Properties

Label 289.3.e.k.224.1
Level $289$
Weight $3$
Character 289.224
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 224.1
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 289.224
Dual form 289.3.e.k.40.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.03153 - 0.841487i) q^{2} +(0.158513 + 0.0315301i) q^{3} +(0.590587 - 0.590587i) q^{4} +(-2.98067 - 4.46088i) q^{5} +(0.348555 - 0.0693320i) q^{6} +(3.46927 - 5.19212i) q^{7} +(-2.66313 + 6.42935i) q^{8} +(-8.29078 - 3.43416i) q^{9} +(-9.80910 - 6.55423i) q^{10} +(-2.84923 - 14.3240i) q^{11} +(0.112237 - 0.0749942i) q^{12} +(-4.79884 - 4.79884i) q^{13} +(2.67881 - 13.4673i) q^{14} +(-0.331821 - 0.801088i) q^{15} +18.6433i q^{16} -19.7328 q^{18} +(23.0841 - 9.56175i) q^{19} +(-4.39488 - 0.874196i) q^{20} +(0.713631 - 0.713631i) q^{21} +(-17.8418 - 26.7021i) q^{22} +(12.8455 - 2.55513i) q^{23} +(-0.624858 + 0.935165i) q^{24} +(-1.44803 + 3.49585i) q^{25} +(-13.7871 - 5.71082i) q^{26} +(-2.41534 - 1.61388i) q^{27} +(-1.01750 - 5.11530i) q^{28} +(-27.4657 + 18.3520i) q^{29} +(-1.34821 - 1.34821i) q^{30} +(-0.236886 + 1.19090i) q^{31} +(5.03558 + 12.1570i) q^{32} -2.36038i q^{33} -33.5022 q^{35} +(-6.92459 + 2.86826i) q^{36} +(-45.5885 - 9.06812i) q^{37} +(38.8500 - 38.8500i) q^{38} +(-0.609368 - 0.911984i) q^{39} +(36.6185 - 7.28387i) q^{40} +(17.4732 - 26.1505i) q^{41} +(0.849251 - 2.05027i) q^{42} +(67.3441 + 27.8948i) q^{43} +(-10.1423 - 6.77687i) q^{44} +(9.39270 + 47.2203i) q^{45} +(23.9459 - 16.0002i) q^{46} +(10.4882 + 10.4882i) q^{47} +(-0.587825 + 2.95520i) q^{48} +(3.82915 + 9.24438i) q^{49} +8.32041i q^{50} -5.66826 q^{52} +(4.77624 - 1.97838i) q^{53} +(-6.26489 - 1.24616i) q^{54} +(-55.4053 + 55.4053i) q^{55} +(24.1429 + 36.1324i) q^{56} +(3.96061 - 0.787813i) q^{57} +(-40.3544 + 60.3947i) q^{58} +(10.8115 - 26.1013i) q^{59} +(-0.669081 - 0.277142i) q^{60} +(68.7144 + 45.9135i) q^{61} +(0.520891 + 2.61870i) q^{62} +(-46.5935 + 31.1328i) q^{63} +(-32.2713 - 32.2713i) q^{64} +(-7.10332 + 35.7108i) q^{65} +(-1.98623 - 4.79518i) q^{66} -44.5324i q^{67} +2.11674 q^{69} +(-68.0607 + 28.1917i) q^{70} +(56.8410 + 11.3064i) q^{71} +(44.1588 - 44.1588i) q^{72} +(-0.748576 - 1.12032i) q^{73} +(-100.245 + 19.9400i) q^{74} +(-0.339755 + 0.508479i) q^{75} +(7.98612 - 19.2802i) q^{76} +(-84.2570 - 34.9004i) q^{77} +(-2.00537 - 1.33995i) q^{78} +(-5.79844 - 29.1507i) q^{79} +(83.1655 - 55.5694i) q^{80} +(56.7774 + 56.7774i) q^{81} +(13.4920 - 67.8290i) q^{82} +(-25.7951 - 62.2748i) q^{83} -0.842922i q^{84} +160.285 q^{86} +(-4.93230 + 2.04303i) q^{87} +(99.6823 + 