Properties

Label 289.3.e.d.249.1
Level $289$
Weight $3$
Character 289.249
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 249.1
Root \(-0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 289.249
Dual form 289.3.e.d.65.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.03153 - 0.841487i) q^{2} +(-0.0315301 - 0.158513i) q^{3} +(0.590587 + 0.590587i) q^{4} +(4.46088 + 2.98067i) q^{5} +(-0.0693320 + 0.348555i) q^{6} +(-5.19212 + 3.46927i) q^{7} +(2.66313 + 6.42935i) q^{8} +(8.29078 - 3.43416i) q^{9} +(-6.55423 - 9.80910i) q^{10} +(-14.3240 - 2.84923i) q^{11} +(0.0749942 - 0.112237i) q^{12} +(-4.79884 + 4.79884i) q^{13} +(13.4673 - 2.67881i) q^{14} +(0.331821 - 0.801088i) q^{15} -18.6433i q^{16} -19.7328 q^{18} +(-23.0841 - 9.56175i) q^{19} +(0.874196 + 4.39488i) q^{20} +(0.713631 + 0.713631i) q^{21} +(26.7021 + 17.8418i) q^{22} +(-2.55513 + 12.8455i) q^{23} +(0.935165 - 0.624858i) q^{24} +(1.44803 + 3.49585i) q^{25} +(13.7871 - 5.71082i) q^{26} +(-1.61388 - 2.41534i) q^{27} +(-5.11530 - 1.01750i) q^{28} +(-18.3520 + 27.4657i) q^{29} +(-1.34821 + 1.34821i) q^{30} +(-1.19090 + 0.236886i) q^{31} +(-5.03558 + 12.1570i) q^{32} +2.36038i q^{33} -33.5022 q^{35} +(6.92459 + 2.86826i) q^{36} +(9.06812 + 45.5885i) q^{37} +(38.8500 + 38.8500i) q^{38} +(0.911984 + 0.609368i) q^{39} +(-7.28387 + 36.6185i) q^{40} +(-26.1505 + 17.4732i) q^{41} +(-0.849251 - 2.05027i) q^{42} +(-67.3441 + 27.8948i) q^{43} +(-6.77687 - 10.1423i) q^{44} +(47.2203 + 9.39270i) q^{45} +(16.0002 - 23.9459i) q^{46} +(10.4882 - 10.4882i) q^{47} +(-2.95520 + 0.587825i) q^{48} +(-3.82915 + 9.24438i) q^{49} -8.32041i q^{50} -5.66826 q^{52} +(-4.77624 - 1.97838i) q^{53} +(1.24616 + 6.26489i) q^{54} +(-55.4053 - 55.4053i) q^{55} +(-36.1324 - 24.1429i) q^{56} +(-0.787813 + 3.96061i) q^{57} +(60.3947 - 40.3544i) q^{58} +(-10.8115 - 26.1013i) q^{59} +(0.669081 - 0.277142i) q^{60} +(45.9135 + 68.7144i) q^{61} +(2.61870 + 0.520891i) q^{62} +(-31.1328 + 46.5935i) q^{63} +(-32.2713 + 32.2713i) q^{64} +(-35.7108 + 7.10332i) q^{65} +(1.98623 - 4.79518i) q^{66} +44.5324i q^{67} +2.11674 q^{69} +(68.0607 + 28.1917i) q^{70} +(-11.3064 - 56.8410i) q^{71} +(44.1588 + 44.1588i) q^{72} +(1.12032 + 0.748576i) q^{73} +(19.9400 - 100.245i) q^{74} +(0.508479 - 0.339755i) q^{75} +(-7.98612 - 19.2802i) q^{76} +(84.2570 - 34.9004i) q^{77} +(-1.33995 - 2.00537i) q^{78} +(-29.1507 - 5.79844i) q^{79} +(55.5694 - 83.1655i) q^{80} +(56.7774 - 56.7774i) q^{81} +(67.8290 - 13.4920i) q^{82} +(25.7951 - 62.2748i) q^{83} +0.842922i q^{84} +160.285 q^{86} +(4.93230 + 2.04303i) q^{87} +(-19.8280 - 99.6823i) q^{88} +(-90.1397 - 90.1397i) q^{89} +(-88.0256 - 58.8169i) q^{90} +(8.26771 - 41.5646i) q^{91} +(-9.09541 + 6.07736i) q^{92} +(0.0750988 + 0.181304i) q^{93} +(-30.1327 + 12.4814i) q^{94} +(-74.4751 - 111.460i) q^{95} +(2.08580 + 0.414892i) q^{96} +(37.5767 - 56.2374i) q^{97} +(15.5581 - 15.5581i) q^{98} +(-128.542 + 25.5687i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 8 q^{3} + 32 q^{6} + 8 q^{7} - 40 q^{8} + 8 q^{9} + 32 q^{10} - 24 q^{11} - 8 q^{12} - 16 q^{13} + 24 q^{14} + 56 q^{18} - 48 q^{19} - 80 q^{20} + 64 q^{21} + 48 q^{22} + 24 q^{23} - 120 q^{24}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.03153 0.841487i −1.01577 0.420744i −0.188210 0.982129i \(-0.560269\pi\)
−0.827555 + 0.561385i \(0.810269\pi\)
\(3\) −0.0315301 0.158513i −0.0105100 0.0528376i 0.975174 0.221438i \(-0.0710751\pi\)
−0.985684 + 0.168601i \(0.946075\pi\)
\(4\) 0.590587 + 0.590587i 0.147647 + 0.147647i
\(5\) 4.46088 + 2.98067i 0.892177 + 0.596134i 0.914932 0.403607i \(-0.132244\pi\)
−0.0227553 + 0.999741i \(0.507244\pi\)
\(6\) −0.0693320 + 0.348555i −0.0115553 + 0.0580926i
\(7\) −5.19212 + 3.46927i −0.741732 + 0.495609i −0.868109 0.496373i \(-0.834665\pi\)
0.126378 + 0.991982i \(0.459665\pi\)
\(8\) 2.66313 + 6.42935i 0.332891 + 0.803669i
\(9\) 8.29078 3.43416i 0.921198 0.381573i
\(10\) −6.55423 9.80910i −0.655423 0.980910i
\(11\) −14.3240 2.84923i −1.30219 0.259021i −0.505192 0.863007i \(-0.668578\pi\)
−0.796995 + 0.603986i \(0.793578\pi\)
\(12\) 0.0749942 0.112237i 0.00624952 0.00935306i
\(13\) −4.79884 + 4.79884i −0.369141 + 0.369141i −0.867164 0.498023i \(-0.834060\pi\)
0.498023 + 0.867164i \(0.334060\pi\)
\(14\) 13.4673 2.67881i 0.961950 0.191344i
\(15\) 0.331821 0.801088i 0.0221214 0.0534058i
\(16\) 18.6433i 1.16520i
\(17\) 0 0
\(18\) −19.7328 −1.09627
\(19\) −23.0841 9.56175i −1.21495 0.503250i −0.319151 0.947704i \(-0.603398\pi\)
−0.895802 + 0.444454i \(0.853398\pi\)
\(20\) 0.874196 + 4.39488i 0.0437098 + 0.219744i
\(21\) 0.713631 + 0.713631i 0.0339824 + 0.0339824i
\(22\) 26.7021 + 17.8418i 1.21373 + 0.810991i
\(23\) −2.55513 + 12.8455i −0.111093 + 0.558500i 0.884645 + 0.466266i \(0.154401\pi\)
−0.995737 + 0.0922345i \(0.970599\pi\)
\(24\) 0.935165 0.624858i 0.0389652 0.0260357i
\(25\) 1.44803 + 3.49585i 0.0579211 + 0.139834i
\(26\) 13.7871 5.71082i 0.530274 0.219647i
\(27\) −1.61388 2.41534i −0.0597733 0.0894570i
\(28\) −5.11530 1.01750i −0.182689 0.0363392i
\(29\) −18.3520 + 27.4657i −0.632828 + 0.947093i 0.367030 + 0.930209i \(0.380375\pi\)
−0.999857 + 0.0168842i \(0.994625\pi\)
\(30\) −1.34821 + 1.34821i −0.0449403 + 0.0449403i
\(31\) −1.19090 + 0.236886i −0.0384163 + 0.00764147i −0.214261 0.976776i \(-0.568734\pi\)
0.175845 + 0.984418i \(0.443734\pi\)
\(32\) −5.03558 + 12.1570i −0.157362 + 0.379905i
\(33\) 2.36038i 0.0715267i
\(34\) 0 0
\(35\) −33.5022 −0.957206
\(36\) 6.92459 + 2.86826i 0.192350 + 0.0796739i
\(37\) 9.06812 + 45.5885i 0.245084 + 1.23212i 0.885699 + 0.464260i \(0.153680\pi\)
−0.640614 + 0.767863i \(0.721320\pi\)
\(38\) 38.8500 + 38.8500i 1.02237 + 1.02237i
\(39\) 0.911984 + 0.609368i 0.0233842 + 0.0156248i
\(40\) −7.28387 + 36.6185i −0.182097 + 0.915463i
\(41\) −26.1505 + 17.4732i −0.637817 + 0.426176i −0.831989 0.554792i \(-0.812798\pi\)
0.194172 + 0.980967i \(0.437798\pi\)
\(42\) −0.849251 2.05027i −0.0202203 0.0488161i
\(43\) −67.3441 + 27.8948i −1.56614 + 0.648717i −0.986142 0.165901i \(-0.946947\pi\)
−0.579999 + 0.814617i \(0.696947\pi\)
\(44\) −6.77687 10.1423i −0.154020 0.230507i
\(45\) 47.2203 + 9.39270i 1.04934 + 0.208727i
\(46\) 16.0002 23.9459i 0.347829 0.520564i
\(47\) 10.4882 10.4882i 0.223153 0.223153i −0.586672 0.809825i \(-0.699562\pi\)
0.809825 + 0.586672i \(0.199562\pi\)
\(48\) −2.95520 + 0.587825i −0.0615666 + 0.0122464i
\(49\) −3.82915 + 9.24438i −0.0781458 + 0.188661i
\(50\) 8.32041i 0.166408i
\(51\) 0 0
\(52\) −5.66826 −0.109005
\(53\) −4.77624 1.97838i −0.0901178 0.0373280i 0.337169 0.941444i \(-0.390531\pi\)
−0.427287 + 0.904116i \(0.640531\pi\)
\(54\) 1.24616 + 6.26489i 0.0230771 + 0.116017i
\(55\) −55.4053 55.4053i −1.00737 1.00737i
\(56\) −36.1324 24.1429i −0.645222 0.431123i
\(57\) −0.787813 + 3.96061i −0.0138213 + 0.0694843i
\(58\) 60.3947 40.3544i 1.04129 0.695766i
\(59\) −10.8115 26.1013i −0.183246 0.442394i 0.805386 0.592751i \(-0.201958\pi\)
−0.988632 + 0.150356i \(0.951958\pi\)
\(60\) 0.669081 0.277142i 0.0111513 0.00461904i
\(61\) 45.9135 + 68.7144i 0.752680 + 1.12647i 0.987986 + 0.154544i \(0.0493908\pi\)
−0.235306 + 0.971921i \(0.575609\pi\)
\(62\) 2.61870 + 0.520891i 0.0422370 + 0.00840147i
\(63\) −31.1328 + 46.5935i −0.494171 + 0.739579i
\(64\) −32.2713 + 32.2713i −0.504239 + 0.504239i
\(65\) −35.7108 + 7.10332i −0.549397 + 0.109282i
\(66\) 1.98623 4.79518i 0.0300944 0.0726543i
\(67\) 44.5324i 0.664663i 0.943163 + 0.332332i \(0.107835\pi\)
−0.943163 + 0.332332i \(0.892165\pi\)
\(68\) 0 0
\(69\) 2.11674 0.0306774
\(70\) 68.0607 + 28.1917i 0.972296 + 0.402738i
\(71\) −11.3064 56.8410i −0.159245 0.800577i −0.975004 0.222186i \(-0.928681\pi\)
