0.0154249 + 0.0775462i
\(310\) 10.1291 10.1291i 0.0326745 0.0326745i
\(311\) −180.101 + 120.340i −0.579103 + 0.386944i −0.810346 0.585952i \(-0.800721\pi\)
0.231243 + 0.972896i \(0.425721\pi\)
\(312\) −1.48912 7.48629i −0.00477281 0.0239945i
\(313\) 393.629 + 263.015i 1.25760 + 0.840302i 0.992299 0.123863i \(-0.0395284\pi\)
0.265302 + 0.964165i \(0.414528\pi\)
\(314\) −66.5184 + 160.590i −0.211842 + 0.511432i
\(315\) −277.759 115.052i −0.881776 0.365244i
\(316\) −13.7915 + 20.6405i −0.0436441 + 0.0653180i
\(317\) 251.422 50.0110i 0.793130 0.157763i 0.218133 0.975919i \(-0.430003\pi\)
0.574997 + 0.818156i \(0.305003\pi\)
\(318\) 1.02072 + 1.52762i 0.00320982 + 0.00480384i
\(319\) 341.131 + 341.131i 1.06938 + 1.06938i
\(320\) −240.149 47.7685i −0.750464 0.149277i
\(321\) 0.589905 + 1.42416i 0.00183771 + 0.00443663i
\(322\) 179.839i 0.558506i
\(323\) 0 0
\(324\) 67.0640 0.206988
\(325\) −23.7248 + 9.82715i −0.0729995 + 0.0302374i
\(326\) −23.8154 + 119.728i −0.0730535 + 0.367265i
\(327\) 13.2945 13.2945i 0.0406560 0.0406560i
\(328\) −181.983 + 121.597i −0.554828 + 0.370724i
\(329\) −18.0696 90.8421i −0.0549229 0.276116i
\(330\) 23.1532 + 15.4705i 0.0701612 + 0.0468802i
\(331\) −86.3966 + 208.580i −0.261017 + 0.630151i −0.999002 0.0446663i \(-0.985778\pi\)
0.737985 + 0.674817i \(0.235778\pi\)
\(332\) 52.0129 + 21.5444i 0.156665 + 0.0648929i
\(333\) 231.740 346.823i 0.695916 1.04151i
\(334\) 111.413 22.1615i 0.333572 0.0663516i
\(335\) −132.736 198.654i −0.396228 0.592997i
\(336\) 13.3044 + 13.3044i 0.0395965 + 0.0395965i
\(337\) −354.200 70.4547i −1.05104 0.209064i −0.360797 0.932644i \(-0.617495\pi\)
−0.690241 + 0.723580i \(0.742495\pi\)
\(338\) 103.454 + 249.761i 0.306078 + 0.738938i
\(339\) 10.6588i 0.0314420i
\(340\) 0 0
\(341\) 17.7335 0.0520045
\(342\) 455.513 188.680i 1.33191 0.551695i
\(343\) −71.8838 + 361.384i −0.209574 + 1.05360i
\(344\) −358.691 + 358.691i −1.04271 + 1.04271i
\(345\) 9.44253 6.30930i 0.0273697 0.0182878i
\(346\) 7.92384 + 39.8358i 0.0229013 + 0.115132i
\(347\) −13.1855 8.81030i −0.0379987 0.0253899i 0.536426 0.843947i \(-0.319774\pi\)
−0.574425 + 0.818558i \(0.694774\pi\)
\(348\) 1.70637 4.11954i 0.00490336 0.0118377i
\(349\) −292.270 121.062i −0.837448 0.346883i −0.0776015 0.996984i \(-0.524726\pi\)
−0.759847 + 0.650102i \(0.774726\pi\)
\(350\) 28.8657 43.2006i 0.0824735 0.123430i
\(351\) 19.3356 3.84608i 0.0550870 0.0109575i
\(352\) 106.768 + 159.789i 0.303318 + 0.453947i
\(353\) −191.613 191.613i −0.542812 0.542812i 0.381540 0.924352i \(-0.375394\pi\)
−0.924352 + 0.381540i \(0.875394\pi\)
\(354\) 9.84732 + 1.95875i 0.0278173 + 0.00553320i
\(355\) 118.988 + 287.262i 0.335177 + 0.809188i
\(356\) 106.471i 0.299075i
\(357\) 0 0
\(358\) −137.804 −0.384928
\(359\) 146.269 60.5865i 0.407434 0.168765i −0.169547 0.985522i \(-0.554231\pi\)
0.576981 + 0.816757i \(0.304231\pi\)
\(360\) 65.3646 328.610i 0.181568 0.912806i
\(361\) 186.183 186.183i 0.515743 0.515743i
\(362\) −191.242 + 127.784i −0.528292 + 0.352994i
\(363\) 2.91012 + 14.6302i 0.00801686 + 0.0403035i
\(364\) 29.4303 + 19.6647i 0.0808524 + 0.0540239i
\(365\) 2.76638 6.67862i 0.00757911 0.0182976i
\(366\) −27.1340 11.2393i −0.0741367 0.0307084i
\(367\) 271.669 406.581i 0.740242 1.10785i −0.249967 0.968254i \(-0.580420\pi\)
0.990209 0.139596i \(-0.0445803\pi\)
\(368\) 239.482 47.6360i 0.650767 0.129446i
\(369\) −156.802 234.671i −0.424939 0.635966i
\(370\) 387.748 + 387.748i 1.04797 + 1.04797i
\(371\) 31.6624 + 6.29804i 0.0853434 + 0.0169759i
\(372\) −0.0627237 0.151428i −0.000168612 0.000407065i
\(373\) 573.453i 1.53741i −0.639605 0.768704i \(-0.720902\pi\)
0.639605 0.768704i \(-0.279098\pi\)
\(374\) 0 0
\(375\) −18.3963 −0.0490568
\(376\) 95.3635 39.5008i 0.253626 0.105055i
\(377\) −43.7352 + 219.872i −0.116008 + 0.583214i
\(378\) −28.2048 + 28.2048i −0.0746159 + 0.0746159i
\(379\) −583.696 + 390.013i −1.54009 + 1.02906i −0.560480 + 0.828168i \(0.689383\pi\)
−0.979614 + 0.200890i \(0.935617\pi\)
\(380\) 21.8427 + 109.811i 0.0574808 + 0.288976i
\(381\) −12.8373 8.57764i −0.0336938 0.0225135i
\(382\) −164.142 + 396.274i −0.429692 + 1.03737i
\(383\) −284.935 118.024i −0.743956 0.308157i −0.0216830 0.999765i \(-0.506902\pi\)
−0.722273 + 0.691608i \(0.756902\pi\)
\(384\) −13.7370 + 20.5588i −0.0357733 + 0.0535386i
\(385\) 479.887 95.4555i 1.24646 0.247936i
\(386\) 107.998 + 161.630i 0.279787 + 0.418731i
\(387\) −462.540 462.540i −1.19519 1.19519i
\(388\) 55.4053 + 11.0208i 0.142797 + 0.0284041i
\(389\) −109.097 263.382i −0.280454 0.677076i 0.719392 0.694604i \(-0.244420\pi\)
−0.999846 + 0.0175282i \(0.994420\pi\)
\(390\) 12.9397i 0.0331787i
\(391\) 0 0
\(392\) −69.6329 −0.177635
\(393\) 6.40533 2.65317i 0.0162986 0.00675108i
\(394\) 110.411 555.071i 0.280230 1.40881i
\(395\) −112.755 + 112.755i −0.285455 + 0.285455i
\(396\) −91.0159 + 60.8149i −0.229838 + 0.153573i
\(397\) −24.2591 121.959i −0.0611061 0.307201i 0.938130 0.346283i \(-0.112556\pi\)