19.8280i) q^{88} +(-90.1397 + 90.1397i) q^{89} +(58.8169 + 88.0256i) q^{90} +(-41.5646 + 8.26771i) q^{91} +(6.07736 - 9.09541i) q^{92} +(-0.0750988 + 0.181304i) q^{93} +(30.1327 + 12.4814i) q^{94} +(-111.460 - 74.4751i) q^{95} +(0.414892 + 2.08580i) q^{96} +(56.2374 - 37.5767i) q^{97} +(15.5581 + 15.5581i) q^{98} +(-25.5687 + 128.542i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} - 16 q^{5} - 8 q^{6} + 40 q^{7} + 40 q^{8} - 8 q^{9} - 48 q^{10} - 8 q^{11} + 72 q^{12} - 16 q^{13} + 104 q^{14} + 56 q^{18} + 48 q^{19} - 16 q^{20} + 64 q^{21} - 24 q^{22} + 56 q^{23} + 24 q^{24}+ \cdots + 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.03153 0.841487i 1.01577 0.420744i 0.188210 0.982129i \(-0.439731\pi\)
0.827555 + 0.561385i \(0.189731\pi\)
\(3\) 0.158513 + 0.0315301i 0.0528376 + 0.0105100i 0.221438 0.975174i \(-0.428925\pi\)
−0.168601 + 0.985684i \(0.553925\pi\)
\(4\) 0.590587 0.590587i 0.147647 0.147647i
\(5\) −2.98067 4.46088i −0.596134 0.892177i 0.403607 0.914932i \(-0.367756\pi\)
−0.999741 + 0.0227553i \(0.992756\pi\)
\(6\) 0.348555 0.0693320i 0.0580926 0.0115553i
\(7\) 3.46927 5.19212i 0.495609 0.741732i −0.496373 0.868109i \(-0.665335\pi\)
0.991982 + 0.126378i \(0.0403351\pi\)
\(8\) −2.66313 + 6.42935i −0.332891 + 0.803669i
\(9\) −8.29078 3.43416i −0.921198 0.381573i
\(10\) −9.80910 6.55423i −0.980910 0.655423i
\(11\) −2.84923 14.3240i −0.259021 1.30219i −0.863007 0.505192i \(-0.831422\pi\)
0.603986 0.796995i \(-0.293578\pi\)
\(12\) 0.112237 0.0749942i 0.00935306 0.00624952i
\(13\) −4.79884 4.79884i −0.369141 0.369141i 0.498023 0.867164i \(-0.334060\pi\)
−0.867164 + 0.498023i \(0.834060\pi\)
\(14\) 2.67881 13.4673i 0.191344 0.961950i
\(15\) −0.331821 0.801088i −0.0221214 0.0534058i
\(16\) 18.6433i 1.16520i
\(17\) 0 0
\(18\) −19.7328 −1.09627
\(19\) 23.0841 9.56175i 1.21495 0.503250i 0.319151 0.947704i \(-0.396602\pi\)
0.895802 + 0.444454i \(0.146602\pi\)
\(20\) −4.39488 0.874196i −0.219744 0.0437098i
\(21\) 0.713631 0.713631i 0.0339824 0.0339824i
\(22\) −17.8418 26.7021i −0.810991 1.21373i
\(23\) 12.8455 2.55513i 0.558500 0.111093i 0.0922345 0.995737i \(-0.470599\pi\)
0.466266 + 0.884645i \(0.345599\pi\)
\(24\) −0.624858 + 0.935165i −0.0260357 + 0.0389652i
\(25\) −1.44803 + 3.49585i −0.0579211 + 0.139834i
\(26\) −13.7871 5.71082i −0.530274 0.219647i
\(27\) −2.41534 1.61388i −0.0894570 0.0597733i
\(28\) −1.01750 5.11530i −0.0363392 0.182689i
\(29\) −27.4657 + 18.3520i −0.947093 + 0.632828i −0.930209 0.367030i \(-0.880375\pi\)
−0.0168842 + 0.999857i \(0.505375\pi\)
\(30\) −1.34821 1.34821i −0.0449403 0.0449403i