0.815759 0.578391i \(-0.196319\pi\)
\(72\) 44.1588 + 44.1588i 0.613317 + 0.613317i
\(73\) 1.12032 + 0.748576i 0.0153469 + 0.0102545i 0.563220 0.826307i \(-0.309562\pi\)
−0.547873 + 0.836561i \(0.684562\pi\)
\(74\) 19.9400 100.245i 0.269460 1.35466i
\(75\) 0.508479 0.339755i 0.00677973 0.00453007i
\(76\) −7.98612 19.2802i −0.105081 0.253687i
\(77\) 84.2570 34.9004i 1.09425 0.453252i
\(78\) −1.33995 2.00537i −0.0171788 0.0257099i
\(79\) −29.1507 5.79844i −0.368996 0.0733979i 0.00710935 0.999975i \(-0.497737\pi\)
−0.376106 + 0.926577i \(0.622737\pi\)
\(80\) 55.5694 83.1655i 0.694618 1.03957i
\(81\) 56.7774 56.7774i 0.700956 0.700956i
\(82\) 67.8290 13.4920i 0.827183 0.164537i
\(83\) 25.7951 62.2748i 0.310784 0.750298i −0.688893 0.724863i \(-0.741903\pi\)
0.999676 0.0254351i \(-0.00809712\pi\)
\(84\) 0.842922i 0.0100348i
\(85\) 0 0
\(86\) 160.285 1.86377
\(87\) 4.93230 + 2.04303i 0.0566931 + 0.0234831i
\(88\) −19.8280 99.6823i −0.225319 1.13275i
\(89\) −90.1397 90.1397i −1.01281 1.01281i −0.999917 0.0128890i \(-0.995897\pi\)
−0.0128890 0.999917i \(-0.504103\pi\)
\(90\) −88.0256 58.8169i −0.978063 0.653521i
\(91\) 8.26771 41.5646i 0.0908540 0.456754i
\(92\) −9.09541 + 6.07736i −0.0988632 + 0.0660582i
\(93\) 0.0750988 + 0.181304i 0.000807514 + 0.00194951i
\(94\) −30.1327 + 12.4814i −0.320561 + 0.132781i
\(95\) −74.4751 111.460i −0.783949 1.17326i
\(96\) 2.08580 + 0.414892i 0.0217271 + 0.00432180i
\(97\) 37.5767 56.2374i 0.387388 0.579767i −0.585606 0.810596i \(-0.699144\pi\)
0.972995 + 0.230828i \(0.0741435\pi\)
\(98\) 15.5581 15.5581i 0.158756 0.158756i
\(99\) −128.542 + 25.5687i −1.29841 + 0.258269i
\(100\) −1.20941 + 2.91979i −0.0120941 + 0.0291979i
\(101\) 34.6405i 0.342975i 0.985186 + 0.171488i \(0.0548573\pi\)
−0.985186 + 0.171488i \(0.945143\pi\)
\(102\) 0 0
\(103\) 151.166 1.46763 0.733817 0.679347i \(-0.237737\pi\)
0.733817 + 0.679347i \(0.237737\pi\)
\(104\) −43.6333 18.0735i −0.419551 0.173784i
\(105\) 1.05633 + 5.31052i 0.0100603 + 0.0505764i
\(106\) 8.03830 + 8.03830i 0.0758330 + 0.0758330i
\(107\) 7.93047 + 5.29897i 0.0741166 + 0.0495231i 0.592076 0.805882i \(-0.298308\pi\)
−0.517960 + 0.855405i \(0.673308\pi\)
\(108\) 0.473332 2.37960i 0.00438271 0.0220334i
\(109\) −96.7260 + 64.6303i −0.887395 + 0.592938i −0.913553 0.406720i \(-0.866673\pi\)
0.0261584 + 0.999658i \(0.491673\pi\)
\(110\) 65.9347 + 159.180i 0.599406 + 1.44710i
\(111\) 6.94044 2.87483i 0.0625265 0.0258993i
\(112\) 64.6785 + 96.7982i 0.577487 + 0.864270i
\(113\) −64.6835 12.8663i −0.572420 0.113861i −0.0996113 0.995026i \(-0.531760\pi\)
−0.472809 + 0.881165i \(0.656760\pi\)
\(114\) 4.93327 7.38315i 0.0432743 0.0647645i
\(115\) −49.6863 + 49.6863i −0.432055 + 0.432055i
\(116\) −27.0593 + 5.38243i −0.233270 + 0.0464003i
\(117\) −23.3062 + 56.2660i −0.199198 + 0.480906i
\(118\) 62.1233i 0.526468i
\(119\) 0 0
\(120\) 6.03416 0.0502847
\(121\) 85.2709 + 35.3203i 0.704718 + 0.291904i
\(122\) −35.4523 178.231i −0.290593 1.46091i
\(123\) 3.59425 + 3.59425i 0.0292216 + 0.0292216i
\(124\) −0.843234 0.563431i −0.00680027 0.00454380i
\(125\) 22.2063 111.639i 0.177650 0.893109i
\(126\) 102.455 68.4583i 0.813135 0.543319i
\(127\) −36.5576 88.2580i −0.287855 0.694945i 0.712119 0.702059i \(-0.247736\pi\)
−0.999975 + 0.00711395i \(0.997736\pi\)
\(128\) 141.344 58.5465i 1.10425 0.457395i
\(129\) 6.54505 + 9.79536i 0.0507368 + 0.0759330i
\(130\) 78.5249 + 15.6196i 0.604038 + 0.120151i
\(131\) −23.8328 + 35.6683i −0.181930 + 0.272277i −0.911214 0.411934i \(-0.864853\pi\)
0.729284 + 0.684211i \(0.239853\pi\)
\(132\) −1.39401 + 1.39401i −0.0105607 + 0.0105607i
\(133\) 153.028 30.4391i 1.15058 0.228866i
\(134\) 37.4735 90.4690i 0.279653 0.675142i
\(135\) 15.5850i 0.115444i
\(136\) 0 0
\(137\) −63.8232 −0.465863 −0.232931 0.972493i \(-0.574832\pi\)
−0.232931 + 0.972493i \(0.574832\pi\)
\(138\) −4.30022 1.78121i −0.0311610 0.0129073i
\(139\) 50.9824 + 256.306i 0.366780 + 1.84393i 0.517940 + 0.855417i \(0.326699\pi\)
−0.151160 + 0.988509i \(0.548301\pi\)
\(140\) −19.7860 19.7860i −0.141328 0.141328i
\(141\) −1.99320 1.33181i −0.0141362 0.00944549i
\(142\) −24.8617 + 124.988i −0.175083 + 0.880200i
\(143\) 82.4117 55.0658i 0.576306 0.385075i
\(144\) −64.0239 154.567i −0.444610 1.07338i
\(145\) −163.732 + 67.8201i −1.12919 + 0.467725i
\(146\) −1.64605 2.46349i −0.0112743 0.0168732i
\(147\) 1.58608 + 0.315492i 0.0107897 + 0.00214620i
\(148\) −21.5685 + 32.2795i −0.145733 + 0.218105i
\(149\) 83.6010 83.6010i 0.561080 0.561080i −0.368534 0.929614i \(-0.620140\pi\)
0.929614 + 0.368534i \(0.120140\pi\)
\(150\) −1.31889 + 0.262344i −0.00879261 + 0.00174896i
\(151\) −10.5977 + 25.5851i −0.0701833 + 0.169437i −0.955079 0.296352i \(-0.904230\pi\)
0.884895 + 0.465790i \(0.154230\pi\)
\(152\) 173.880i 1.14395i
\(153\) 0 0
\(154\) −200.539 −1.30220
\(155\) −6.01857 2.49297i −0.0388295 0.0160837i
\(156\) 0.178721 + 0.898490i 0.00114565 + 0.00575955i
\(157\) 55.8958 + 55.8958i 0.356024 + 0.356024i 0.862345 0.506321i \(-0.168995\pi\)
−0.506321 + 0.862345i \(0.668995\pi\)
\(158\) 54.3412 + 36.3096i 0.343932 + 0.229808i
\(159\) −0.163003 + 0.819474i −0.00102518 + 0.00515392i
\(160\) −58.6990 + 39.2214i −0.366869 + 0.245134i
\(161\) −31.2979 75.5599i −0.194397 0.469316i
\(162\) −163.123 + 67.5676i −1.00693 + 0.417084i
\(163\) 30.8428 + 46.1595i 0.189220 + 0.283187i 0.913935 0.405862i \(-0.133029\pi\)
−0.724715 + 0.689049i \(0.758029\pi\)
\(164\) −25.7636 5.12469i −0.157095 0.0312481i
\(165\) −7.03551 + 10.5294i −0.0426394 + 0.0638144i
\(166\) −104.807 + 104.807i −0.631367 + 0.631367i
\(167\) −50.6674 + 10.0784i −0.303398 + 0.0603495i −0.344441 0.938808i \(-0.611932\pi\)
0.0410439 + 0.999157i \(0.486932\pi\)
\(168\) −2.68770 + 6.48868i −0.0159982 + 0.0386231i
\(169\) 122.942i 0.727470i
\(170\) 0 0
\(171\) −224.222 −1.31124
\(172\) −56.2468 23.2982i −0.327016 0.135455i
\(173\) 3.60353 + 18.1162i 0.0208296 + 0.104718i 0.989802 0.142453i \(-0.0454991\pi\)
−0.968972 + 0.247171i \(0.920499\pi\)
\(174\) −8.30094 8.30094i −0.0477066 0.0477066i
\(175\) −19.6464 13.1273i −0.112265 0.0750130i
\(176\) −53.1190 + 267.047i −0.301812 + 1.51731i
\(177\) −3.79649 + 2.53674i −0.0214491 + 0.0143318i
\(178\) 107.270 + 258.973i 0.602641 + 1.45490i
\(179\) 57.8989 23.9825i 0.323457 0.133980i −0.215046 0.976604i \(-0.568990\pi\)
0.538503 + 0.842624i \(0.318990\pi\)
\(180\) 22.3405 + 33.4349i 0.124114 + 0.185749i
\(181\) 102.589 + 20.4063i 0.566792 + 0.112742i 0.470165 0.882579i \(-0.344194\pi\)
0.0966274 + 0.995321i \(0.469194\pi\)
\(182\) −51.7722 + 77.4825i −0.284462 + 0.425728i
\(183\) 9.44444 9.44444i 0.0516090 0.0516090i
\(184\) −89.3930 + 17.7814i −0.485831 + 0.0966378i
\(185\) −95.4324 + 230.394i −0.515851 + 1.24537i
\(186\) 0.431520i 0.00232000i
\(187\) 0 0
\(188\) 12.3883 0.0658954
\(189\) 16.7589 + 6.94177i 0.0886715 + 0.0367289i
\(190\) 57.5064 + 289.104i 0.302665 + 1.52160i
\(191\) 137.930 + 137.930i 0.722145 + 0.722145i 0.969042 0.246897i \(-0.0794109\pi\)
−0.246897 + 0.969042i \(0.579411\pi\)
\(192\) 6.13293 + 4.09789i 0.0319423 + 0.0213432i
\(193\) −17.2466 + 86.7045i −0.0893606 + 0.449246i 0.910037 + 0.414528i \(0.136053\pi\)
−0.999397 + 0.0347181i \(0.988947\pi\)
\(194\) −123.661 + 82.6278i −0.637429 + 0.425916i
\(195\) 2.25193 + 5.43664i 0.0115484 + 0.0278802i
\(196\) −7.72105 + 3.19816i −0.0393931 + 0.0163172i
\(197\) −142.990 214.000i −0.725838 1.08629i −0.992469 0.122495i \(-0.960911\pi\)
0.266631 0.963799i \(-0.414089\pi\)
\(198\) 282.653 + 56.2232i 1.42754 + 0.283956i
\(199\) −126.364 + 189.117i −0.634996 + 0.950338i 0.364819 + 0.931079i \(0.381131\pi\)
−0.999815 + 0.0192597i \(0.993869\pi\)