−0.999236 + 0.0390826i \(0.987556\pi\)
\(398\) 415.852 + 277.864i 1.04486 + 0.698150i
\(399\) −9.64997 + 23.2971i −0.0241854 + 0.0583887i
\(400\) 65.1740 + 26.9960i 0.162935 + 0.0674899i
\(401\) 237.214 355.016i 0.591557 0.885328i −0.408061 0.912955i \(-0.633795\pi\)
0.999618 + 0.0276268i \(0.00879500\pi\)
\(402\) −15.5220 + 3.08752i −0.0386120 + 0.00768041i
\(403\) 4.57818 + 6.85173i 0.0113602 + 0.0170018i
\(404\) −20.4582 20.4582i −0.0506391 0.0506391i
\(405\) 422.512 + 84.0429i 1.04324 + 0.207513i
\(406\) −173.576 419.050i −0.427528 1.03214i
\(407\) 678.850i 1.66794i
\(408\) 0 0
\(409\) −215.550 −0.527018 −0.263509 0.964657i \(-0.584880\pi\)
−0.263509 + 0.964657i \(0.584880\pi\)
\(410\) 342.793 141.989i 0.836079 0.346315i
\(411\) 2.01235 10.1168i 0.00489624 0.0246150i
\(412\) 89.2768 89.2768i 0.216691 0.216691i
\(413\) 146.687 98.0131i 0.355174 0.237320i
\(414\) 50.4198 + 253.477i 0.121787 + 0.612264i
\(415\) 300.689 + 200.914i 0.724552 + 0.484130i
\(416\) −34.1743 + 82.5042i −0.0821499 + 0.198327i
\(417\) 39.0202 + 16.1627i 0.0935737 + 0.0387595i
\(418\) −445.796 + 667.181i −1.06650 + 1.59613i
\(419\) −610.227 + 121.382i −1.45639 + 0.289694i −0.858884 0.512170i \(-0.828842\pi\)
−0.597506 + 0.801864i \(0.703842\pi\)
\(420\) −2.51247 3.76018i −0.00598207 0.00895280i
\(421\) 36.3708 + 36.3708i 0.0863916 + 0.0863916i 0.748982 0.662590i \(-0.230543\pi\)
−0.662590 + 0.748982i \(0.730543\pi\)
\(422\) 17.4426 + 3.46954i 0.0413331 + 0.00822166i
\(423\) 50.9371 + 122.973i 0.120419 + 0.290717i
\(424\) 35.9769i 0.0848511i
\(425\) 0 0
\(426\) 20.5961 0.0483477
\(427\) −476.777 + 197.488i −1.11657 + 0.462500i
\(428\) 1.55413 7.81313i 0.00363114 0.0182550i
\(429\) −11.3271 + 11.3271i −0.0264034 + 0.0264034i
\(430\) 715.011 477.755i 1.66282 1.11106i
\(431\) −91.8124 461.572i −0.213022 1.07093i −0.928226 0.372017i \(-0.878666\pi\)
0.715204 0.698916i \(-0.246334\pi\)
\(432\) −45.0299 30.0880i −0.104236 0.0696481i
\(433\) 246.289 594.595i 0.568798 1.37320i −0.333772 0.942654i \(-0.608321\pi\)
0.902569 0.430545i \(-0.141679\pi\)
\(434\) −15.4037 6.38042i −0.0354924 0.0147014i
\(435\) 15.9129 23.8153i 0.0365813 0.0547477i
\(436\) −95.2948 + 18.9553i −0.218566 + 0.0434755i
\(437\) 181.808 + 272.095i 0.416037 + 0.622644i
\(438\) −0.338594 0.338594i −0.000773047 0.000773047i
\(439\) −811.551 161.428i −1.84864 0.367717i −0.859077 0.511846i \(-0.828962\pi\)
−0.989559 + 0.144129i \(0.953962\pi\)
\(440\) 208.669 + 503.772i 0.474248 + 1.14494i
\(441\) 89.7930i 0.203612i
\(442\) 0 0
\(443\) 354.430 0.800068 0.400034 0.916500i \(-0.368998\pi\)
0.400034 + 0.916500i \(0.368998\pi\)
\(444\) 5.79677 2.40110i 0.0130558 0.00540788i
\(445\) −133.426 + 670.780i −0.299835 + 1.50737i
\(446\) −76.2917 + 76.2917i −0.171058 + 0.171058i
\(447\) −15.8878 + 10.6159i −0.0355431 + 0.0237491i
\(448\) 55.5988 + 279.514i 0.124105 + 0.623916i
\(449\) −653.488 436.647i −1.45543 0.972487i −0.996463 0.0840341i \(-0.973220\pi\)
−0.458967 0.888453i \(-0.651780\pi\)
\(450\) −28.5736 + 68.9828i −0.0634969 + 0.153295i
\(451\) 424.366 + 175.778i 0.940945 + 0.389752i
\(452\) −30.6025 + 45.7999i −0.0677047 + 0.101327i
\(453\) 4.38970 0.873166i 0.00969029 0.00192752i
\(454\) −205.311 307.270i −0.452227 0.676806i
\(455\) 160.772 + 160.772i 0.353344 + 0.353344i
\(456\) −27.5622 5.48246i −0.0604434 0.0120229i
\(457\) −124.426 300.390i −0.272266 0.657309i 0.727313 0.686306i \(-0.240769\pi\)
−0.999580 + 0.0289968i \(0.990769\pi\)
\(458\) 273.050i 0.596178i
\(459\) 0 0
\(460\) −58.6882 −0.127583
\(461\) −227.477 + 94.2242i −0.493444 + 0.204391i −0.615507 0.788131i \(-0.711049\pi\)
0.122064 + 0.992522i \(0.461049\pi\)
\(462\) 6.32302 31.7879i 0.0136862 0.0688051i
\(463\) 248.069 248.069i 0.535786 0.535786i −0.386503 0.922288i \(-0.626317\pi\)
0.922288 + 0.386503i \(0.126317\pi\)
\(464\) 512.051 342.141i 1.10356 0.737374i
\(465\) −0.205401 1.03262i −0.000441724 0.00222069i
\(466\) −645.537 431.334i −1.38527 0.925610i
\(467\) 83.7591 202.212i 0.179356 0.433003i −0.808476 0.588529i \(-0.799707\pi\)
0.987832 + 0.155526i \(0.0497073\pi\)
\(468\) −46.9943 19.4657i −0.100415 0.0415933i
\(469\) −154.495 + 231.218i −0.329413 + 0.493002i
\(470\) −171.621 + 34.1376i −0.365152 + 0.0726332i
\(471\) 7.09779 + 10.6226i 0.0150696 + 0.0225533i
\(472\) 139.022 + 139.022i 0.294538 + 0.294538i
\(473\) 1044.12 + 207.688i 2.20744 + 0.439087i
\(474\) 4.04215 + 9.75862i 0.00852775 + 0.0205878i
\(475\) 94.5441i 0.199040i
\(476\) 0 0
\(477\) −46.3929 −0.0972597
\(478\) −419.566 + 173.790i −0.877754 + 0.363578i
\(479\) 98.0271 492.815i 0.204649 1.02884i −0.732727 0.680523i \(-0.761753\pi\)
0.937376 0.348319i \(-0.113247\pi\)
\(480\) 8.06788 8.06788i 0.0168081 0.0168081i
\(481\) −262.288 + 175.255i −0.545298 + 0.364356i
\(482\) −123.561 621.183i −0.256351 1.28876i
\(483\) −10.9904 7.34353i −0.0227544 0.0152040i
\(484\) 29.5001 71.2196i 0.0609506 0.147148i
\(485\) 335.250 + 138.865i 0.691238 + 0.286320i
\(486\) 47.7926 71.5267i 0.0983387 0.147174i