\(31\) −0.236886 + 1.19090i −0.00764147 + 0.0384163i −0.984418 0.175845i \(-0.943734\pi\)
0.976776 + 0.214261i \(0.0687343\pi\)
\(32\) 5.03558 + 12.1570i 0.157362 + 0.379905i
\(33\) 2.36038i 0.0715267i
\(34\) 0 0
\(35\) −33.5022 −0.957206
\(36\) −6.92459 + 2.86826i −0.192350 + 0.0796739i
\(37\) −45.5885 9.06812i −1.23212 0.245084i −0.464260 0.885699i \(-0.653680\pi\)
−0.767863 + 0.640614i \(0.778680\pi\)
\(38\) 38.8500 38.8500i 1.02237 1.02237i
\(39\) −0.609368 0.911984i −0.0156248 0.0233842i
\(40\) 36.6185 7.28387i 0.915463 0.182097i
\(41\) 17.4732 26.1505i 0.426176 0.637817i −0.554792 0.831989i \(-0.687202\pi\)
0.980967 + 0.194172i \(0.0622021\pi\)
\(42\) 0.849251 2.05027i 0.0202203 0.0488161i
\(43\) 67.3441 + 27.8948i 1.56614 + 0.648717i 0.986142 0.165901i \(-0.0530531\pi\)
0.579999 + 0.814617i \(0.303053\pi\)
\(44\) −10.1423 6.77687i −0.230507 0.154020i
\(45\) 9.39270 + 47.2203i 0.208727 + 1.04934i
\(46\) 23.9459 16.0002i 0.520564 0.347829i
\(47\) 10.4882 + 10.4882i 0.223153 + 0.223153i 0.809825 0.586672i \(-0.199562\pi\)
−0.586672 + 0.809825i \(0.699562\pi\)
\(48\) −0.587825 + 2.95520i −0.0122464 + 0.0615666i
\(49\) 3.82915 + 9.24438i 0.0781458 + 0.188661i
\(50\) 8.32041i 0.166408i
\(51\) 0 0
\(52\) −5.66826 −0.109005
\(53\) 4.77624 1.97838i 0.0901178 0.0373280i −0.337169 0.941444i \(-0.609469\pi\)
0.427287 + 0.904116i \(0.359469\pi\)
\(54\) −6.26489 1.24616i −0.116017 0.0230771i
\(55\) −55.4053 + 55.4053i −1.00737 + 1.00737i
\(56\) 24.1429 + 36.1324i 0.431123 + 0.645222i
\(57\) 3.96061 0.787813i 0.0694843 0.0138213i
\(58\) −40.3544 + 60.3947i −0.695766 + 1.04129i
\(59\) 10.8115 26.1013i 0.183246 0.442394i −0.805386 0.592751i \(-0.798042\pi\)
0.988632 + 0.150356i \(0.0480420\pi\)
\(60\) −0.669081 0.277142i −0.0111513 0.00461904i
\(61\) 68.7144 + 45.9135i 1.12647 + 0.752680i 0.971921 0.235306i \(-0.0756092\pi\)
0.154544 + 0.987986i \(0.450609\pi\)
\(62\) 0.520891 + 2.61870i 0.00840147 + 0.0422370i
\(63\) −46.5935 + 31.1328i −0.739579 + 0.494171i
\(64\) −32.2713 32.2713i −0.504239 0.504239i
\(65\) −7.10332 + 35.7108i −0.109282 + 0.549397i
\(66\) −1.98623 4.79518i −0.0300944 0.0726543i
\(67\) 44.5324i 0.664663i −0.943163 0.332332i \(-0.892165\pi\)
0.943163 0.332332i \(-0.107835\pi\)
\(68\) 0 0
\(69\) 2.11674 0.0306774
\(70\) −68.0607 + 28.1917i −0.972296 + 0.402738i
\(71\) 56.8410 + 11.3064i 0.800577 + 0.159245i 0.578391 0.815759i \(-0.303681\pi\)
0.222186 + 0.975004i \(0.428681\pi\)
\(72\) 44.1588 44.1588i 0.613317 0.613317i
\(73\) −0.748576 1.12032i −0.0102545 0.0153469i 0.826307 0.563220i \(-0.190438\pi\)
−0.836561 + 0.547873i \(0.815438\pi\)