\(200\) −18.6198 + 18.6198i −0.0930988 + 0.0930988i
\(201\) 7.05896 1.40411i 0.0351192 0.00698564i
\(202\) 29.1495 70.3732i 0.144305 0.348382i
\(203\) 206.273i 1.01612i
\(204\) 0 0
\(205\) −168.736 −0.823103
\(206\) −307.099 127.204i −1.49077 0.617498i
\(207\) 22.9294 + 115.274i 0.110770 + 0.556879i
\(208\) 89.4660 + 89.4660i 0.430125 + 0.430125i
\(209\) 303.414 + 202.735i 1.45174 + 0.970023i
\(210\) 2.32277 11.6774i 0.0110608 0.0556065i
\(211\) −6.72473 + 4.49332i −0.0318708 + 0.0212954i −0.571404 0.820669i \(-0.693601\pi\)
0.539533 + 0.841965i \(0.318601\pi\)
\(212\) −1.65238 3.98919i −0.00779423 0.0188169i
\(213\) −8.65353 + 3.58441i −0.0406269 + 0.0168282i
\(214\) −11.6520 17.4384i −0.0544485 0.0814879i
\(215\) −383.559 76.2947i −1.78400 0.354859i
\(216\) 11.2311 16.8086i 0.0519959 0.0778174i
\(217\) 5.36151 5.36151i 0.0247074 0.0247074i
\(218\) 250.887 49.9046i 1.15086 0.228920i
\(219\) 0.0833348 0.201188i 0.000380524 0.000918667i
\(220\) 65.4433i 0.297469i
\(221\) 0 0
\(222\) −16.5188 −0.0744092
\(223\) 45.3315 + 18.7769i 0.203280 + 0.0842014i 0.482001 0.876171i \(-0.339910\pi\)
−0.278720 + 0.960372i \(0.589910\pi\)
\(224\) −16.0304 80.5902i −0.0715642 0.359778i
\(225\) 24.0106 + 24.0106i 0.106714 + 0.106714i
\(226\) 120.580 + 80.5687i 0.533538 + 0.356499i
\(227\) 32.7870 164.831i 0.144436 0.726129i −0.838893 0.544296i \(-0.816797\pi\)
0.983329 0.181833i \(-0.0582031\pi\)
\(228\) −2.80435 + 1.87381i −0.0122998 + 0.00821846i
\(229\) −47.5197 114.723i −0.207510 0.500972i 0.785520 0.618836i \(-0.212395\pi\)
−0.993030 + 0.117864i \(0.962395\pi\)
\(230\) 142.750 59.1289i 0.620651 0.257082i
\(231\) −8.18879 12.2554i −0.0354493 0.0530536i
\(232\) −225.460 44.8469i −0.971812 0.193305i
\(233\) 196.158 293.571i 0.841880 1.25996i −0.121707 0.992566i \(-0.538837\pi\)
0.963587 0.267396i \(-0.0861632\pi\)
\(234\) 94.6943 94.6943i 0.404677 0.404677i
\(235\) 78.0483 15.5248i 0.332120 0.0660628i
\(236\) 9.02993 21.8002i 0.0382624 0.0923737i
\(237\) 4.80358i 0.0202683i
\(238\) 0 0
\(239\) 206.527 0.864131 0.432066 0.901842i \(-0.357785\pi\)
0.432066 + 0.901842i \(0.357785\pi\)
\(240\) −14.9349 6.18624i −0.0622287 0.0257760i
\(241\) −56.1919 282.496i −0.233161 1.17218i −0.902989 0.429665i \(-0.858632\pi\)
0.669827 0.742517i \(-0.266368\pi\)
\(242\) −143.509 143.509i −0.593011 0.593011i
\(243\) −32.5282 21.7347i −0.133861 0.0894430i
\(244\) −13.4659 + 67.6977i −0.0551881 + 0.277450i
\(245\) −44.6358 + 29.8247i −0.182187 + 0.121733i
\(246\) −4.27731 10.3263i −0.0173875 0.0419770i
\(247\) 156.662 64.8915i 0.634259 0.262719i
\(248\) −4.69455 7.02589i −0.0189296 0.0283302i
\(249\) −10.6847 2.12531i −0.0429103 0.00853539i
\(250\) −139.055 + 208.111i −0.556221 + 0.832444i
\(251\) −191.096 + 191.096i −0.761337 + 0.761337i −0.976564 0.215227i \(-0.930951\pi\)
0.215227 + 0.976564i \(0.430951\pi\)
\(252\) −45.9041 + 9.13089i −0.182159 + 0.0362337i
\(253\) 73.1996 176.720i 0.289327 0.698496i
\(254\) 210.062i 0.827014i
\(255\) 0 0
\(256\) −153.856 −0.601002
\(257\) −48.7819 20.2061i −0.189813 0.0786230i 0.285753 0.958303i \(-0.407756\pi\)
−0.475565 + 0.879680i \(0.657756\pi\)
\(258\) −5.05380 25.4071i −0.0195884 0.0984773i
\(259\) −205.242 205.242i −0.792439 0.792439i
\(260\) −25.2854 16.8952i −0.0972517 0.0649815i
\(261\) −57.8310 + 290.736i −0.221575 + 1.11393i
\(262\) 78.4315 52.4062i 0.299357 0.200024i
\(263\) 194.228 + 468.907i 0.738509 + 1.78292i 0.611854 + 0.790970i \(0.290424\pi\)
0.126654 + 0.991947i \(0.459576\pi\)
\(264\) −15.1757 + 6.28599i −0.0574838 + 0.0238106i
\(265\) −15.4094 23.0617i −0.0581485 0.0870254i
\(266\) −336.495 66.9329i −1.26502 0.251628i
\(267\) −11.4462 + 17.1304i −0.0428696 + 0.0641588i
\(268\) −26.3003 + 26.3003i −0.0981353 + 0.0981353i
\(269\) 172.869 34.3858i 0.642637 0.127828i 0.136995 0.990572i \(-0.456256\pi\)
0.505642 + 0.862743i \(0.331256\pi\)
\(270\) −13.1146 + 31.6614i −0.0485725 + 0.117264i
\(271\) 464.255i 1.71312i −0.516050 0.856559i \(-0.672598\pi\)
0.516050 0.856559i \(-0.327402\pi\)
\(272\) 0 0
\(273\) −6.84919 −0.0250886
\(274\) 129.659 + 53.7064i 0.473207 + 0.196009i
\(275\) −10.7811 54.2004i −0.0392041 0.197093i
\(276\) 1.25012 + 1.25012i 0.00452941 + 0.00452941i
\(277\) −146.824 98.1048i −0.530051 0.354169i 0.261567 0.965185i \(-0.415761\pi\)
−0.791618 + 0.611017i \(0.790761\pi\)
\(278\) 112.106 563.594i 0.403258 2.02732i
\(279\) −9.06003 + 6.05372i −0.0324732 + 0.0216979i
\(280\) −89.2206 215.398i −0.318645 0.769277i
\(281\) 369.073 152.875i 1.31343 0.544040i 0.387545 0.921851i \(-0.373323\pi\)
0.925883 + 0.377811i \(0.123323\pi\)
\(282\) 2.92854 + 4.38287i 0.0103849 + 0.0155421i
\(283\) 350.746 + 69.7677i 1.23938 + 0.246529i 0.770908 0.636947i \(-0.219803\pi\)
0.468477 + 0.883476i \(0.344803\pi\)
\(284\) 26.8921 40.2469i 0.0946906 0.141715i
\(285\) −15.3196 + 15.3196i −0.0537530 + 0.0537530i
\(286\) −213.759 + 42.5193i −0.747409 + 0.148669i
\(287\) 75.1574 181.446i 0.261872 0.632216i
\(288\) 118.084i 0.410013i
\(289\) 0 0
\(290\) 389.697 1.34378
\(291\) −10.0991 4.18320i −0.0347050 0.0143753i
\(292\) 0.219549 + 1.10375i 0.000751880 + 0.00377995i
\(293\) 169.002 + 169.002i 0.576800 + 0.576800i 0.934020 0.357220i \(-0.116275\pi\)
−0.357220 + 0.934020i \(0.616275\pi\)
\(294\) −2.95670 1.97560i −0.0100568 0.00671973i
\(295\) 29.5704 148.660i 0.100239 0.503933i
\(296\) −268.955 + 179.710i −0.908633 + 0.607129i
\(297\) 16.2354 + 39.1958i 0.0546647 + 0.131972i
\(298\) −240.187 + 99.4888i −0.805997 + 0.333855i
\(299\) −49.3818 73.9051i −0.165157 0.247174i
\(300\) 0.500956 + 0.0996463i 0.00166985 + 0.000332154i
\(301\) 252.884 378.468i 0.840147 1.25737i
\(302\) 43.0590 43.0590i 0.142579 0.142579i
\(303\) 5.49096 1.09222i 0.0181220 0.00360468i
\(304\) −178.262 + 430.363i −0.586389 + 1.41567i
\(305\) 443.380i 1.45370i
\(306\) 0 0
\(307\) 409.955 1.33536 0.667679 0.744450i \(-0.267288\pi\)
0.667679 + 0.744450i \(0.267288\pi\)
\(308\) 70.3727 + 29.1493i 0.228483 + 0.0946407i
\(309\) −4.76629 23.9618i −0.0154249 0.0775462i
\(310\) 10.1291 + 10.1291i 0.0326745 + 0.0326745i
\(311\) −180.101 120.340i −0.579103 0.386944i 0.231243 0.972896i \(-0.425721\pi\)
−0.810346 + 0.585952i \(0.800721\pi\)
\(312\) −1.48912 + 7.48629i −0.00477281 + 0.0239945i
\(313\) 393.629 263.015i 1.25760 0.840302i 0.265302 0.964165i \(-0.414528\pi\)
0.992299 + 0.123863i \(0.0395284\pi\)
\(314\) −66.5184 160.590i −0.211842 0.511432i
\(315\) −277.759 + 115.052i −0.881776 + 0.365244i
\(316\) −13.7915 20.6405i −0.0436441 0.0653180i
\(317\) 251.422 + 50.0110i 0.793130 + 0.157763i 0.574997 0.818156i \(-0.305003\pi\)
0.218133 + 0.975919i \(0.430003\pi\)
\(318\) 1.02072 1.52762i 0.00320982 0.00480384i
\(319\) 341.131 341.131i 1.06938 1.06938i
\(320\) −240.149 + 47.7685i −0.750464 + 0.149277i
\(321\) 0.589905 1.42416i 0.00183771 0.00443663i
\(322\) 179.839i 0.558506i
\(323\) 0 0
\(324\) 67.0640 0.206988
\(325\) −23.7248 9.82715i −0.0729995 0.0302374i
\(326\) −23.8154 119.728i −0.0730535 0.367265i
\(327\) 13.2945 + 13.2945i 0.0406560 + 0.0406560i
\(328\) −181.983 121.597i −0.554828 0.370724i
\(329\) −18.0696 + 90.8421i −0.0549229 + 0.276116i
\(330\) 23.1532 15.4705i 0.0701612 0.0468802i
\(331\) −86.3966 208.580i −0.261017 0.630151i 0.737985 0.674817i \(-0.235778\pi\)
−0.999002 + 0.0446663i \(0.985778\pi\)
\(332\) 52.0129 21.5444i 0.156665 0.0648929i
\(333\) 231.740 + 346.823i 0.695916 + 1.04151i
\(334\) 111.413 + 22.1615i 0.333572 + 0.0663516i
\(335\) −132.736 + 198.654i −0.396228 + 0.592997i
\(336\) 13.3044 13.3044i 0.0395965 0.0395965i
\(337\) −354.200 + 70.4547i −1.05104 + 0.209064i −0.690241 0.723580i \(-0.742495\pi\)