\(487\) −246.948 + 49.1210i −0.507080 + 0.100864i −0.441999 0.897016i \(-0.645731\pi\)
−0.0650809 + 0.997880i \(0.520731\pi\)
\(488\) −319.516 478.189i −0.654745 0.979896i
\(489\) 6.34439 + 6.34439i 0.0129742 + 0.0129742i
\(490\) 115.776 + 23.0293i 0.236278 + 0.0469986i
\(491\) 86.6215 + 209.123i 0.176418 + 0.425912i 0.987210 0.159423i \(-0.0509632\pi\)
−0.810792 + 0.585334i \(0.800963\pi\)
\(492\) 4.24543i 0.00862893i
\(493\) 0 0
\(494\) −372.869 −0.754796
\(495\) −649.624 + 269.083i −1.31237 + 0.543602i
\(496\) 4.41633 22.2024i 0.00890388 0.0447628i
\(497\) 255.901 255.901i 0.514891 0.514891i
\(498\) 19.9178 13.3086i 0.0399956 0.0267242i
\(499\) 42.1099 + 211.701i 0.0843886 + 0.424250i 0.999766 + 0.0216522i \(0.00689266\pi\)
−0.915377 + 0.402598i \(0.868107\pi\)
\(500\) 79.0470 + 52.8175i 0.158094 + 0.105635i
\(501\) 3.19510 7.71365i 0.00637744 0.0153965i
\(502\) 549.021 + 227.412i 1.09367 + 0.453012i
\(503\) −490.279 + 733.755i −0.974710 + 1.45876i −0.0881697 + 0.996105i \(0.528102\pi\)
−0.886540 + 0.462651i \(0.846898\pi\)
\(504\) −382.477 + 76.0793i −0.758882 + 0.150951i
\(505\) −103.252 154.527i −0.204459 0.305994i
\(506\) −297.414 297.414i −0.587776 0.587776i
\(507\) 19.4879 + 3.87639i 0.0384377 + 0.00764574i
\(508\) 30.5335 + 73.7144i 0.0601053 + 0.145107i
\(509\) 459.446i 0.902645i 0.892361 + 0.451323i \(0.149048\pi\)
−0.892361 + 0.451323i \(0.850952\pi\)
\(510\) 0 0
\(511\) −8.41386 −0.0164655
\(512\) −252.811 + 104.718i −0.493772 + 0.204527i
\(513\) 14.1601 71.1874i 0.0276025 0.138767i
\(514\) 82.0986 82.0986i 0.159725 0.159725i
\(515\) 674.335 450.576i 1.30939 0.874906i
\(516\) −1.91959 9.65043i −0.00372013 0.0187024i
\(517\) −180.116 120.350i −0.348387 0.232785i
\(518\) 244.246 589.663i 0.471518 1.13835i
\(519\) 2.75802 + 1.14241i 0.00531411 + 0.00220117i
\(520\) −140.772 + 210.680i −0.270716 + 0.405154i
\(521\) 99.1978 19.7317i 0.190399 0.0378727i −0.0989697 0.995090i \(-0.531555\pi\)
0.289369 + 0.957218i \(0.406555\pi\)
\(522\) 362.136 + 541.975i 0.693747 + 1.03827i
\(523\) −395.099 395.099i −0.755448 0.755448i 0.220042 0.975490i \(-0.429380\pi\)
−0.975490 + 0.220042i \(0.929380\pi\)
\(524\) −35.1406 6.98989i −0.0670621 0.0133395i
\(525\) −1.46139 3.52810i −0.00278360 0.00672019i
\(526\) 1116.04i 2.12175i
\(527\) 0 0
\(528\) 44.0052 0.0833432
\(529\) 330.254 136.796i 0.624299 0.258593i
\(530\) 11.8984 59.8174i 0.0224499 0.112863i
\(531\) −179.272 + 179.272i −0.337611 + 0.337611i
\(532\) 108.353 72.3992i 0.203671 0.136089i
\(533\) 41.6409 + 209.343i 0.0781255 + 0.392763i
\(534\) 37.6683 + 25.1691i 0.0705398 + 0.0471332i
\(535\) 19.5824 47.2762i 0.0366027 0.0883667i
\(536\) −286.315 118.596i −0.534170 0.221260i
\(537\) −5.62709 + 8.42153i −0.0104788 + 0.0156826i
\(538\) −380.124 + 75.6114i −0.706551 + 0.140542i
\(539\) 81.1882 + 121.507i 0.150628 + 0.225430i
\(540\) 9.20429 + 9.20429i 0.0170450 + 0.0170450i
\(541\) −40.0392 7.96429i −0.0740095 0.0147214i 0.157947 0.987448i \(-0.449513\pi\)
−0.231956 + 0.972726i \(0.574513\pi\)
\(542\) −390.665 943.148i −0.720783 1.74012i
\(543\) 16.9051i 0.0311328i
\(544\) 0 0
\(545\) −624.125 −1.14518
\(546\) 13.9143 5.76351i 0.0254841 0.0105559i
\(547\) 13.2836 66.7811i 0.0242844 0.122086i −0.966742 0.255755i \(-0.917676\pi\)
0.991026 + 0.133669i \(0.0426759\pi\)
\(548\) −37.6931 + 37.6931i −0.0687830 + 0.0687830i
\(549\) 616.635 412.022i 1.12320 0.750496i
\(550\) −23.7068 119.182i −0.0431032 0.216695i
\(551\) 686.260 + 458.544i 1.24548 + 0.832203i
\(552\) 5.63714 13.6093i 0.0102122 0.0246545i
\(553\) 171.470 + 71.0254i 0.310073 + 0.128436i
\(554\) 215.724 322.853i 0.389393 0.582768i
\(555\) 39.5294 7.86289i 0.0712242 0.0141674i
\(556\) −121.261 181.480i −0.218096 0.326403i
\(557\) 208.814 + 208.814i 0.374890 + 0.374890i 0.869255 0.494365i \(-0.164599\pi\)
−0.494365 + 0.869255i \(0.664599\pi\)
\(558\) 23.4999 + 4.67441i 0.0421144 + 0.00837708i
\(559\) 189.310 + 457.036i 0.338659 + 0.817595i
\(560\) 624.591i 1.11534i
\(561\) 0 0
\(562\) −878.426 −1.56304
\(563\) 408.295 169.121i 0.725212 0.300393i 0.0106294 0.999944i \(-0.496616\pi\)
0.714583 + 0.699551i \(0.246616\pi\)
\(564\) −0.390606 + 1.96371i −0.000692564 + 0.00348175i
\(565\) −250.195 + 250.195i −0.442824 + 0.442824i
\(566\) −653.842 + 436.883i −1.15520 + 0.771879i
\(567\) −97.8195 491.772i −0.172521 0.867322i
\(568\) 335.341 + 224.067i 0.590388 + 0.394485i
\(569\) −246.656 + 595.479i −0.433490 + 1.04654i 0.544664 + 0.838654i \(0.316657\pi\)
−0.978154 + 0.207882i \(0.933343\pi\)
\(570\) 44.0135 + 18.2310i 0.0772166 + 0.0319842i
\(571\) 66.5484 99.5967i 0.116547 0.174425i −0.768610 0.639718i \(-0.779051\pi\)
0.885157 + 0.465293i \(0.154051\pi\)
\(572\) 81.1924 16.1502i 0.141945 0.0282346i
\(573\) 17.5147 + 26.2125i 0.0305666 + 0.0457461i
\(574\) −305.369 305.369i −0.532002 0.532002i
\(575\) −48.6058 9.66830i −0.0845319 0.0168144i
\(576\) −156.730 378.379i −0.272100 0.656908i
\(577\) 177.008i 0.306773i −0.988166 0.153387i \(-0.950982\pi\)