\(74\) −100.245 + 19.9400i −1.35466 + 0.269460i
\(75\) −0.339755 + 0.508479i −0.00453007 + 0.00677973i
\(76\) 7.98612 19.2802i 0.105081 0.253687i
\(77\) −84.2570 34.9004i −1.09425 0.453252i
\(78\) −2.00537 1.33995i −0.0257099 0.0171788i
\(79\) −5.79844 29.1507i −0.0733979 0.368996i 0.926577 0.376106i \(-0.122737\pi\)
−0.999975 + 0.00710935i \(0.997737\pi\)
\(80\) 83.1655 55.5694i 1.03957 0.694618i
\(81\) 56.7774 + 56.7774i 0.700956 + 0.700956i
\(82\) 13.4920 67.8290i 0.164537 0.827183i
\(83\) −25.7951 62.2748i −0.310784 0.750298i −0.999676 0.0254351i \(-0.991903\pi\)
0.688893 0.724863i \(-0.258097\pi\)
\(84\) 0.842922i 0.0100348i
\(85\) 0 0
\(86\) 160.285 1.86377
\(87\) −4.93230 + 2.04303i −0.0566931 + 0.0234831i
\(88\) 99.6823 + 19.8280i 1.13275 + 0.225319i
\(89\) −90.1397 + 90.1397i −1.01281 + 1.01281i −0.0128890 + 0.999917i \(0.504103\pi\)
−0.999917 + 0.0128890i \(0.995897\pi\)
\(90\) 58.8169 + 88.0256i 0.653521 + 0.978063i
\(91\) −41.5646 + 8.26771i −0.456754 + 0.0908540i
\(92\) 6.07736 9.09541i 0.0660582 0.0988632i
\(93\) −0.0750988 + 0.181304i −0.000807514 + 0.00194951i
\(94\) 30.1327 + 12.4814i 0.320561 + 0.132781i
\(95\) −111.460 74.4751i −1.17326 0.783949i
\(96\) 0.414892 + 2.08580i 0.00432180 + 0.0217271i
\(97\) 56.2374 37.5767i 0.579767 0.387388i −0.230828 0.972995i \(-0.574144\pi\)
0.810596 + 0.585606i \(0.199144\pi\)
\(98\) 15.5581 + 15.5581i 0.158756 + 0.158756i
\(99\) −25.5687 + 128.542i −0.258269 + 1.29841i
\(100\) 1.20941 + 2.91979i 0.0120941 + 0.0291979i
\(101\) 34.6405i 0.342975i −0.985186 0.171488i \(-0.945143\pi\)
0.985186 0.171488i \(-0.0548573\pi\)
\(102\) 0 0
\(103\) 151.166 1.46763 0.733817 0.679347i \(-0.237737\pi\)
0.733817 + 0.679347i \(0.237737\pi\)
\(104\) 43.6333 18.0735i 0.419551 0.173784i
\(105\) −5.31052 1.05633i −0.0505764 0.0100603i
\(106\) 8.03830 8.03830i 0.0758330 0.0758330i
\(107\) −5.29897 7.93047i −0.0495231 0.0741166i 0.805882 0.592076i \(-0.201692\pi\)
−0.855405 + 0.517960i \(0.826692\pi\)
\(108\) −2.37960 + 0.473332i −0.0220334 + 0.00438271i
\(109\) 64.6303 96.7260i 0.592938 0.887395i −0.406720 0.913553i \(-0.633327\pi\)
0.999658 + 0.0261584i \(0.00832744\pi\)
\(110\) −65.9347 + 159.180i −0.599406 + 1.44710i
\(111\) −6.94044 2.87483i −0.0625265 0.0258993i
\(112\) 96.7982 + 64.6785i 0.864270 + 0.577487i
\(113\) −12.8663 64.6835i −0.113861 0.572420i −0.995026 0.0996113i \(-0.968240\pi\)
0.881165 0.472809i \(-0.156760\pi\)
\(114\) 7.38315 4.93327i 0.0647645 0.0432743i
\(115\) −49.6863 49.6863i −0.432055 0.432055i
\(116\) −5.38243 + 27.0593i −0.0464003 + 0.233270i