−0.360797 + 0.932644i \(0.617495\pi\)
\(338\) 103.454 249.761i 0.306078 0.738938i
\(339\) 10.6588i 0.0314420i
\(340\) 0 0
\(341\) 17.7335 0.0520045
\(342\) 455.513 + 188.680i 1.33191 + 0.551695i
\(343\) −71.8838 361.384i −0.209574 1.05360i
\(344\) −358.691 358.691i −1.04271 1.04271i
\(345\) 9.44253 + 6.30930i 0.0273697 + 0.0182878i
\(346\) 7.92384 39.8358i 0.0229013 0.115132i
\(347\) −13.1855 + 8.81030i −0.0379987 + 0.0253899i −0.574425 0.818558i \(-0.694774\pi\)
0.536426 + 0.843947i \(0.319774\pi\)
\(348\) 1.70637 + 4.11954i 0.00490336 + 0.0118377i
\(349\) −292.270 + 121.062i −0.837448 + 0.346883i −0.759847 0.650102i \(-0.774726\pi\)
−0.0776015 + 0.996984i \(0.524726\pi\)
\(350\) 28.8657 + 43.2006i 0.0824735 + 0.123430i
\(351\) 19.3356 + 3.84608i 0.0550870 + 0.0109575i
\(352\) 106.768 159.789i 0.303318 0.453947i
\(353\) −191.613 + 191.613i −0.542812 + 0.542812i −0.924352 0.381540i \(-0.875394\pi\)
0.381540 + 0.924352i \(0.375394\pi\)
\(354\) 9.84732 1.95875i 0.0278173 0.00553320i
\(355\) 118.988 287.262i 0.335177 0.809188i
\(356\) 106.471i 0.299075i
\(357\) 0 0
\(358\) −137.804 −0.384928
\(359\) 146.269 + 60.5865i 0.407434 + 0.168765i 0.576981 0.816757i \(-0.304231\pi\)
−0.169547 + 0.985522i \(0.554231\pi\)
\(360\) 65.3646 + 328.610i 0.181568 + 0.912806i
\(361\) 186.183 + 186.183i 0.515743 + 0.515743i
\(362\) −191.242 127.784i −0.528292 0.352994i
\(363\) 2.91012 14.6302i 0.00801686 0.0403035i
\(364\) 29.4303 19.6647i 0.0808524 0.0540239i
\(365\) 2.76638 + 6.67862i 0.00757911 + 0.0182976i
\(366\) −27.1340 + 11.2393i −0.0741367 + 0.0307084i
\(367\) 271.669 + 406.581i 0.740242 + 1.10785i 0.990209 + 0.139596i \(0.0445803\pi\)
−0.249967 + 0.968254i \(0.580420\pi\)
\(368\) 239.482 + 47.6360i 0.650767 + 0.129446i
\(369\) −156.802 + 234.671i −0.424939 + 0.635966i
\(370\) 387.748 387.748i 1.04797 1.04797i
\(371\) 31.6624 6.29804i 0.0853434 0.0169759i
\(372\) −0.0627237 + 0.151428i −0.000168612 + 0.000407065i
\(373\) 573.453i 1.53741i 0.639605 + 0.768704i \(0.279098\pi\)
−0.639605 + 0.768704i \(0.720902\pi\)
\(374\) 0 0
\(375\) −18.3963 −0.0490568
\(376\) 95.3635 + 39.5008i 0.253626 + 0.105055i
\(377\) −43.7352 219.872i −0.116008 0.583214i
\(378\) −28.2048 28.2048i −0.0746159 0.0746159i
\(379\) −583.696 390.013i −1.54009 1.02906i −0.979614 0.200890i \(-0.935617\pi\)
−0.560480 0.828168i \(-0.689383\pi\)
\(380\) 21.8427 109.811i 0.0574808 0.288976i
\(381\) −12.8373 + 8.57764i −0.0336938 + 0.0225135i
\(382\) −164.142 396.274i −0.429692 1.03737i
\(383\) −284.935 + 118.024i −0.743956 + 0.308157i −0.722273 0.691608i \(-0.756902\pi\)
−0.0216830 + 0.999765i \(0.506902\pi\)
\(384\) −13.7370 20.5588i −0.0357733 0.0535386i
\(385\) 479.887 + 95.4555i 1.24646 + 0.247936i
\(386\) 107.998 161.630i 0.279787 0.418731i
\(387\) −462.540 + 462.540i −1.19519 + 1.19519i
\(388\) 55.4053 11.0208i 0.142797 0.0284041i
\(389\) −109.097 + 263.382i −0.280454 + 0.677076i −0.999846 0.0175282i \(-0.994420\pi\)
0.719392 + 0.694604i \(0.244420\pi\)
\(390\) 12.9397i 0.0331787i
\(391\) 0 0
\(392\) −69.6329 −0.177635
\(393\) 6.40533 + 2.65317i 0.0162986 + 0.00675108i
\(394\) 110.411 + 555.071i 0.280230 + 1.40881i
\(395\) −112.755 112.755i −0.285455 0.285455i
\(396\) −91.0159 60.8149i −0.229838 0.153573i
\(397\) −24.2591 + 121.959i −0.0611061 + 0.307201i −0.999236 0.0390826i \(-0.987556\pi\)
0.938130 + 0.346283i \(0.112556\pi\)
\(398\) 415.852 277.864i 1.04486 0.698150i
\(399\) −9.64997 23.2971i −0.0241854 0.0583887i
\(400\) 65.1740 26.9960i 0.162935 0.0674899i
\(401\) 237.214 + 355.016i 0.591557 + 0.885328i 0.999618 0.0276268i \(-0.00879500\pi\)
−0.408061 + 0.912955i \(0.633795\pi\)
\(402\) −15.5220 3.08752i −0.0386120 0.00768041i
\(403\) 4.57818 6.85173i 0.0113602 0.0170018i
\(404\) −20.4582 + 20.4582i −0.0506391 + 0.0506391i
\(405\) 422.512 84.0429i 1.04324 0.207513i
\(406\) −173.576 + 419.050i −0.427528 + 1.03214i
\(407\) 678.850i 1.66794i
\(408\) 0 0
\(409\) −215.550 −0.527018 −0.263509 0.964657i \(-0.584880\pi\)
−0.263509 + 0.964657i \(0.584880\pi\)
\(410\) 342.793 + 141.989i 0.836079 + 0.346315i
\(411\) 2.01235 + 10.1168i 0.00489624 + 0.0246150i
\(412\) 89.2768 + 89.2768i 0.216691 + 0.216691i
\(413\) 146.687 + 98.0131i 0.355174 + 0.237320i
\(414\) 50.4198 253.477i 0.121787 0.612264i
\(415\) 300.689 200.914i 0.724552 0.484130i
\(416\) −34.1743 82.5042i −0.0821499 0.198327i
\(417\) 39.0202 16.1627i 0.0935737 0.0387595i
\(418\) −445.796 667.181i −1.06650 1.59613i
\(419\) −610.227 121.382i −1.45639 0.289694i −0.597506 0.801864i \(-0.703842\pi\)
−0.858884 + 0.512170i \(0.828842\pi\)
\(420\) −2.51247 + 3.76018i −0.00598207 + 0.00895280i
\(421\) 36.3708 36.3708i 0.0863916 0.0863916i −0.662590 0.748982i \(-0.730543\pi\)
0.748982 + 0.662590i \(0.230543\pi\)
\(422\) 17.4426 3.46954i 0.0413331 0.00822166i
\(423\) 50.9371 122.973i 0.120419 0.290717i
\(424\) 35.9769i 0.0848511i
\(425\) 0 0
\(426\) 20.5961 0.0483477
\(427\) −476.777 197.488i −1.11657 0.462500i
\(428\) 1.55413 + 7.81313i 0.00363114 + 0.0182550i
\(429\) −11.3271 11.3271i −0.0264034 0.0264034i
\(430\) 715.011 + 477.755i 1.66282 + 1.11106i
\(431\) −91.8124 + 461.572i −0.213022 + 1.07093i 0.715204 + 0.698916i \(0.246334\pi\)
−0.928226 + 0.372017i \(0.878666\pi\)
\(432\) −45.0299 + 30.0880i −0.104236 + 0.0696481i
\(433\) 246.289 + 594.595i 0.568798 + 1.37320i 0.902569 + 0.430545i \(0.141679\pi\)
−0.333772 + 0.942654i \(0.608321\pi\)
\(434\) −15.4037 + 6.38042i −0.0354924 + 0.0147014i
\(435\) 15.9129 + 23.8153i 0.0365813 + 0.0547477i
\(436\) −95.2948 18.9553i −0.218566 0.0434755i
\(437\) 181.808 272.095i 0.416037 0.622644i
\(438\) −0.338594 + 0.338594i −0.000773047 + 0.000773047i
\(439\) −811.551 + 161.428i −1.84864 + 0.367717i −0.989559 0.144129i \(-0.953962\pi\)
−0.859077 + 0.511846i \(0.828962\pi\)
\(440\) 208.669 503.772i 0.474248 1.14494i
\(441\) 89.7930i 0.203612i
\(442\) 0 0
\(443\) 354.430 0.800068 0.400034 0.916500i \(-0.368998\pi\)
0.400034 + 0.916500i \(0.368998\pi\)
\(444\) 5.79677 + 2.40110i 0.0130558 + 0.00540788i
\(445\) −133.426 670.780i −0.299835 1.50737i
\(446\) −76.2917 76.2917i −0.171058 0.171058i
\(447\) −15.8878 10.6159i −0.0355431 0.0237491i
\(448\) 55.5988 279.514i 0.124105 0.623916i
\(449\) −653.488 + 436.647i −1.45543 + 0.972487i −0.458967 + 0.888453i \(0.651780\pi\)
−0.996463 + 0.0840341i \(0.973220\pi\)
\(450\) −28.5736 68.9828i −0.0634969 0.153295i
\(451\) 424.366 175.778i 0.940945 0.389752i
\(452\) −30.6025 45.7999i −0.0677047 0.101327i
\(453\) 4.38970 + 0.873166i 0.00969029 + 0.00192752i
\(454\) −205.311 + 307.270i −0.452227 + 0.676806i
\(455\) 160.772 160.772i 0.353344 0.353344i
\(456\) −27.5622 + 5.48246i −0.0604434 + 0.0120229i
\(457\) −124.426 + 300.390i −0.272266 + 0.657309i −0.999580 0.0289968i \(-0.990769\pi\)
0.727313 + 0.686306i \(0.240769\pi\)
\(458\) 273.050i 0.596178i
\(459\) 0 0
\(460\) −58.6882 −0.127583
\(461\) −227.477 94.2242i −0.493444 0.204391i 0.122064 0.992522i \(-0.461049\pi\)
−0.615507 + 0.788131i \(0.711049\pi\)
\(462\) 6.32302 + 31.7879i 0.0136862 + 0.0688051i
\(463\) 248.069 + 248.069i 0.535786 + 0.535786i 0.922288 0.386503i \(-0.126317\pi\)
−0.386503 + 0.922288i \(0.626317\pi\)
\(464\) 512.051 + 342.141i 1.10356 + 0.737374i
\(465\) −0.205401 + 1.03262i −0.000441724 + 0.00222069i
\(466\) −645.537 + 431.334i −1.38527 + 0.925610i
\(467\) 83.7591 + 202.212i 0.179356 + 0.433003i 0.987832 0.155526i \(-0.0497073\pi\)
−0.808476 + 0.588529i \(0.799707\pi\)
\(468\) −46.9943 + 19.4657i −0.100415 + 0.0415933i
\(469\) −154.495 231.218i −0.329413 0.493002i
\(470\) −171.621 34.1376i −0.365152 0.0726332i
\(471\) 7.09779 10.6226i 0.0150696 0.0225533i
\(472\) 139.022 139.022i 0.294538 0.294538i