0.988166 0.153387i \(-0.0490180\pi\)
\(578\) 0 0
\(579\) 14.2876 0.0246763
\(580\) −136.752 + 56.6444i −0.235779 + 0.0976628i
\(581\) 82.1166 412.828i 0.141337 0.710548i
\(582\) 16.9966 16.9966i 0.0292038 0.0292038i
\(583\) 62.7783 41.9471i 0.107681 0.0719504i
\(584\) −1.82930 9.19651i −0.00313236 0.0157474i
\(585\) −271.677 181.528i −0.464404 0.310305i
\(586\) −201.120 + 485.547i −0.343208 + 0.828578i
\(587\) −577.480 239.200i −0.983781 0.407496i −0.167956 0.985794i \(-0.553717\pi\)
−0.815825 + 0.578299i \(0.803717\pi\)
\(588\) 0.750395 1.12305i 0.00127618 0.00190994i
\(589\) 29.7560 5.91884i 0.0505195 0.0100490i
\(590\) −185.169 277.125i −0.313845 0.469703i
\(591\) −29.4132 29.4132i −0.0497685 0.0497685i
\(592\) 849.920 + 169.060i 1.43568 + 0.285574i
\(593\) 57.3899 + 138.551i 0.0967789 + 0.233645i 0.964853 0.262789i \(-0.0846424\pi\)
−0.868074 + 0.496434i \(0.834642\pi\)
\(594\) 93.2893i 0.157053i
\(595\) 0 0
\(596\) 98.7472 0.165683
\(597\) 33.9618 14.0674i 0.0568874 0.0235635i
\(598\) 38.1304 191.695i 0.0637633 0.320560i
\(599\) 217.159 217.159i 0.362536 0.362536i −0.502210 0.864746i \(-0.667480\pi\)
0.864746 + 0.502210i \(0.167480\pi\)
\(600\) 3.53855 2.36438i 0.00589759 0.00394064i
\(601\) −79.2601 398.467i −0.131880 0.663007i −0.989003 0.147895i \(-0.952750\pi\)
0.857123 0.515112i \(-0.172250\pi\)
\(602\) −832.218 556.070i −1.38242 0.923705i
\(603\) 152.931 369.209i 0.253617 0.612287i
\(604\) −21.3690 8.85135i −0.0353792 0.0146545i
\(605\) 275.105 411.724i 0.454719 0.680536i
\(606\) −12.0741 + 2.40169i −0.0199243 + 0.00396319i
\(607\) −576.178 862.312i −0.949223 1.42061i −0.906823 0.421511i \(-0.861500\pi\)
−0.0423995 0.999101i \(-0.513500\pi\)
\(608\) 232.484 + 232.484i 0.382374 + 0.382374i
\(609\) −32.6969 6.50382i −0.0536895 0.0106795i
\(610\) 373.099 + 900.740i 0.611637 + 1.47662i
\(611\) 100.662i 0.164750i
\(612\) 0 0
\(613\) 132.402 0.215991 0.107995 0.994151i \(-0.465557\pi\)
0.107995 + 0.994151i \(0.465557\pi\)
\(614\) −832.835 + 344.972i −1.35641 + 0.561843i
\(615\) 5.32027 26.7468i 0.00865085 0.0434908i
\(616\) 448.774 448.774i 0.728529 0.728529i
\(617\) −213.080 + 142.375i −0.345348 + 0.230754i −0.716132 0.697965i \(-0.754089\pi\)
0.370784 + 0.928719i \(0.379089\pi\)
\(618\) −10.4807 52.6898i −0.0169590 0.0852586i
\(619\) 76.4213 + 51.0630i 0.123459 + 0.0824928i 0.615767 0.787929i \(-0.288846\pi\)
−0.492307 + 0.870421i \(0.663846\pi\)
\(620\) −2.08217 + 5.02680i −0.00335834 + 0.00810774i
\(621\) 35.1499 + 14.5596i 0.0566021 + 0.0234454i
\(622\) 264.616 396.026i 0.425428 0.636698i
\(623\) 780.735 155.298i 1.25319 0.249274i
\(624\) 11.3606 + 17.0024i 0.0182061 + 0.0272474i
\(625\) 498.708 + 498.708i 0.797932 + 0.797932i
\(626\) −1020.99 203.088i −1.63098 0.324422i
\(627\) 22.5694 + 54.4872i 0.0359958 + 0.0869015i
\(628\) 66.0226i 0.105131i
\(629\) 0 0
\(630\) 661.091 1.04935
\(631\) 530.804 219.866i 0.841210 0.348441i 0.0798795 0.996805i \(-0.474546\pi\)
0.761331 + 0.648364i \(0.224546\pi\)
\(632\) −40.3518 + 202.862i −0.0638478 + 0.320984i
\(633\) 0.924280 0.924280i 0.00146016 0.00146016i
\(634\) −468.688 + 313.167i −0.739256 + 0.493955i
\(635\) 99.9882 + 502.675i 0.157462 + 0.791614i
\(636\) −0.580238 0.387703i −0.000912324 0.000609595i
\(637\) −25.9868 + 62.7377i −0.0407956 + 0.0984893i
\(638\) −980.076 405.961i −1.53617 0.636302i
\(639\) −288.940 + 432.429i −0.452175 + 0.676727i
\(640\) 805.026 160.130i 1.25785 0.250203i
\(641\) 547.351 + 819.168i 0.853901 + 1.27795i 0.958975 + 0.283489i \(0.0914921\pi\)
−0.105074 + 0.994464i \(0.533508\pi\)
\(642\) −2.39682 2.39682i −0.00373337 0.00373337i
\(643\) −34.6996 6.90218i −0.0539652 0.0107343i 0.168034 0.985781i \(-0.446258\pi\)
−0.221999 + 0.975047i \(0.571258\pi\)
\(644\) 26.1405 + 63.1088i 0.0405909 + 0.0979950i
\(645\) 63.2046i 0.0979916i
\(646\) 0 0
\(647\) −472.176 −0.729793 −0.364897 0.931048i \(-0.618896\pi\)
−0.364897 + 0.931048i \(0.618896\pi\)
\(648\) 516.248 213.837i 0.796679 0.329995i
\(649\) 80.4959 404.680i 0.124031 0.623544i
\(650\) 39.9283 39.9283i 0.0614281 0.0614281i
\(651\) −1.01892 + 0.680818i −0.00156515 + 0.00104580i
\(652\) −9.04585 45.4766i −0.0138740 0.0697493i
\(653\) 529.021 + 353.481i 0.810140 + 0.541318i 0.890252 0.455468i \(-0.150528\pi\)
−0.0801126 + 0.996786i \(0.525528\pi\)
\(654\) −15.8210 + 38.1953i −0.0241912 + 0.0584026i
\(655\) −212.631 88.0746i −0.324627 0.134465i
\(656\) 325.758 487.531i 0.496582 0.743187i
\(657\) 11.8591 2.35892i 0.0180504 0.00359044i
\(658\) 113.151 + 169.343i 0.171963 + 0.257360i
\(659\) −128.530 128.530i −0.195037 0.195037i 0.602831 0.797869i \(-0.294039\pi\)
−0.797869 + 0.602831i \(0.794039\pi\)
\(660\) −10.3736 2.06344i −0.0157176 0.00312642i
\(661\) −445.481 1075.49i −0.673950 1.62706i −0.774837 0.632161i \(-0.782168\pi\)
0.100887 0.994898i \(-0.467832\pi\)
\(662\) 496.438i 0.749906i
\(663\) 0 0
\(664\) 469.082 0.706449
\(665\) 773.368 320.340i 1.16296 0.481714i