\(117\) 23.3062 + 56.2660i 0.199198 + 0.480906i
\(118\) 62.1233i 0.526468i
\(119\) 0 0
\(120\) 6.03416 0.0502847
\(121\) −85.2709 + 35.3203i −0.704718 + 0.291904i
\(122\) 178.231 + 35.4523i 1.46091 + 0.290593i
\(123\) 3.59425 3.59425i 0.0292216 0.0292216i
\(124\) 0.563431 + 0.843234i 0.00454380 + 0.00680027i
\(125\) −111.639 + 22.2063i −0.893109 + 0.177650i
\(126\) −68.4583 + 102.455i −0.543319 + 0.813135i
\(127\) 36.5576 88.2580i 0.287855 0.694945i −0.712119 0.702059i \(-0.752264\pi\)
0.999975 + 0.00711395i \(0.00226446\pi\)
\(128\) −141.344 58.5465i −1.10425 0.457395i
\(129\) 9.79536 + 6.54505i 0.0759330 + 0.0507368i
\(130\) 15.6196 + 78.5249i 0.120151 + 0.604038i
\(131\) −35.6683 + 23.8328i −0.272277 + 0.181930i −0.684211 0.729284i \(-0.739853\pi\)
0.411934 + 0.911214i \(0.364853\pi\)
\(132\) −1.39401 1.39401i −0.0105607 0.0105607i
\(133\) 30.4391 153.028i 0.228866 1.15058i
\(134\) −37.4735 90.4690i −0.279653 0.675142i
\(135\) 15.5850i 0.115444i
\(136\) 0 0
\(137\) −63.8232 −0.465863 −0.232931 0.972493i \(-0.574832\pi\)
−0.232931 + 0.972493i \(0.574832\pi\)
\(138\) 4.30022 1.78121i 0.0311610 0.0129073i
\(139\) −256.306 50.9824i −1.84393 0.366780i −0.855417 0.517940i \(-0.826699\pi\)
−0.988509 + 0.151160i \(0.951699\pi\)
\(140\) −19.7860 + 19.7860i −0.141328 + 0.141328i
\(141\) 1.33181 + 1.99320i 0.00944549 + 0.0141362i
\(142\) 124.988 24.8617i 0.880200 0.175083i
\(143\) −55.0658 + 82.4117i −0.385075 + 0.576306i
\(144\) 64.0239 154.567i 0.444610 1.07338i
\(145\) 163.732 + 67.8201i 1.12919 + 0.467725i
\(146\) −2.46349 1.64605i −0.0168732 0.0112743i
\(147\) 0.315492 + 1.58608i 0.00214620 + 0.0107897i
\(148\) −32.2795 + 21.5685i −0.218105 + 0.145733i
\(149\) 83.6010 + 83.6010i 0.561080 + 0.561080i 0.929614 0.368534i \(-0.120140\pi\)
−0.368534 + 0.929614i \(0.620140\pi\)
\(150\) −0.262344 + 1.31889i −0.00174896 + 0.00879261i
\(151\) 10.5977 + 25.5851i 0.0701833 + 0.169437i 0.955079 0.296352i \(-0.0957703\pi\)
−0.884895 + 0.465790i \(0.845770\pi\)
\(152\) 173.880i 1.14395i
\(153\) 0 0
\(154\) −200.539 −1.30220
\(155\) 6.01857 2.49297i 0.0388295 0.0160837i
\(156\) −0.898490 0.178721i −0.00575955 0.00114565i
\(157\) 55.8958 55.8958i 0.356024 0.356024i −0.506321 0.862345i \(-0.668995\pi\)
0.862345 + 0.506321i \(0.168995\pi\)
\(158\) −36.3096 54.3412i −0.229808 0.343932i
\(159\) 0.819474 0.163003i 0.00515392 0.00102518i
\(160\) 39.2214 58.6990i 0.245134 0.366869i
\(161\) 31.2979 75.5599i 0.194397 0.469316i
\(162\) 163.123 + 67.5676i 1.00693 + 0.417084i
\(163\) 46.1595 + 30.8428i 0.283187 + 0.189220i 0.689049 0.724715i \(-0.258029\pi\)