\(473\) 1044.12 207.688i 2.20744 0.439087i
\(474\) 4.04215 9.75862i 0.00852775 0.0205878i
\(475\) 94.5441i 0.199040i
\(476\) 0 0
\(477\) −46.3929 −0.0972597
\(478\) −419.566 173.790i −0.877754 0.363578i
\(479\) 98.0271 + 492.815i 0.204649 + 1.02884i 0.937376 + 0.348319i \(0.113247\pi\)
−0.732727 + 0.680523i \(0.761753\pi\)
\(480\) 8.06788 + 8.06788i 0.0168081 + 0.0168081i
\(481\) −262.288 175.255i −0.545298 0.364356i
\(482\) −123.561 + 621.183i −0.256351 + 1.28876i
\(483\) −10.9904 + 7.34353i −0.0227544 + 0.0152040i
\(484\) 29.5001 + 71.2196i 0.0609506 + 0.147148i
\(485\) 335.250 138.865i 0.691238 0.286320i
\(486\) 47.7926 + 71.5267i 0.0983387 + 0.147174i
\(487\) −246.948 49.1210i −0.507080 0.100864i −0.0650809 0.997880i \(-0.520731\pi\)
−0.441999 + 0.897016i \(0.645731\pi\)
\(488\) −319.516 + 478.189i −0.654745 + 0.979896i
\(489\) 6.34439 6.34439i 0.0129742 0.0129742i
\(490\) 115.776 23.0293i 0.236278 0.0469986i
\(491\) 86.6215 209.123i 0.176418 0.425912i −0.810792 0.585334i \(-0.800963\pi\)
0.987210 + 0.159423i \(0.0509632\pi\)
\(492\) 4.24543i 0.00862893i
\(493\) 0 0
\(494\) −372.869 −0.754796
\(495\) −649.624 269.083i −1.31237 0.543602i
\(496\) 4.41633 + 22.2024i 0.00890388 + 0.0447628i
\(497\) 255.901 + 255.901i 0.514891 + 0.514891i
\(498\) 19.9178 + 13.3086i 0.0399956 + 0.0267242i
\(499\) 42.1099 211.701i 0.0843886 0.424250i −0.915377 0.402598i \(-0.868107\pi\)
0.999766 0.0216522i \(-0.00689266\pi\)
\(500\) 79.0470 52.8175i 0.158094 0.105635i
\(501\) 3.19510 + 7.71365i 0.00637744 + 0.0153965i
\(502\) 549.021 227.412i 1.09367 0.453012i
\(503\) −490.279 733.755i −0.974710 1.45876i −0.886540 0.462651i \(-0.846898\pi\)
−0.0881697 0.996105i \(-0.528102\pi\)
\(504\) −382.477 76.0793i −0.758882 0.150951i
\(505\) −103.252 + 154.527i −0.204459 + 0.305994i
\(506\) −297.414 + 297.414i −0.587776 + 0.587776i
\(507\) 19.4879 3.87639i 0.0384377 0.00764574i
\(508\) 30.5335 73.7144i 0.0601053 0.145107i
\(509\) 459.446i 0.902645i −0.892361 0.451323i \(-0.850952\pi\)
0.892361 0.451323i \(-0.149048\pi\)
\(510\) 0 0
\(511\) −8.41386 −0.0164655
\(512\) −252.811 104.718i −0.493772 0.204527i
\(513\) 14.1601 + 71.1874i 0.0276025 + 0.138767i
\(514\) 82.0986 + 82.0986i 0.159725 + 0.159725i
\(515\) 674.335 + 450.576i 1.30939 + 0.874906i
\(516\) −1.91959 + 9.65043i −0.00372013 + 0.0187024i
\(517\) −180.116 + 120.350i −0.348387 + 0.232785i
\(518\) 244.246 + 589.663i 0.471518 + 1.13835i
\(519\) 2.75802 1.14241i 0.00531411 0.00220117i
\(520\) −140.772 210.680i −0.270716 0.405154i
\(521\) 99.1978 + 19.7317i 0.190399 + 0.0378727i 0.289369 0.957218i \(-0.406555\pi\)
−0.0989697 + 0.995090i \(0.531555\pi\)
\(522\) 362.136 541.975i 0.693747 1.03827i
\(523\) −395.099 + 395.099i −0.755448 + 0.755448i −0.975490 0.220042i \(-0.929380\pi\)
0.220042 + 0.975490i \(0.429380\pi\)
\(524\) −35.1406 + 6.98989i −0.0670621 + 0.0133395i
\(525\) −1.46139 + 3.52810i −0.00278360 + 0.00672019i
\(526\) 1116.04i 2.12175i
\(527\) 0 0
\(528\) 44.0052 0.0833432
\(529\) 330.254 + 136.796i 0.624299 + 0.258593i
\(530\) 11.8984 + 59.8174i 0.0224499 + 0.112863i
\(531\) −179.272 179.272i −0.337611 0.337611i
\(532\) 108.353 + 72.3992i 0.203671 + 0.136089i
\(533\) 41.6409 209.343i 0.0781255 0.392763i
\(534\) 37.6683 25.1691i 0.0705398 0.0471332i
\(535\) 19.5824 + 47.2762i 0.0366027 + 0.0883667i
\(536\) −286.315 + 118.596i −0.534170 + 0.221260i
\(537\) −5.62709 8.42153i −0.0104788 0.0156826i
\(538\) −380.124 75.6114i −0.706551 0.140542i
\(539\) 81.1882 121.507i 0.150628 0.225430i
\(540\) 9.20429 9.20429i 0.0170450 0.0170450i
\(541\) −40.0392 + 7.96429i −0.0740095 + 0.0147214i −0.231956 0.972726i \(-0.574513\pi\)
0.157947 + 0.987448i \(0.449513\pi\)
\(542\) −390.665 + 943.148i −0.720783 + 1.74012i
\(543\) 16.9051i 0.0311328i
\(544\) 0 0
\(545\) −624.125 −1.14518
\(546\) 13.9143 + 5.76351i 0.0254841 + 0.0105559i
\(547\) 13.2836 + 66.7811i 0.0242844 + 0.122086i 0.991026 0.133669i \(-0.0426759\pi\)
−0.966742 + 0.255755i \(0.917676\pi\)
\(548\) −37.6931 37.6931i −0.0687830 0.0687830i
\(549\) 616.635 + 412.022i 1.12320 + 0.750496i
\(550\) −23.7068 + 119.182i −0.0431032 + 0.216695i
\(551\) 686.260 458.544i 1.24548 0.832203i
\(552\) 5.63714 + 13.6093i 0.0102122 + 0.0246545i
\(553\) 171.470 71.0254i 0.310073 0.128436i
\(554\) 215.724 + 322.853i 0.389393 + 0.582768i
\(555\) 39.5294 + 7.86289i 0.0712242 + 0.0141674i
\(556\) −121.261 + 181.480i −0.218096 + 0.326403i
\(557\) 208.814 208.814i 0.374890 0.374890i −0.494365 0.869255i \(-0.664599\pi\)
0.869255 + 0.494365i \(0.164599\pi\)
\(558\) 23.4999 4.67441i 0.0421144 0.00837708i
\(559\) 189.310 457.036i 0.338659 0.817595i
\(560\) 624.591i 1.11534i
\(561\) 0 0
\(562\) −878.426 −1.56304
\(563\) 408.295 + 169.121i 0.725212 + 0.300393i 0.714583 0.699551i \(-0.246616\pi\)
0.0106294 + 0.999944i \(0.496616\pi\)
\(564\) −0.390606 1.96371i −0.000692564 0.00348175i
\(565\) −250.195 250.195i −0.442824 0.442824i
\(566\) −653.842 436.883i −1.15520 0.771879i
\(567\) −97.8195 + 491.772i −0.172521 + 0.867322i
\(568\) 335.341 224.067i 0.590388 0.394485i
\(569\) −246.656 595.479i −0.433490 1.04654i −0.978154 0.207882i \(-0.933343\pi\)
0.544664 0.838654i \(-0.316657\pi\)
\(570\) 44.0135 18.2310i 0.0772166 0.0319842i
\(571\) 66.5484 + 99.5967i 0.116547 + 0.174425i 0.885157 0.465293i \(-0.154051\pi\)
−0.768610 + 0.639718i \(0.779051\pi\)
\(572\) 81.1924 + 16.1502i 0.141945 + 0.0282346i
\(573\) 17.5147 26.2125i 0.0305666 0.0457461i
\(574\) −305.369 + 305.369i −0.532002 + 0.532002i
\(575\) −48.6058 + 9.66830i −0.0845319 + 0.0168144i
\(576\) −156.730 + 378.379i −0.272100 + 0.656908i
\(577\) 177.008i 0.306773i 0.988166 + 0.153387i \(0.0490180\pi\)
−0.988166 + 0.153387i \(0.950982\pi\)
\(578\) 0 0
\(579\) 14.2876 0.0246763
\(580\) −136.752 56.6444i −0.235779 0.0976628i
\(581\) 82.1166 + 412.828i 0.141337 + 0.710548i
\(582\) 16.9966 + 16.9966i 0.0292038 + 0.0292038i
\(583\) 62.7783 + 41.9471i 0.107681 + 0.0719504i
\(584\) −1.82930 + 9.19651i −0.00313236 + 0.0157474i
\(585\) −271.677 + 181.528i −0.464404 + 0.310305i
\(586\) −201.120 485.547i −0.343208 0.828578i
\(587\) −577.480 + 239.200i −0.983781 + 0.407496i −0.815825 0.578299i \(-0.803717\pi\)
−0.167956 + 0.985794i \(0.553717\pi\)
\(588\) 0.750395 + 1.12305i 0.00127618 + 0.00190994i
\(589\) 29.7560 + 5.91884i 0.0505195 + 0.0100490i
\(590\) −185.169 + 277.125i −0.313845 + 0.469703i
\(591\) −29.4132 + 29.4132i −0.0497685 + 0.0497685i
\(592\) 849.920 169.060i 1.43568 0.285574i
\(593\) 57.3899 138.551i 0.0967789 0.233645i −0.868074 0.496434i \(-0.834642\pi\)
0.964853 + 0.262789i \(0.0846424\pi\)
\(594\) 93.2893i 0.157053i
\(595\) 0 0
\(596\) 98.7472 0.165683
\(597\) 33.9618 + 14.0674i 0.0568874 + 0.0235635i
\(598\) 38.1304 + 191.695i 0.0637633 + 0.320560i
\(599\) 217.159 + 217.159i 0.362536 + 0.362536i 0.864746 0.502210i \(-0.167480\pi\)
−0.502210 + 0.864746i \(0.667480\pi\)
\(600\) 3.53855 + 2.36438i 0.00589759 + 0.00394064i
\(601\) −79.2601 + 398.467i −0.131880 + 0.663007i 0.857123 + 0.515112i \(0.172250\pi\)
−0.989003 + 0.147895i \(0.952750\pi\)
\(602\) −832.218 + 556.070i −1.38242 + 0.923705i
\(603\) 152.931 + 369.209i 0.253617 + 0.612287i
\(604\) −21.3690 + 8.85135i −0.0353792 + 0.0146545i
\(605\) 275.105 + 411.724i 0.454719 + 0.680536i
\(606\) −12.0741 2.40169i −0.0199243 0.00396319i
\(607\) −576.178 + 862.312i −0.949223 + 1.42061i −0.0423995 + 0.999101i \(0.513500\pi\)
−0.906823 + 0.421511i \(0.861500\pi\)
\(608\) 232.484 232.484i 0.382374 0.382374i
\(609\) −32.6969 + 6.50382i −0.0536895 + 0.0106795i
\(610\) 373.099 900.740i 0.611637 1.47662i
\(611\) 100.662i 0.164750i
\(612\) 0 0