\(666\) −178.939 + 899.588i −0.268678 + 1.35073i
\(667\) −305.919 + 305.919i −0.458649 + 0.458649i
\(668\) −35.8756 + 23.9713i −0.0537060 + 0.0358852i
\(669\) 1.54707 + 7.77765i 0.00231251 + 0.0116258i
\(670\) 436.823 + 291.876i 0.651975 + 0.435635i
\(671\) −461.884 + 1115.09i −0.688352 + 1.66183i
\(672\) −12.2691 5.08204i −0.0182576 0.00756256i
\(673\) −59.6248 + 89.2349i −0.0885956 + 0.132593i −0.873120 0.487505i \(-0.837907\pi\)
0.784525 + 0.620098i \(0.212907\pi\)
\(674\) 778.854 154.924i 1.15557 0.229857i
\(675\) 6.10672 + 9.13935i 0.00904699 + 0.0135398i
\(676\) −72.6081 72.6081i −0.107408 0.107408i
\(677\) −1034.24 205.722i −1.52767 0.303873i −0.641463 0.767154i \(-0.721672\pi\)
−0.886211 + 0.463281i \(0.846672\pi\)
\(678\) 8.96927 + 21.6537i 0.0132290 + 0.0319377i
\(679\) 422.355i 0.622025i
\(680\) 0 0
\(681\) −27.1616 −0.0398849
\(682\) −36.0262 + 14.9225i −0.0528243 + 0.0218805i
\(683\) 119.170 599.107i 0.174480 0.877170i −0.790019 0.613083i \(-0.789929\pi\)
0.964499 0.264088i \(-0.0850708\pi\)
\(684\) −132.422 + 132.422i −0.193600 + 0.193600i
\(685\) −284.708 + 190.236i −0.415632 + 0.277716i
\(686\) −158.066 794.652i −0.230417 1.15838i
\(687\) −16.6867 11.1497i −0.0242892 0.0162295i
\(688\) 520.051 1255.51i 0.755888 1.82488i
\(689\) 32.4143 + 13.4265i 0.0470455 + 0.0194869i
\(690\) −13.8736 + 20.7633i −0.0201067 + 0.0300917i
\(691\) −962.080 + 191.370i −1.39230 + 0.276946i −0.833575 0.552406i \(-0.813710\pi\)
−0.558726 + 0.829352i \(0.688710\pi\)
\(692\) −8.57096 12.8274i −0.0123858 0.0185366i
\(693\) 578.703 + 578.703i 0.835069 + 0.835069i
\(694\) 34.2006 + 6.80292i 0.0492804 + 0.00980248i
\(695\) −536.536 1295.31i −0.771994 1.86376i
\(696\) 37.1524i 0.0533798i
\(697\) 0 0
\(698\) 695.626 0.996600
\(699\) −52.7196 + 21.8372i −0.0754215 + 0.0312406i
\(700\) −3.85008 + 19.3557i −0.00550012 + 0.0276510i
\(701\) −52.7814 + 52.7814i −0.0752944 + 0.0752944i −0.743751 0.668457i \(-0.766955\pi\)
0.668457 + 0.743751i \(0.266955\pi\)
\(702\) −36.0443 + 24.0841i −0.0513452 + 0.0343078i
\(703\) 226.577 + 1139.08i 0.322300 + 1.62031i
\(704\) 554.204 + 370.307i 0.787222 + 0.526005i
\(705\) −4.92174 + 11.8821i −0.00698120 + 0.0168541i
\(706\) 550.507 + 228.027i 0.779755 + 0.322985i
\(707\) −120.177 + 179.858i −0.169982 + 0.254396i
\(708\) −3.74032 + 0.743996i −0.00528294 + 0.00105084i
\(709\) 426.329 + 638.046i 0.601310 + 0.899923i 0.999852 0.0172267i \(-0.00548369\pi\)
−0.398542 + 0.917150i \(0.630484\pi\)
\(710\) −483.454 483.454i −0.680921 0.680921i
\(711\) −261.595 52.0345i −0.367925 0.0731849i
\(712\) 339.487 + 819.594i 0.476807 + 1.15111i
\(713\) 15.9030i 0.0223044i
\(714\) 0 0
\(715\) 531.762 0.743723
\(716\) 48.3580 20.0306i 0.0675392 0.0279756i
\(717\) −6.51183 + 32.7372i −0.00908206 + 0.0456586i
\(718\) −246.167 + 246.167i −0.342851 + 0.342851i
\(719\) −958.597 + 640.514i −1.33324 + 0.890840i −0.998671 0.0515322i \(-0.983590\pi\)
−0.334565 + 0.942373i \(0.608590\pi\)
\(720\) 175.111 + 880.341i 0.243209 + 1.22270i
\(721\) −784.874 524.436i −1.08859 0.727373i
\(722\) −221.566 + 534.907i −0.306878 + 0.740869i
\(723\) −43.0074 17.8143i −0.0594847 0.0246394i
\(724\) 48.5362 72.6396i 0.0670390 0.100331i
\(725\) −122.590 + 24.3847i −0.169090 + 0.0336340i
\(726\) −18.2231 27.2728i −0.0251007 0.0375658i
\(727\) −195.955 195.955i −0.269539 0.269539i 0.559376 0.828914i \(-0.311041\pi\)
−0.828914 + 0.559376i \(0.811041\pi\)
\(728\) 289.251 + 57.5357i 0.397323 + 0.0790325i
\(729\) 274.130 + 661.808i 0.376036 + 0.907830i
\(730\) 15.8957i 0.0217749i
\(731\) 0 0
\(732\) 11.1555 0.0152398
\(733\) 409.632 169.675i 0.558843 0.231480i −0.0853397 0.996352i \(-0.527198\pi\)
0.644183 + 0.764871i \(0.277198\pi\)
\(734\) −209.770 + 1054.59i −0.285791 + 1.43677i
\(735\) 6.13496 6.13496i 0.00834689 0.00834689i
\(736\) −143.296 + 95.7472i −0.194695 + 0.130091i
\(737\) 126.883 + 637.885i 0.172162 + 0.865515i
\(738\) 516.022 + 344.795i 0.699216 + 0.467201i
\(739\) −40.6523 + 98.1432i −0.0550098 + 0.132805i −0.948995 0.315291i \(-0.897898\pi\)
0.893985 + 0.448096i \(0.147898\pi\)
\(740\) −192.429 79.7067i −0.260039 0.107712i
\(741\) −15.2257 + 22.7869i −0.0205475 + 0.0307515i
\(742\) −69.6228 + 13.8488i −0.0938313 + 0.0186642i
\(743\) −513.057 767.844i −0.690521 1.03344i −0.996677 0.0814563i \(-0.974043\pi\)
0.306156 0.951981i \(-0.400957\pi\)
\(744\) −0.965673 0.965673i −0.00129795 0.00129795i
\(745\) 622.121 + 123.748i 0.835062 + 0.166104i
\(746\) 482.554 + 1164.99i 0.646855 + 1.56165i
\(747\) 604.891i 0.809760i
\(748\) 0 0
\(749\) −59.5595 −0.0795187
\(750\) 37.3727 15.4803i 0.0498302 0.0206403i
\(751\) −223.569 + 1123.96i −0.297695 + 1.49662i 0.485167 + 0.874421i \(0.338759\pi\)
−0.782863 + 0.622195i \(0.786241\pi\)
\(752\) −195.534 + 195.534i −0.260018 + 0.260018i
\(753\) 36.3164 24.2658i 0.0482289 0.0322255i
\(754\) −96.1698 483.478i −0.127546 0.641218i
\(755\) −123.536 82.5438i −0.163623 0.109330i
\(756\) 5.79787 13.9973i 0.00766915 0.0185150i