−0.405862 + 0.913935i \(0.633029\pi\)
\(164\) −5.12469 25.7636i −0.0312481 0.157095i
\(165\) −10.5294 + 7.03551i −0.0638144 + 0.0426394i
\(166\) −104.807 104.807i −0.631367 0.631367i
\(167\) −10.0784 + 50.6674i −0.0603495 + 0.303398i −0.999157 0.0410439i \(-0.986932\pi\)
0.938808 + 0.344441i \(0.111932\pi\)
\(168\) 2.68770 + 6.48868i 0.0159982 + 0.0386231i
\(169\) 122.942i 0.727470i
\(170\) 0 0
\(171\) −224.222 −1.31124
\(172\) 56.2468 23.2982i 0.327016 0.135455i
\(173\) −18.1162 3.60353i −0.104718 0.0208296i 0.142453 0.989802i \(-0.454501\pi\)
−0.247171 + 0.968972i \(0.579501\pi\)
\(174\) −8.30094 + 8.30094i −0.0477066 + 0.0477066i
\(175\) 13.1273 + 19.6464i 0.0750130 + 0.112265i
\(176\) 267.047 53.1190i 1.51731 0.301812i
\(177\) 2.53674 3.79649i 0.0143318 0.0214491i
\(178\) −107.270 + 258.973i −0.602641 + 1.45490i
\(179\) −57.8989 23.9825i −0.323457 0.133980i 0.215046 0.976604i \(-0.431010\pi\)
−0.538503 + 0.842624i \(0.681010\pi\)
\(180\) 33.4349 + 22.3405i 0.185749 + 0.124114i
\(181\) 20.4063 + 102.589i 0.112742 + 0.566792i 0.995321 + 0.0966274i \(0.0308055\pi\)
−0.882579 + 0.470165i \(0.844194\pi\)
\(182\) −77.4825 + 51.7722i −0.425728 + 0.284462i
\(183\) 9.44444 + 9.44444i 0.0516090 + 0.0516090i
\(184\) −17.7814 + 89.3930i −0.0966378 + 0.485831i
\(185\) 95.4324 + 230.394i 0.515851 + 1.24537i
\(186\) 0.431520i 0.00232000i
\(187\) 0 0
\(188\) 12.3883 0.0658954
\(189\) −16.7589 + 6.94177i −0.0886715 + 0.0367289i
\(190\) −289.104 57.5064i −1.52160 0.302665i
\(191\) 137.930 137.930i 0.722145 0.722145i −0.246897 0.969042i \(-0.579411\pi\)
0.969042 + 0.246897i \(0.0794109\pi\)
\(192\) −4.09789 6.13293i −0.0213432 0.0319423i
\(193\) 86.7045 17.2466i 0.449246 0.0893606i 0.0347181 0.999397i \(-0.488947\pi\)
0.414528 + 0.910037i \(0.363947\pi\)
\(194\) 82.6278 123.661i 0.425916 0.637429i
\(195\) −2.25193 + 5.43664i −0.0115484 + 0.0278802i
\(196\) 7.72105 + 3.19816i 0.0393931 + 0.0163172i
\(197\) −214.000 142.990i −1.08629 0.725838i −0.122495 0.992469i \(-0.539089\pi\)
−0.963799 + 0.266631i \(0.914089\pi\)
\(198\) 56.2232 + 282.653i 0.283956 + 1.42754i
\(199\) −189.117 + 126.364i −0.950338 + 0.634996i −0.931079 0.364819i \(-0.881131\pi\)
−0.0192597 + 0.999815i \(0.506131\pi\)
\(200\) −18.6198 18.6198i −0.0930988 0.0930988i
\(201\) 1.40411 7.05896i 0.00698564 0.0351192i
\(202\) −29.1495 70.3732i −0.144305 0.348382i
\(203\) 206.273i 1.01612i
\(204\) 0 0
\(205\) −168.736 −0.823103
\(206\) 307.099 127.204i 1.49077 0.617498i
\(207\) −115.274 22.9294i −0.556879 0.110770i
\(208\) 89.4660 89.4660i 0.430125 0.430125i
\(209\) −202.735 303.414i −0.970023 1.45174i