\(613\) 132.402 0.215991 0.107995 0.994151i \(-0.465557\pi\)
0.107995 + 0.994151i \(0.465557\pi\)
\(614\) −832.835 344.972i −1.35641 0.561843i
\(615\) 5.32027 + 26.7468i 0.00865085 + 0.0434908i
\(616\) 448.774 + 448.774i 0.728529 + 0.728529i
\(617\) −213.080 142.375i −0.345348 0.230754i 0.370784 0.928719i \(-0.379089\pi\)
−0.716132 + 0.697965i \(0.754089\pi\)
\(618\) −10.4807 + 52.6898i −0.0169590 + 0.0852586i
\(619\) 76.4213 51.0630i 0.123459 0.0824928i −0.492307 0.870421i \(-0.663846\pi\)
0.615767 + 0.787929i \(0.288846\pi\)
\(620\) −2.08217 5.02680i −0.00335834 0.00810774i
\(621\) 35.1499 14.5596i 0.0566021 0.0234454i
\(622\) 264.616 + 396.026i 0.425428 + 0.636698i
\(623\) 780.735 + 155.298i 1.25319 + 0.249274i
\(624\) 11.3606 17.0024i 0.0182061 0.0272474i
\(625\) 498.708 498.708i 0.797932 0.797932i
\(626\) −1020.99 + 203.088i −1.63098 + 0.324422i
\(627\) 22.5694 54.4872i 0.0359958 0.0869015i
\(628\) 66.0226i 0.105131i
\(629\) 0 0
\(630\) 661.091 1.04935
\(631\) 530.804 + 219.866i 0.841210 + 0.348441i 0.761331 0.648364i \(-0.224546\pi\)
0.0798795 + 0.996805i \(0.474546\pi\)
\(632\) −40.3518 202.862i −0.0638478 0.320984i
\(633\) 0.924280 + 0.924280i 0.00146016 + 0.00146016i
\(634\) −468.688 313.167i −0.739256 0.493955i
\(635\) 99.9882 502.675i 0.157462 0.791614i
\(636\) −0.580238 + 0.387703i −0.000912324 + 0.000609595i
\(637\) −25.9868 62.7377i −0.0407956 0.0984893i
\(638\) −980.076 + 405.961i −1.53617 + 0.636302i
\(639\) −288.940 432.429i −0.452175 0.676727i
\(640\) 805.026 + 160.130i 1.25785 + 0.250203i
\(641\) 547.351 819.168i 0.853901 1.27795i −0.105074 0.994464i \(-0.533508\pi\)
0.958975 0.283489i \(-0.0914921\pi\)
\(642\) −2.39682 + 2.39682i −0.00373337 + 0.00373337i
\(643\) −34.6996 + 6.90218i −0.0539652 + 0.0107343i −0.221999 0.975047i \(-0.571258\pi\)
0.168034 + 0.985781i \(0.446258\pi\)
\(644\) 26.1405 63.1088i 0.0405909 0.0979950i
\(645\) 63.2046i 0.0979916i
\(646\) 0 0
\(647\) −472.176 −0.729793 −0.364897 0.931048i \(-0.618896\pi\)
−0.364897 + 0.931048i \(0.618896\pi\)
\(648\) 516.248 + 213.837i 0.796679 + 0.329995i
\(649\) 80.4959 + 404.680i 0.124031 + 0.623544i
\(650\) 39.9283 + 39.9283i 0.0614281 + 0.0614281i
\(651\) −1.01892 0.680818i −0.00156515 0.00104580i
\(652\) −9.04585 + 45.4766i −0.0138740 + 0.0697493i
\(653\) 529.021 353.481i 0.810140 0.541318i −0.0801126 0.996786i \(-0.525528\pi\)
0.890252 + 0.455468i \(0.150528\pi\)
\(654\) −15.8210 38.1953i −0.0241912 0.0584026i
\(655\) −212.631 + 88.0746i −0.324627 + 0.134465i
\(656\) 325.758 + 487.531i 0.496582 + 0.743187i
\(657\) 11.8591 + 2.35892i 0.0180504 + 0.00359044i
\(658\) 113.151 169.343i 0.171963 0.257360i
\(659\) −128.530 + 128.530i −0.195037 + 0.195037i −0.797869 0.602831i \(-0.794039\pi\)
0.602831 + 0.797869i \(0.294039\pi\)
\(660\) −10.3736 + 2.06344i −0.0157176 + 0.00312642i
\(661\) −445.481 + 1075.49i −0.673950 + 1.62706i 0.100887 + 0.994898i \(0.467832\pi\)
−0.774837 + 0.632161i \(0.782168\pi\)
\(662\) 496.438i 0.749906i
\(663\) 0 0
\(664\) 469.082 0.706449
\(665\) 773.368 + 320.340i 1.16296 + 0.481714i
\(666\) −178.939 899.588i −0.268678 1.35073i
\(667\) −305.919 305.919i −0.458649 0.458649i
\(668\) −35.8756 23.9713i −0.0537060 0.0358852i
\(669\) 1.54707 7.77765i 0.00231251 0.0116258i
\(670\) 436.823 291.876i 0.651975 0.435635i
\(671\) −461.884 1115.09i −0.688352 1.66183i
\(672\) −12.2691 + 5.08204i −0.0182576 + 0.00756256i
\(673\) −59.6248 89.2349i −0.0885956 0.132593i 0.784525 0.620098i \(-0.212907\pi\)
−0.873120 + 0.487505i \(0.837907\pi\)
\(674\) 778.854 + 154.924i 1.15557 + 0.229857i
\(675\) 6.10672 9.13935i 0.00904699 0.0135398i
\(676\) −72.6081 + 72.6081i −0.107408 + 0.107408i
\(677\) −1034.24 + 205.722i −1.52767 + 0.303873i −0.886211 0.463281i \(-0.846672\pi\)
−0.641463 + 0.767154i \(0.721672\pi\)
\(678\) 8.96927 21.6537i 0.0132290 0.0319377i
\(679\) 422.355i 0.622025i
\(680\) 0 0
\(681\) −27.1616 −0.0398849
\(682\) −36.0262 14.9225i −0.0528243 0.0218805i
\(683\) 119.170 + 599.107i 0.174480 + 0.877170i 0.964499 + 0.264088i \(0.0850708\pi\)
−0.790019 + 0.613083i \(0.789929\pi\)
\(684\) −132.422 132.422i −0.193600 0.193600i
\(685\) −284.708 190.236i −0.415632 0.277716i
\(686\) −158.066 + 794.652i −0.230417 + 1.15838i
\(687\) −16.6867 + 11.1497i −0.0242892 + 0.0162295i
\(688\) 520.051 + 1255.51i 0.755888 + 1.82488i
\(689\) 32.4143 13.4265i 0.0470455 0.0194869i
\(690\) −13.8736 20.7633i −0.0201067 0.0300917i
\(691\) −962.080 191.370i −1.39230 0.276946i −0.558726 0.829352i \(-0.688710\pi\)
−0.833575 + 0.552406i \(0.813710\pi\)
\(692\) −8.57096 + 12.8274i −0.0123858 + 0.0185366i
\(693\) 578.703 578.703i 0.835069 0.835069i
\(694\) 34.2006 6.80292i 0.0492804 0.00980248i
\(695\) −536.536 + 1295.31i −0.771994 + 1.86376i
\(696\) 37.1524i 0.0533798i
\(697\) 0 0
\(698\) 695.626 0.996600
\(699\) −52.7196 21.8372i −0.0754215 0.0312406i
\(700\) −3.85008 19.3557i −0.00550012 0.0276510i
\(701\) −52.7814 52.7814i −0.0752944 0.0752944i 0.668457 0.743751i \(-0.266955\pi\)
−0.743751 + 0.668457i \(0.766955\pi\)
\(702\) −36.0443 24.0841i −0.0513452 0.0343078i
\(703\) 226.577 1139.08i 0.322300 1.62031i
\(704\) 554.204 370.307i 0.787222 0.526005i
\(705\) −4.92174 11.8821i −0.00698120 0.0168541i
\(706\) 550.507 228.027i 0.779755 0.322985i
\(707\) −120.177 179.858i −0.169982 0.254396i
\(708\) −3.74032 0.743996i −0.00528294 0.00105084i
\(709\) 426.329 638.046i 0.601310 0.899923i −0.398542 0.917150i \(-0.630484\pi\)
0.999852 + 0.0172267i \(0.00548369\pi\)
\(710\) −483.454 + 483.454i −0.680921 + 0.680921i
\(711\) −261.595 + 52.0345i −0.367925 + 0.0731849i
\(712\) 339.487 819.594i 0.476807 1.15111i
\(713\) 15.9030i 0.0223044i
\(714\) 0 0
\(715\) 531.762 0.743723
\(716\) 48.3580 + 20.0306i 0.0675392 + 0.0279756i
\(717\) −6.51183 32.7372i −0.00908206 0.0456586i
\(718\) −246.167 246.167i −0.342851 0.342851i
\(719\) −958.597 640.514i −1.33324 0.890840i −0.334565 0.942373i \(-0.608590\pi\)
−0.998671 + 0.0515322i \(0.983590\pi\)
\(720\) 175.111 880.341i 0.243209 1.22270i
\(721\) −784.874 + 524.436i −1.08859 + 0.727373i
\(722\) −221.566 534.907i −0.306878 0.740869i
\(723\) −43.0074 + 17.8143i −0.0594847 + 0.0246394i
\(724\) 48.5362 + 72.6396i 0.0670390 + 0.100331i
\(725\) −122.590 24.3847i −0.169090 0.0336340i
\(726\) −18.2231 + 27.2728i −0.0251007 + 0.0375658i
\(727\) −195.955 + 195.955i −0.269539 + 0.269539i −0.828914 0.559376i \(-0.811041\pi\)
0.559376 + 0.828914i \(0.311041\pi\)
\(728\) 289.251 57.5357i 0.397323 0.0790325i
\(729\) 274.130 661.808i 0.376036 0.907830i
\(730\) 15.8957i 0.0217749i
\(731\) 0 0
\(732\) 11.1555 0.0152398
\(733\) 409.632 + 169.675i 0.558843 + 0.231480i 0.644183 0.764871i \(-0.277198\pi\)
−0.0853397 + 0.996352i \(0.527198\pi\)
\(734\) −209.770 1054.59i −0.285791 1.43677i
\(735\) 6.13496 + 6.13496i 0.00834689 + 0.00834689i
\(736\) −143.296 95.7472i −0.194695 0.130091i
\(737\) 126.883 637.885i 0.172162 0.865515i
\(738\) 516.022 344.795i 0.699216 0.467201i
\(739\) −40.6523 98.1432i −0.0550098 0.132805i 0.893985 0.448096i \(-0.147898\pi\)
−0.948995 + 0.315291i \(0.897898\pi\)
\(740\) −192.429 + 79.7067i −0.260039 + 0.107712i
\(741\) −15.2257 22.7869i −0.0205475 0.0307515i
\(742\) −69.6228 13.8488i −0.0938313 0.0186642i
\(743\) −513.057 + 767.844i −0.690521 + 1.03344i 0.306156 + 0.951981i \(0.400957\pi\)
−0.996677 + 0.0814563i \(0.974043\pi\)
\(744\) −0.965673 + 0.965673i −0.00129795 + 0.00129795i
\(745\) 622.121 123.748i 0.835062 0.166104i
\(746\) 482.554 1164.99i 0.646855 1.56165i
\(747\) 604.891i 0.809760i
\(748\) 0 0
\(749\) −59.5595 −0.0795187
\(750\) 37.3727 + 15.4803i 0.0498302 + 0.0206403i
\(751\) −223.569 1123.96i −0.297695 1.49662i −0.782863 0.622195i \(-0.786241\pi\)