\(757\) 59.3832 + 24.5973i 0.0784455 + 0.0324932i 0.421561 0.906800i \(-0.361482\pi\)
−0.343116 + 0.939293i \(0.611482\pi\)
\(758\) 857.604 1283.50i 1.13140 1.69327i
\(759\) −30.3203 + 6.03108i −0.0399477 + 0.00794608i
\(760\) 518.279 + 775.659i 0.681945 + 1.02060i
\(761\) 173.164 + 173.164i 0.227548 + 0.227548i 0.811668 0.584120i \(-0.198560\pi\)
−0.584120 + 0.811668i \(0.698560\pi\)
\(762\) 33.2974 + 6.62327i 0.0436974 + 0.00869195i
\(763\) 277.994 + 671.137i 0.364343 + 0.879602i
\(764\) 162.919i 0.213245i
\(765\) 0 0
\(766\) 678.170 0.885339
\(767\) 177.138 73.3731i 0.230950 0.0956624i
\(768\) 4.85111 24.3882i 0.00631655 0.0317555i
\(769\) −550.339 + 550.339i −0.715655 + 0.715655i −0.967712 0.252057i \(-0.918893\pi\)
0.252057 + 0.967712i \(0.418893\pi\)
\(770\) −894.581 + 597.740i −1.16179 + 0.776285i
\(771\) −1.66483 8.36964i −0.00215931 0.0108556i
\(772\) −61.3921 41.0209i −0.0795235 0.0531359i
\(773\) −165.492 + 399.534i −0.214091 + 0.516861i −0.994044 0.108976i \(-0.965243\pi\)
0.779953 + 0.625837i \(0.215243\pi\)
\(774\) 1328.89 + 550.442i 1.71691 + 0.711166i
\(775\) −2.55258 + 3.82020i −0.00329365 + 0.00492929i
\(776\) 461.642 91.8263i 0.594899 0.118333i
\(777\) −26.0621 39.0047i −0.0335420 0.0501991i
\(778\) 443.266 + 443.266i 0.569751 + 0.569751i
\(779\) 770.735 + 153.309i 0.989390 + 0.196802i
\(780\) −1.88085 4.54077i −0.00241134 0.00582150i
\(781\) 846.408i 1.08375i
\(782\) 0 0
\(783\) 95.9569 0.122550
\(784\) 172.345 71.3878i 0.219828 0.0910559i
\(785\) 82.7379 415.951i 0.105399 0.529874i
\(786\) −10.7800 + 10.7800i −0.0137150 + 0.0137150i
\(787\) 947.377 633.017i 1.20378 0.804342i 0.218594 0.975816i \(-0.429853\pi\)
0.985189 + 0.171474i \(0.0548531\pi\)
\(788\) 41.9374 + 210.833i 0.0532200 + 0.267555i
\(789\) 68.2037 + 45.5723i 0.0864432 + 0.0577595i
\(790\) 134.183 323.946i 0.169852 0.410059i
\(791\) 380.481 + 157.601i 0.481013 + 0.199242i
\(792\) −506.714 + 758.351i −0.639791 + 0.957515i
\(793\) −550.080 + 109.418i −0.693670 + 0.137980i
\(794\) 151.910 + 227.349i 0.191322 + 0.286334i
\(795\) −3.16972 3.16972i −0.00398707 0.00398707i
\(796\) −186.319 37.0612i −0.234069 0.0465593i
\(797\) −43.1132 104.084i −0.0540943 0.130595i 0.894522 0.447024i \(-0.147516\pi\)
−0.948616 + 0.316429i \(0.897516\pi\)
\(798\) 55.4491i 0.0694850i
\(799\) 0 0
\(800\) −49.7905 −0.0622381
\(801\) −1056.88 + 437.775i −1.31945 + 0.546536i
\(802\) −183.166 + 920.840i −0.228387 + 1.14818i
\(803\) −13.9147 + 13.9147i −0.0173284 + 0.0173284i
\(804\) 4.99818 3.33967i 0.00621664 0.00415382i
\(805\) 85.6025 + 430.353i 0.106338 + 0.534600i
\(806\) −15.0664 10.0670i −0.0186927 0.0124901i
\(807\) −10.9012 + 26.3178i −0.0135083 + 0.0326119i
\(808\) −222.716 92.2520i −0.275639 0.114173i
\(809\) −361.469 + 540.977i −0.446810 + 0.668698i −0.984688 0.174324i \(-0.944226\pi\)
0.537878 + 0.843022i \(0.319226\pi\)
\(810\) −929.068 + 184.803i −1.14700 + 0.228152i
\(811\) 357.615 + 535.209i 0.440956 + 0.659937i 0.983670 0.179980i \(-0.0576034\pi\)
−0.542715 + 0.839917i \(0.682603\pi\)
\(812\) 121.822 + 121.822i 0.150027 + 0.150027i
\(813\) −73.5903 14.6380i −0.0905169 0.0180049i
\(814\) −571.243 1379.10i −0.701773 1.69423i
\(815\) 297.845i 0.365453i
\(816\) 0 0
\(817\) 1821.30 2.22925
\(818\) 437.897 181.383i 0.535326 0.221739i
\(819\) −74.1934 + 372.996i −0.0905903 + 0.455428i
\(820\) −99.6533 + 99.6533i −0.121528 + 0.121528i
\(821\) 743.294 496.653i 0.905352 0.604937i −0.0133400 0.999911i \(-0.504246\pi\)
0.918692 + 0.394974i \(0.129246\pi\)
\(822\) 4.42499 + 22.2459i 0.00538320 + 0.0270632i
\(823\) −768.962 513.804i −0.934340 0.624306i −0.00758474 0.999971i \(-0.502414\pi\)
−0.926756 + 0.375665i \(0.877414\pi\)
\(824\) 402.575 971.901i 0.488562 1.17949i
\(825\) −8.25153 3.41789i −0.0100018 0.00414290i
\(826\) −215.522 + 322.552i −0.260923 + 0.390498i
\(827\) −831.543 + 165.404i −1.00549 + 0.200005i −0.670257 0.742129i \(-0.733816\pi\)
−0.335237 + 0.942134i \(0.608816\pi\)
\(828\) −54.5375 81.6211i −0.0658665 0.0985762i
\(829\) −862.801 862.801i −1.04077 1.04077i −0.999133 0.0416400i \(-0.986742\pi\)
−0.0416400 0.999133i \(-0.513258\pi\)
\(830\) −779.926 155.137i −0.939670 0.186912i
\(831\) −10.9215 26.3667i −0.0131426 0.0317289i
\(832\) 309.729i 0.372271i
\(833\) 0 0
\(834\) −92.8715 −0.111357
\(835\) −256.062 + 106.064i −0.306661 + 0.127023i
\(836\) 59.4598 298.925i 0.0711242 0.357566i
\(837\) 2.49414 2.49414i 0.00297985 0.00297985i
\(838\) 1137.55 760.089i 1.35746 0.907028i
\(839\) 74.9935 + 377.018i 0.0893844 + 0.449366i 0.999395 + 0.0347806i \(0.0110732\pi\)
−0.910011 + 0.414585i \(0.863927\pi\)
\(840\) −31.3301 20.9341i −0.0372977 0.0249216i
\(841\) −95.7324 + 231.119i −0.113832 + 0.274814i
\(842\) −104.494 43.2829i −0.124102 0.0514048i
\(843\) −35.8696 + 53.6826i −0.0425499 + 0.0636804i
\(844\) −6.62523 + 1.31784i −0.00784980 + 0.00156142i
\(845\) −366.450 548.432i −0.433669 0.649032i
\(846\) −206.961 206.961i −0.244634 0.244634i
\(847\) −565.273 112.440i −0.667382 0.132751i