0.485167 0.874421i \(-0.338759\pi\)
\(752\) −195.534 195.534i −0.260018 0.260018i
\(753\) 36.3164 + 24.2658i 0.0482289 + 0.0322255i
\(754\) −96.1698 + 483.478i −0.127546 + 0.641218i
\(755\) −123.536 + 82.5438i −0.163623 + 0.109330i
\(756\) 5.79787 + 13.9973i 0.00766915 + 0.0185150i
\(757\) 59.3832 24.5973i 0.0784455 0.0324932i −0.343116 0.939293i \(-0.611482\pi\)
0.421561 + 0.906800i \(0.361482\pi\)
\(758\) 857.604 + 1283.50i 1.13140 + 1.69327i
\(759\) −30.3203 6.03108i −0.0399477 0.00794608i
\(760\) 518.279 775.659i 0.681945 1.02060i
\(761\) 173.164 173.164i 0.227548 0.227548i −0.584120 0.811668i \(-0.698560\pi\)
0.811668 + 0.584120i \(0.198560\pi\)
\(762\) 33.2974 6.62327i 0.0436974 0.00869195i
\(763\) 277.994 671.137i 0.364343 0.879602i
\(764\) 162.919i 0.213245i
\(765\) 0 0
\(766\) 678.170 0.885339
\(767\) 177.138 + 73.3731i 0.230950 + 0.0956624i
\(768\) 4.85111 + 24.3882i 0.00631655 + 0.0317555i
\(769\) −550.339 550.339i −0.715655 0.715655i 0.252057 0.967712i \(-0.418893\pi\)
−0.967712 + 0.252057i \(0.918893\pi\)
\(770\) −894.581 597.740i −1.16179 0.776285i
\(771\) −1.66483 + 8.36964i −0.00215931 + 0.0108556i
\(772\) −61.3921 + 41.0209i −0.0795235 + 0.0531359i
\(773\) −165.492 399.534i −0.214091 0.516861i 0.779953 0.625837i \(-0.215243\pi\)
−0.994044 + 0.108976i \(0.965243\pi\)
\(774\) 1328.89 550.442i 1.71691 0.711166i
\(775\) −2.55258 3.82020i −0.00329365 0.00492929i
\(776\) 461.642 + 91.8263i 0.594899 + 0.118333i
\(777\) −26.0621 + 39.0047i −0.0335420 + 0.0501991i
\(778\) 443.266 443.266i 0.569751 0.569751i
\(779\) 770.735 153.309i 0.989390 0.196802i
\(780\) −1.88085 + 4.54077i −0.00241134 + 0.00582150i
\(781\) 846.408i 1.08375i
\(782\) 0 0
\(783\) 95.9569 0.122550
\(784\) 172.345 + 71.3878i 0.219828 + 0.0910559i
\(785\) 82.7379 + 415.951i 0.105399 + 0.529874i
\(786\) −10.7800 10.7800i −0.0137150 0.0137150i
\(787\) 947.377 + 633.017i 1.20378 + 0.804342i 0.985189 0.171474i \(-0.0548531\pi\)
0.218594 + 0.975816i \(0.429853\pi\)
\(788\) 41.9374 210.833i 0.0532200 0.267555i
\(789\) 68.2037 45.5723i 0.0864432 0.0577595i
\(790\) 134.183 + 323.946i 0.169852 + 0.410059i
\(791\) 380.481 157.601i 0.481013 0.199242i
\(792\) −506.714 758.351i −0.639791 0.957515i
\(793\) −550.080 109.418i −0.693670 0.137980i
\(794\) 151.910 227.349i 0.191322 0.286334i
\(795\) −3.16972 + 3.16972i −0.00398707 + 0.00398707i
\(796\) −186.319 + 37.0612i −0.234069 + 0.0465593i
\(797\) −43.1132 + 104.084i −0.0540943 + 0.130595i −0.948616 0.316429i \(-0.897516\pi\)
0.894522 + 0.447024i \(0.147516\pi\)
\(798\) 55.4491i 0.0694850i
\(799\) 0 0
\(800\) −49.7905 −0.0622381
\(801\) −1056.88 437.775i −1.31945 0.546536i
\(802\) −183.166 920.840i −0.228387 1.14818i
\(803\) −13.9147 13.9147i −0.0173284 0.0173284i
\(804\) 4.99818 + 3.33967i 0.00621664 + 0.00415382i
\(805\) 85.6025 430.353i 0.106338 0.534600i
\(806\) −15.0664 + 10.0670i −0.0186927 + 0.0124901i
\(807\) −10.9012 26.3178i −0.0135083 0.0326119i
\(808\) −222.716 + 92.2520i −0.275639 + 0.114173i
\(809\) −361.469 540.977i −0.446810 0.668698i 0.537878 0.843022i \(-0.319226\pi\)
−0.984688 + 0.174324i \(0.944226\pi\)
\(810\) −929.068 184.803i −1.14700 0.228152i
\(811\) 357.615 535.209i 0.440956 0.659937i −0.542715 0.839917i \(-0.682603\pi\)
0.983670 + 0.179980i \(0.0576034\pi\)
\(812\) 121.822 121.822i 0.150027 0.150027i
\(813\) −73.5903 + 14.6380i −0.0905169 + 0.0180049i
\(814\) −571.243 + 1379.10i −0.701773 + 1.69423i
\(815\) 297.845i 0.365453i
\(816\) 0 0
\(817\) 1821.30 2.22925
\(818\) 437.897 + 181.383i 0.535326 + 0.221739i
\(819\) −74.1934 372.996i −0.0905903 0.455428i
\(820\) −99.6533 99.6533i −0.121528 0.121528i
\(821\) 743.294 + 496.653i 0.905352 + 0.604937i 0.918692 0.394974i \(-0.129246\pi\)
−0.0133400 + 0.999911i \(0.504246\pi\)
\(822\) 4.42499 22.2459i 0.00538320 0.0270632i
\(823\) −768.962 + 513.804i −0.934340 + 0.624306i −0.926756 0.375665i \(-0.877414\pi\)
−0.00758474 + 0.999971i \(0.502414\pi\)
\(824\) 402.575 + 971.901i 0.488562 + 1.17949i
\(825\) −8.25153 + 3.41789i −0.0100018 + 0.00414290i
\(826\) −215.522 322.552i −0.260923 0.390498i
\(827\) −831.543 165.404i −1.00549 0.200005i −0.335237 0.942134i \(-0.608816\pi\)
−0.670257 + 0.742129i \(0.733816\pi\)
\(828\) −54.5375 + 81.6211i −0.0658665 + 0.0985762i
\(829\) −862.801 + 862.801i −1.04077 + 1.04077i −0.0416400 + 0.999133i \(0.513258\pi\)
−0.999133 + 0.0416400i \(0.986742\pi\)
\(830\) −779.926 + 155.137i −0.939670 + 0.186912i
\(831\) −10.9215 + 26.3667i −0.0131426 + 0.0317289i
\(832\) 309.729i 0.372271i
\(833\) 0 0
\(834\) −92.8715 −0.111357
\(835\) −256.062 106.064i −0.306661 0.127023i
\(836\) 59.4598 + 298.925i 0.0711242 + 0.357566i
\(837\) 2.49414 + 2.49414i 0.00297985 + 0.00297985i
\(838\) 1137.55 + 760.089i 1.35746 + 0.907028i
\(839\) 74.9935 377.018i 0.0893844 0.449366i −0.910011 0.414585i \(-0.863927\pi\)
0.999395 0.0347806i \(-0.0110732\pi\)
\(840\) −31.3301 + 20.9341i −0.0372977 + 0.0249216i
\(841\) −95.7324 231.119i −0.113832 0.274814i
\(842\) −104.494 + 43.2829i −0.124102 + 0.0514048i
\(843\) −35.8696 53.6826i −0.0425499 0.0636804i
\(844\) −6.62523 1.31784i −0.00784980 0.00156142i
\(845\) −366.450 + 548.432i −0.433669 + 0.649032i
\(846\) −206.961 + 206.961i −0.244634 + 0.244634i
\(847\) −565.273 + 112.440i −0.667382 + 0.132751i
\(848\) −36.8836 + 89.0448i −0.0434948 + 0.105006i
\(849\) 57.7975i 0.0680771i
\(850\) 0 0
\(851\) −608.778 −0.715368
\(852\) −7.22756 2.99375i −0.00848305 0.00351380i
\(853\) 170.470 + 857.011i 0.199848 + 1.00470i 0.942291 + 0.334794i \(0.108667\pi\)
−0.742444 + 0.669908i \(0.766333\pi\)
\(854\) 802.404 + 802.404i 0.939583 + 0.939583i
\(855\) −1000.23 668.331i −1.16986 0.781673i
\(856\) −12.9491 + 65.0997i −0.0151275 + 0.0760510i
\(857\) 1116.86 746.263i 1.30322 0.870786i 0.306515 0.951866i \(-0.400837\pi\)
0.996708 + 0.0810800i \(0.0258369\pi\)
\(858\) 13.4797 + 32.5429i 0.0157106 + 0.0379288i
\(859\) −236.510 + 97.9655i −0.275331 + 0.114046i −0.516077 0.856542i \(-0.672608\pi\)
0.240745 + 0.970588i \(0.422608\pi\)
\(860\) −181.466 271.584i −0.211007 0.315795i
\(861\) −31.1312 6.19238i −0.0361570 0.00719208i
\(862\) 574.927 860.439i 0.666968 0.998189i
\(863\) 1137.90 1137.90i 1.31854 1.31854i 0.403612 0.914930i \(-0.367755\pi\)
0.914930 0.403612i \(-0.132245\pi\)
\(864\) 37.4900 7.45722i 0.0433912 0.00863105i
\(865\) −37.9233 + 91.5550i −0.0438420 + 0.105844i
\(866\) 1415.19i 1.63417i
\(867\) 0 0
\(868\) 6.33287 0.00729593
\(869\) 401.035 + 166.114i 0.461490 + 0.191156i
\(870\) −12.2872 61.7719i −0.0141232 0.0710022i
\(871\) −213.704 213.704i −0.245355 0.245355i
\(872\) −673.124 449.767i −0.771932 0.515788i
\(873\) 118.412 595.296i 0.135638 0.681897i
\(874\) −598.314 + 399.781i −0.684570 + 0.457415i
\(875\) 272.006 + 656.681i 0.310864 + 0.750493i
\(876\) 0.168035 0.0696025i 0.000191821 7.94550e-5i
\(877\) 273.902 + 409.924i 0.312317 + 0.467416i 0.954107 0.299465i \(-0.0968080\pi\)
−0.641790 + 0.766880i \(0.721808\pi\)
\(878\) 1784.53 + 354.965i 2.03249 + 0.404288i
\(879\) 21.4604 32.1177i 0.0244145 0.0365389i
\(880\) −1032.94 + 1032.94i −1.17379 + 1.17379i
\(881\) −394.389 + 78.4489i −0.447661 + 0.0890453i −0.413772 0.910380i \(-0.635789\pi\)
−0.0338884 + 0.999426i \(0.510789\pi\)
\(882\) 75.5597 182.417i 0.0856686 0.206822i
\(883\) 907.327i 1.02755i 0.857925 + 0.513775i \(0.171754\pi\)
−0.857925 + 0.513775i \(0.828246\pi\)
\(884\) 0 0
\(885\) −24.4969 −0.0276801
\(886\) −720.035 298.248i −0.812681 0.336624i
\(887\) 247.891 + 1246.23i 0.279471 + 1.40500i 0.824160 + 0.566357i \(0.191648\pi\)
−0.544689 + 0.838638i \(0.683352\pi\)
\(888\) 36.9665 + 36.9665i 0.0416290 + 0.0416290i