\(848\) −36.8836 89.0448i −0.0434948 0.105006i
\(849\) 57.7975i 0.0680771i
\(850\) 0 0
\(851\) −608.778 −0.715368
\(852\) −7.22756 + 2.99375i −0.00848305 + 0.00351380i
\(853\) 170.470 857.011i 0.199848 1.00470i −0.742444 0.669908i \(-0.766333\pi\)
0.942291 0.334794i \(-0.108667\pi\)
\(854\) 802.404 802.404i 0.939583 0.939583i
\(855\) −1000.23 + 668.331i −1.16986 + 0.781673i
\(856\) −12.9491 65.0997i −0.0151275 0.0760510i
\(857\) 1116.86 + 746.263i 1.30322 + 0.870786i 0.996708 0.0810800i \(-0.0258369\pi\)
0.306515 + 0.951866i \(0.400837\pi\)
\(858\) 13.4797 32.5429i 0.0157106 0.0379288i
\(859\) −236.510 97.9655i −0.275331 0.114046i 0.240745 0.970588i \(-0.422608\pi\)
−0.516077 + 0.856542i \(0.672608\pi\)
\(860\) −181.466 + 271.584i −0.211007 + 0.315795i
\(861\) −31.1312 + 6.19238i −0.0361570 + 0.00719208i
\(862\) 574.927 + 860.439i 0.666968 + 0.998189i
\(863\) 1137.90 + 1137.90i 1.31854 + 1.31854i 0.914930 + 0.403612i \(0.132245\pi\)
0.403612 + 0.914930i \(0.367755\pi\)
\(864\) 37.4900 + 7.45722i 0.0433912 + 0.00863105i
\(865\) −37.9233 91.5550i −0.0438420 0.105844i
\(866\) 1415.19i 1.63417i
\(867\) 0 0
\(868\) 6.33287 0.00729593
\(869\) 401.035 166.114i 0.461490 0.191156i
\(870\) −12.2872 + 61.7719i −0.0141232 + 0.0710022i
\(871\) −213.704 + 213.704i −0.245355 + 0.245355i
\(872\) −673.124 + 449.767i −0.771932 + 0.515788i
\(873\) 118.412 + 595.296i 0.135638 + 0.681897i
\(874\) −598.314 399.781i −0.684570 0.457415i
\(875\) 272.006 656.681i 0.310864 0.750493i
\(876\) 0.168035 + 0.0696025i 0.000191821 + 7.94550e-5i
\(877\) 273.902 409.924i 0.312317 0.467416i −0.641790 0.766880i \(-0.721808\pi\)
0.954107 + 0.299465i \(0.0968080\pi\)
\(878\) 1784.53 354.965i 2.03249 0.404288i
\(879\) 21.4604 + 32.1177i 0.0244145 + 0.0365389i
\(880\) −1032.94 1032.94i −1.17379 1.17379i
\(881\) −394.389 78.4489i −0.447661 0.0890453i −0.0338884 0.999426i \(-0.510789\pi\)
−0.413772 + 0.910380i \(0.635789\pi\)
\(882\) 75.5597 + 182.417i 0.0856686 + 0.206822i
\(883\) 907.327i 1.02755i −0.857925 0.513775i \(-0.828246\pi\)
0.857925 0.513775i \(-0.171754\pi\)
\(884\) 0 0
\(885\) −24.4969 −0.0276801
\(886\) −720.035 + 298.248i −0.812681 + 0.336624i
\(887\) 247.891 1246.23i 0.279471 1.40500i −0.544689 0.838638i \(-0.683352\pi\)
0.824160 0.566357i \(-0.191648\pi\)
\(888\) 36.9665 36.9665i 0.0416290 0.0416290i
\(889\) 496.002 331.418i 0.557933 0.372799i
\(890\) −293.393 1474.99i −0.329655 1.65729i
\(891\) −975.055 651.511i −1.09434 0.731213i
\(892\) 15.6828 37.8615i 0.0175816 0.0424457i
\(893\) −342.395 141.825i −0.383421 0.158818i
\(894\) 23.3434 34.9358i 0.0261111 0.0390781i
\(895\) 329.764 65.5942i 0.368452 0.0732896i
\(896\) −530.761 794.340i −0.592367 0.886540i
\(897\) −10.1579 10.1579i −0.0113243 0.0113243i
\(898\) 1695.01 + 337.159i 1.88754 + 0.375456i
\(899\) 15.3493 + 37.0564i 0.0170737 + 0.0412195i
\(900\) 28.3606i 0.0315118i
\(901\) 0 0
\(902\) −1010.03 −1.11976
\(903\) −67.9654 + 28.1522i −0.0752663 + 0.0311763i
\(904\) −89.5380 + 450.138i −0.0990464 + 0.497940i
\(905\) 396.815 396.815i 0.438470 0.438470i
\(906\) −8.18305 + 5.46774i −0.00903207 + 0.00603503i
\(907\) −299.309 1504.73i −0.329998 1.65901i −0.688313 0.725413i \(-0.741649\pi\)
0.358315 0.933601i \(-0.383351\pi\)
\(908\) 116.711 + 77.9836i 0.128536 + 0.0858850i
\(909\) 118.961 287.197i 0.130870 0.315948i
\(910\) −461.899 191.325i −0.507582 0.210247i
\(911\) −203.486 + 304.539i −0.223366 + 0.334291i −0.926179 0.377084i \(-0.876927\pi\)
0.702813 + 0.711374i \(0.251927\pi\)
\(912\) 73.8387 14.6874i 0.0809634 0.0161046i
\(913\) −546.925 818.531i −0.599041 0.896529i
\(914\) 505.549 + 505.549i 0.553117 + 0.553117i
\(915\) 70.2813 + 13.9798i 0.0768102 + 0.0152785i
\(916\) 39.6892 + 95.8181i 0.0433288 + 0.104605i
\(917\) 267.877i 0.292123i
\(918\) 0 0
\(919\) −944.655 −1.02792 −0.513958 0.857815i \(-0.671821\pi\)
−0.513958 + 0.857815i \(0.671821\pi\)
\(920\) −451.772 + 187.130i −0.491057 + 0.203402i
\(921\) −12.9259 + 64.9830i −0.0140347 + 0.0705570i
\(922\) 382.839 382.839i 0.415226 0.415226i
\(923\) 327.028 218.513i 0.354310 0.236742i
\(924\) 2.40168 + 12.0741i 0.00259922 + 0.0130672i
\(925\) −146.240 97.7142i −0.158097 0.105637i
\(926\) −295.212 + 712.706i −0.318804 + 0.769661i
\(927\) 1253.29 + 519.128i 1.35198 + 0.560009i
\(928\) −241.487 + 361.410i −0.260223 + 0.389451i
\(929\) 952.999 189.563i 1.02583 0.204051i 0.346631 0.938002i \(-0.387326\pi\)
0.679203 + 0.733951i \(0.262326\pi\)
\(930\) 1.28622 + 1.92496i 0.00138303 + 0.00206985i
\(931\) 176.785 + 176.785i 0.189887 + 0.189887i
\(932\) 289.228 + 57.5309i 0.310330 + 0.0617285i
\(933\) −13.3967 32.3426i −0.0143588 0.0346652i
\(934\) 481.282i 0.515292i
\(935\) 0 0
\(936\) −423.822 −0.452801
\(937\) −554.438 + 229.656i −0.591716 + 0.245097i −0.658389 0.752678i \(-0.728762\pi\)
0.0666728 + 0.997775i \(0.478762\pi\)
\(938\) 119.294 599.732i 0.127179 0.639373i
\(939\) −54.1023 + 54.1023i −0.0576170 + 0.0576170i