\(889\) 496.002 + 331.418i 0.557933 + 0.372799i
\(890\) −293.393 + 1474.99i −0.329655 + 1.65729i
\(891\) −975.055 + 651.511i −1.09434 + 0.731213i
\(892\) 15.6828 + 37.8615i 0.0175816 + 0.0424457i
\(893\) −342.395 + 141.825i −0.383421 + 0.158818i
\(894\) 23.3434 + 34.9358i 0.0261111 + 0.0390781i
\(895\) 329.764 + 65.5942i 0.368452 + 0.0732896i
\(896\) −530.761 + 794.340i −0.592367 + 0.886540i
\(897\) −10.1579 + 10.1579i −0.0113243 + 0.0113243i
\(898\) 1695.01 337.159i 1.88754 0.375456i
\(899\) 15.3493 37.0564i 0.0170737 0.0412195i
\(900\) 28.3606i 0.0315118i
\(901\) 0 0
\(902\) −1010.03 −1.11976
\(903\) −67.9654 28.1522i −0.0752663 0.0311763i
\(904\) −89.5380 450.138i −0.0990464 0.497940i
\(905\) 396.815 + 396.815i 0.438470 + 0.438470i
\(906\) −8.18305 5.46774i −0.00903207 0.00603503i
\(907\) −299.309 + 1504.73i −0.329998 + 1.65901i 0.358315 + 0.933601i \(0.383351\pi\)
−0.688313 + 0.725413i \(0.741649\pi\)
\(908\) 116.711 77.9836i 0.128536 0.0858850i
\(909\) 118.961 + 287.197i 0.130870 + 0.315948i
\(910\) −461.899 + 191.325i −0.507582 + 0.210247i
\(911\) −203.486 304.539i −0.223366 0.334291i 0.702813 0.711374i \(-0.251927\pi\)
−0.926179 + 0.377084i \(0.876927\pi\)
\(912\) 73.8387 + 14.6874i 0.0809634 + 0.0161046i
\(913\) −546.925 + 818.531i −0.599041 + 0.896529i
\(914\) 505.549 505.549i 0.553117 0.553117i
\(915\) 70.2813 13.9798i 0.0768102 0.0152785i
\(916\) 39.6892 95.8181i 0.0433288 0.104605i
\(917\) 267.877i 0.292123i
\(918\) 0 0
\(919\) −944.655 −1.02792 −0.513958 0.857815i \(-0.671821\pi\)
−0.513958 + 0.857815i \(0.671821\pi\)
\(920\) −451.772 187.130i −0.491057 0.203402i
\(921\) −12.9259 64.9830i −0.0140347 0.0705570i
\(922\) 382.839 + 382.839i 0.415226 + 0.415226i
\(923\) 327.028 + 218.513i 0.354310 + 0.236742i
\(924\) 2.40168 12.0741i 0.00259922 0.0130672i
\(925\) −146.240 + 97.7142i −0.158097 + 0.105637i
\(926\) −295.212 712.706i −0.318804 0.769661i
\(927\) 1253.29 519.128i 1.35198 0.560009i
\(928\) −241.487 361.410i −0.260223 0.389451i
\(929\) 952.999 + 189.563i 1.02583 + 0.204051i 0.679203 0.733951i \(-0.262326\pi\)
0.346631 + 0.938002i \(0.387326\pi\)
\(930\) 1.28622 1.92496i 0.00138303 0.00206985i
\(931\) 176.785 176.785i 0.189887 0.189887i
\(932\) 289.228 57.5309i 0.310330 0.0617285i
\(933\) −13.3967 + 32.3426i −0.0143588 + 0.0346652i
\(934\) 481.282i 0.515292i
\(935\) 0 0
\(936\) −423.822 −0.452801
\(937\) −554.438 229.656i −0.591716 0.245097i 0.0666728 0.997775i \(-0.478762\pi\)
−0.658389 + 0.752678i \(0.728762\pi\)
\(938\) 119.294 + 599.732i 0.127179 + 0.639373i
\(939\) −54.1023 54.1023i −0.0576170 0.0576170i
\(940\) 55.2630 + 36.9255i 0.0587904 + 0.0392825i
\(941\) −211.575 + 1063.66i −0.224840 + 1.13035i 0.689152 + 0.724617i \(0.257983\pi\)
−0.913992 + 0.405732i \(0.867017\pi\)
\(942\) −23.3581 + 15.6074i −0.0247963 + 0.0165684i
\(943\) −157.634 380.563i −0.167162 0.403566i
\(944\) −486.613 + 201.562i −0.515480 + 0.213519i
\(945\) 54.0685 + 80.9192i 0.0572153 + 0.0856288i
\(946\) −2295.93 456.688i −2.42698 0.482757i
\(947\) −387.099 + 579.335i −0.408764 + 0.611758i −0.977544 0.210731i \(-0.932416\pi\)
0.568780 + 0.822490i \(0.307416\pi\)
\(948\) −2.83693 + 2.83693i −0.00299254 + 0.00299254i
\(949\) −8.96854 + 1.78395i −0.00945051 + 0.00187982i
\(950\) −79.5577 + 192.069i −0.0837449 + 0.202178i
\(951\) 41.4305i 0.0435651i
\(952\) 0 0
\(953\) −1779.95 −1.86774 −0.933868 0.357618i \(-0.883589\pi\)
−0.933868 + 0.357618i \(0.883589\pi\)
\(954\) 94.2485 + 39.0390i 0.0987930 + 0.0409214i
\(955\) 204.166 + 1026.41i 0.213786 + 1.07478i
\(956\) 121.972 + 121.972i 0.127586 + 0.127586i
\(957\) −64.8295 43.3177i −0.0677424 0.0452640i
\(958\) 215.553 1083.66i 0.225003 1.13117i
\(959\) 331.378 221.420i 0.345545 0.230886i
\(960\) 15.1438 + 36.5604i 0.0157748 + 0.0380838i
\(961\) −886.486 + 367.195i −0.922462 + 0.382096i
\(962\) 385.371 + 576.749i 0.400594 + 0.599531i
\(963\) 83.9473 + 16.6982i 0.0871727 + 0.0173397i
\(964\) 133.652 200.024i 0.138643 0.207494i
\(965\) −335.373 + 335.373i −0.347536 + 0.347536i
\(966\) 28.5068 5.67035i 0.0295101 0.00586992i
\(967\) 231.136 558.012i 0.239024 0.577055i −0.758158 0.652071i \(-0.773901\pi\)
0.997182 + 0.0750154i \(0.0239006\pi\)
\(968\) 642.299i 0.663532i
\(969\) 0 0
\(970\) −797.924 −0.822602
\(971\) 1017.06 + 421.281i 1.04744 + 0.433863i 0.838976 0.544168i \(-0.183155\pi\)
0.208461 + 0.978031i \(0.433155\pi\)
\(972\) −6.37453 32.0469i −0.00655816 0.0329701i
\(973\) −1153.90 1153.90i −1.18592 1.18592i
\(974\) 460.348 + 307.594i 0.472636 + 0.315805i
\(975\) −0.809680 + 4.07054i −0.000830441 + 0.00417491i
\(976\) 1281.06 855.978i 1.31256 0.877026i
\(977\) −419.266 1012.20i −0.429136 1.03603i −0.979562 0.201142i \(-0.935535\pi\)
0.550426 0.834884i \(-0.314465\pi\)
\(978\) −18.2276 + 7.55010i −0.0186376 + 0.00771994i
\(979\) 1034.34 + 1547.99i 1.05652 + 1.58120i
\(980\) −43.9754 8.74724i −0.0448728 0.00892576i
\(981\) −579.984 + 868.008i −0.591217 + 0.884819i
\(982\) −351.948 + 351.948i −0.358399 + 0.358399i
\(983\) −1205.50 + 239.790i −1.22635 + 0.243937i −0.765439 0.643509i \(-0.777478\pi\)
−0.460913 + 0.887445i \(0.652478\pi\)
\(984\) −13.5368 + 32.6807i −0.0137569 + 0.0332121i
\(985\) 1380.83i 1.40186i
\(986\) 0 0
\(987\) 14.9694 0.0151665
\(988\) 130.847 + 54.1984i 0.132436 + 0.0548567i
\(989\) −186.250 936.344i −0.188322 0.946758i
\(990\) 1093.30 + 1093.30i 1.10434 + 1.10434i
\(991\) 612.594 + 409.322i 0.618158 + 0.413040i 0.824838 0.565369i \(-0.191266\pi\)
−0.206681 + 0.978408i \(0.566266\pi\)
\(992\) 3.11708 15.6706i 0.00314222 0.0157970i
\(993\) −30.3385 + 20.2715i −0.0305523 + 0.0204144i
\(994\) −304.533 735.207i −0.306371 0.739645i
\(995\) −1127.39 + 466.981i −1.13306 + 0.469328i
\(996\) −5.05504 7.56540i −0.00507534 0.00759578i
\(997\) 171.215 + 34.0568i 0.171730 + 0.0341593i 0.280206 0.959940i \(-0.409597\pi\)
−0.108476 + 0.994099i \(0.534597\pi\)
\(998\) −263.691 + 394.641i −0.264219 + 0.395432i
\(999\) 95.4770 95.4770i 0.0955725 0.0955725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.d.249.1 8
17.2 even 8 289.3.e.i.214.1 8
17.3 odd 16 289.3.e.b.65.1 8
17.4 even 4 289.3.e.l.40.1 8
17.5 odd 16 289.3.e.k.224.1 8
17.6 odd 16 289.3.e.c.158.1 8
17.7 odd 16 289.3.e.i.131.1 8
17.8 even 8 289.3.e.c.75.1 8
17.9 even 8 17.3.e.a.7.1 yes 8
17.10 odd 16 289.3.e.m.131.1 8
17.11 odd 16 17.3.e.a.5.1 8
17.12 odd 16 289.3.e.l.224.1 8
17.13 even 4 289.3.e.k.40.1 8
17.14 odd 16 inner 289.3.e.d.65.1 8
17.15 even 8 289.3.e.m.214.1 8
17.16 even 2 289.3.e.b.249.1 8
51.11 even 16 153.3.p.b.73.1 8
51.26 odd 8 153.3.p.b.109.1 8
68.11 even 16 272.3.bh.c.209.1 8
68.43 odd 8 272.3.bh.c.177.1 8
85.9 even 8 425.3.u.b.126.1 8
85.28 even 16 425.3.t.a.124.1 8
85.43 odd 8 425.3.t.c.24.1 8
85.62 even 16 425.3.t.c.124.1 8
85.77 odd 8 425.3.t.a.24.1 8
85.79 odd 16 425.3.u.b.226.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.5.1 8 17.11 odd 16
17.3.e.a.7.1 yes 8 17.9 even 8
153.3.p.b.73.1 8 51.11 even 16
153.3.p.b.109.1 8 51.26 odd 8
272.3.bh.c.177.1 8 68.43 odd 8
272.3.bh.c.209.1 8 68.11 even 16
289.3.e.b.65.1 8 17.3 odd 16
289.3.e.b.249.1 8 17.16 even 2
289.3.e.c.75.1 8 17.8 even 8
289.3.e.c.158.1 8 17.6 odd 16
289.3.e.d.65.1 8 17.14 odd 16 inner
289.3.e.d.249.1 8 1.1 even 1 trivial
289.3.e.i.131.1 8 17.7 odd 16
289.3.e.i.214.1 8 17.2 even 8
289.3.e.k.40.1 8 17.13 even 4
289.3.e.k.224.1 8 17.5 odd 16
289.3.e.l.40.1 8 17.4 even 4
289.3.e.l.224.1 8 17.12 odd 16
289.3.e.m.131.1 8 17.10 odd 16
289.3.e.m.214.1 8 17.15 even 8
425.3.t.a.24.1 8 85.77 odd 8
425.3.t.a.124.1 8 85.28 even 16
425.3.t.c.24.1 8 85.43 odd 8
425.3.t.c.124.1 8 85.62 even 16
425.3.u.b.126.1 8 85.9 even 8
425.3.u.b.226.1 8 85.79 odd 16