\(940\) 55.2630 36.9255i 0.0587904 0.0392825i
\(941\) −211.575 1063.66i −0.224840 1.13035i −0.913992 0.405732i \(-0.867017\pi\)
0.689152 0.724617i \(-0.257983\pi\)
\(942\) −23.3581 15.6074i −0.0247963 0.0165684i
\(943\) −157.634 + 380.563i −0.167162 + 0.403566i
\(944\) −486.613 201.562i −0.515480 0.213519i
\(945\) 54.0685 80.9192i 0.0572153 0.0856288i
\(946\) −2295.93 + 456.688i −2.42698 + 0.482757i
\(947\) −387.099 579.335i −0.408764 0.611758i 0.568780 0.822490i \(-0.307416\pi\)
−0.977544 + 0.210731i \(0.932416\pi\)
\(948\) −2.83693 2.83693i −0.00299254 0.00299254i
\(949\) −8.96854 1.78395i −0.00945051 0.00187982i
\(950\) −79.5577 192.069i −0.0837449 0.202178i
\(951\) 41.4305i 0.0435651i
\(952\) 0 0
\(953\) −1779.95 −1.86774 −0.933868 0.357618i \(-0.883589\pi\)
−0.933868 + 0.357618i \(0.883589\pi\)
\(954\) 94.2485 39.0390i 0.0987930 0.0409214i
\(955\) 204.166 1026.41i 0.213786 1.07478i
\(956\) 121.972 121.972i 0.127586 0.127586i
\(957\) −64.8295 + 43.3177i −0.0677424 + 0.0452640i
\(958\) 215.553 + 1083.66i 0.225003 + 1.13117i
\(959\) 331.378 + 221.420i 0.345545 + 0.230886i
\(960\) 15.1438 36.5604i 0.0157748 0.0380838i
\(961\) −886.486 367.195i −0.922462 0.382096i
\(962\) 385.371 576.749i 0.400594 0.599531i
\(963\) 83.9473 16.6982i 0.0871727 0.0173397i
\(964\) 133.652 + 200.024i 0.138643 + 0.207494i
\(965\) −335.373 335.373i −0.347536 0.347536i
\(966\) 28.5068 + 5.67035i 0.0295101 + 0.00586992i
\(967\) 231.136 + 558.012i 0.239024 + 0.577055i 0.997182 0.0750154i \(-0.0239006\pi\)
−0.758158 + 0.652071i \(0.773901\pi\)
\(968\) 642.299i 0.663532i
\(969\) 0 0
\(970\) −797.924 −0.822602
\(971\) 1017.06 421.281i 1.04744 0.433863i 0.208461 0.978031i \(-0.433155\pi\)
0.838976 + 0.544168i \(0.183155\pi\)
\(972\) −6.37453 + 32.0469i −0.00655816 + 0.0329701i
\(973\) −1153.90 + 1153.90i −1.18592 + 1.18592i
\(974\) 460.348 307.594i 0.472636 0.315805i
\(975\) −0.809680 4.07054i −0.000830441 0.00417491i
\(976\) 1281.06 + 855.978i 1.31256 + 0.877026i
\(977\) −419.266 + 1012.20i −0.429136 + 1.03603i 0.550426 + 0.834884i \(0.314465\pi\)
−0.979562 + 0.201142i \(0.935535\pi\)
\(978\) −18.2276 7.55010i −0.0186376 0.00771994i
\(979\) 1034.34 1547.99i 1.05652 1.58120i
\(980\) −43.9754 + 8.74724i −0.0448728 + 0.00892576i
\(981\) −579.984 868.008i −0.591217 0.884819i
\(982\) −351.948 351.948i −0.358399 0.358399i
\(983\) −1205.50 239.790i −1.22635 0.243937i −0.460913 0.887445i \(-0.652478\pi\)
−0.765439 + 0.643509i \(0.777478\pi\)
\(984\) −13.5368 32.6807i −0.0137569 0.0332121i
\(985\) 1380.83i 1.40186i
\(986\) 0 0
\(987\) 14.9694 0.0151665
\(988\) 130.847 54.1984i 0.132436 0.0548567i
\(989\) −186.250 + 936.344i −0.188322 + 0.946758i
\(990\) 1093.30 1093.30i 1.10434 1.10434i
\(991\) 612.594 409.322i 0.618158 0.413040i −0.206681 0.978408i \(-0.566266\pi\)
0.824838 + 0.565369i \(0.191266\pi\)
\(992\) 3.11708 + 15.6706i 0.00314222 + 0.0157970i
\(993\) −30.3385 20.2715i −0.0305523 0.0204144i
\(994\) −304.533 + 735.207i −0.306371 + 0.739645i
\(995\) −1127.39 466.981i −1.13306 0.469328i
\(996\) −5.05504 + 7.56540i −0.00507534 + 0.00759578i
\(997\) 171.215 34.0568i 0.171730 0.0341593i −0.108476 0.994099i \(-0.534597\pi\)
0.280206 + 0.959940i \(0.409597\pi\)
\(998\) −263.691 394.641i −0.264219 0.395432i
\(999\) 95.4770 + 95.4770i 0.0955725 + 0.0955725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.d.65.1 8
17.2 even 8 17.3.e.a.5.1 8
17.3 odd 16 289.3.e.c.75.1 8
17.4 even 4 289.3.e.k.224.1 8
17.5 odd 16 289.3.e.i.214.1 8
17.6 odd 16 289.3.e.b.249.1 8
17.7 odd 16 289.3.e.k.40.1 8
17.8 even 8 289.3.e.m.131.1 8
17.9 even 8 289.3.e.i.131.1 8
17.10 odd 16 289.3.e.l.40.1 8
17.11 odd 16 inner 289.3.e.d.249.1 8
17.12 odd 16 289.3.e.m.214.1 8
17.13 even 4 289.3.e.l.224.1 8
17.14 odd 16 17.3.e.a.7.1 yes 8
17.15 even 8 289.3.e.c.158.1 8
17.16 even 2 289.3.e.b.65.1 8
51.2 odd 8 153.3.p.b.73.1 8
51.14 even 16 153.3.p.b.109.1 8
68.19 odd 8 272.3.bh.c.209.1 8
68.31 even 16 272.3.bh.c.177.1 8
85.2 odd 8 425.3.t.c.124.1 8
85.14 odd 16 425.3.u.b.126.1 8
85.19 even 8 425.3.u.b.226.1 8
85.48 even 16 425.3.t.c.24.1 8
85.53 odd 8 425.3.t.a.124.1 8
85.82 even 16 425.3.t.a.24.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.5.1 8 17.2 even 8
17.3.e.a.7.1 yes 8 17.14 odd 16
153.3.p.b.73.1 8 51.2 odd 8
153.3.p.b.109.1 8 51.14 even 16
272.3.bh.c.177.1 8 68.31 even 16
272.3.bh.c.209.1 8 68.19 odd 8
289.3.e.b.65.1 8 17.16 even 2
289.3.e.b.249.1 8 17.6 odd 16
289.3.e.c.75.1 8 17.3 odd 16
289.3.e.c.158.1 8 17.15 even 8
289.3.e.d.65.1 8 1.1 even 1 trivial
289.3.e.d.249.1 8 17.11 odd 16 inner
289.3.e.i.131.1 8 17.9 even 8
289.3.e.i.214.1 8 17.5 odd 16
289.3.e.k.40.1 8 17.7 odd 16
289.3.e.k.224.1 8 17.4 even 4
289.3.e.l.40.1 8 17.10 odd 16
289.3.e.l.224.1 8 17.13 even 4
289.3.e.m.131.1 8 17.8 even 8
289.3.e.m.214.1 8 17.12 odd 16
425.3.t.a.24.1 8 85.82 even 16
425.3.t.a.124.1 8 85.53 odd 8
425.3.t.c.24.1 8 85.48 even 16
425.3.t.c.124.1 8 85.2 odd 8
425.3.u.b.126.1 8 85.14 odd 16
425.3.u.b.226.1 8 85.19 even 8