\(210\) −11.6774 + 2.32277i −0.0556065 + 0.0110608i
\(211\) 4.49332 6.72473i 0.0212954 0.0318708i −0.820669 0.571404i \(-0.806399\pi\)
0.841965 + 0.539533i \(0.181399\pi\)
\(212\) 1.65238 3.98919i 0.00779423 0.0188169i
\(213\) 8.65353 + 3.58441i 0.0406269 + 0.0168282i
\(214\) −17.4384 11.6520i −0.0814879 0.0544485i
\(215\) −76.2947 383.559i −0.354859 1.78400i
\(216\) 16.8086 11.2311i 0.0778174 0.0519959i
\(217\) 5.36151 + 5.36151i 0.0247074 + 0.0247074i
\(218\) 49.9046 250.887i 0.228920 1.15086i
\(219\) −0.0833348 0.201188i −0.000380524 0.000918667i
\(220\) 65.4433i 0.297469i
\(221\) 0 0
\(222\) −16.5188 −0.0744092
\(223\) −45.3315 + 18.7769i −0.203280 + 0.0842014i −0.482001 0.876171i \(-0.660090\pi\)
0.278720 + 0.960372i \(0.410090\pi\)
\(224\) 80.5902 + 16.0304i 0.359778 + 0.0715642i
\(225\) 24.0106 24.0106i 0.106714 0.106714i
\(226\) −80.5687 120.580i −0.356499 0.533538i
\(227\) −164.831 + 32.7870i −0.726129 + 0.144436i −0.544296 0.838893i \(-0.683203\pi\)
−0.181833 + 0.983329i \(0.558203\pi\)
\(228\) 1.87381 2.80435i 0.00821846 0.0122998i
\(229\) 47.5197 114.723i 0.207510 0.500972i −0.785520 0.618836i \(-0.787605\pi\)
0.993030 + 0.117864i \(0.0376046\pi\)
\(230\) −142.750 59.1289i −0.620651 0.257082i
\(231\) −12.2554 8.18879i −0.0530536 0.0354493i
\(232\) −44.8469 225.460i −0.193305 0.971812i
\(233\) 293.571 196.158i 1.25996 0.841880i 0.267396 0.963587i \(-0.413837\pi\)
0.992566 + 0.121707i \(0.0388368\pi\)
\(234\) 94.6943 + 94.6943i 0.404677 + 0.404677i
\(235\) 15.5248 78.0483i 0.0660628 0.332120i
\(236\) −9.02993 21.8002i −0.0382624 0.0923737i
\(237\) 4.80358i 0.0202683i
\(238\) 0 0
\(239\) 206.527 0.864131 0.432066 0.901842i \(-0.357785\pi\)
0.432066 + 0.901842i \(0.357785\pi\)
\(240\) 14.9349 6.18624i 0.0622287 0.0257760i
\(241\) 282.496 + 56.1919i 1.17218 + 0.233161i 0.742517 0.669827i \(-0.233632\pi\)
0.429665 + 0.902989i \(0.358632\pi\)
\(242\) −143.509 + 143.509i −0.593011 + 0.593011i
\(243\) 21.7347 + 32.5282i 0.0894430 + 0.133861i
\(244\) 67.6977 13.4659i 0.277450 0.0551881i
\(245\) 29.8247 44.6358i 0.121733 0.182187i
\(246\) 4.27731 10.3263i 0.0173875 0.0419770i
\(247\) −156.662 64.8915i −0.634259 0.262719i
\(248\) −7.02589 4.69455i −0.0283302 0.0189296i
\(249\) −2.12531 10.6847i −0.00853539 0.0429103i
\(250\) −208.111 + 139.055i −0.832444 + 0.556221i
\(251\) −191.096 191.096i −0.761337 0.761337i 0.215227 0.976564i \(-0.430951\pi\)
−0.976564 + 0.215227i \(0.930951\pi\)
\(252\) −9.13089 + 45.9041i −0.0362337 + 0.182159i
\(253\) −73.1996 176.720i −0.289327 0.698496i
\(254\) 210.062i 0.827014i
\(255\) 0 0
\(256\) −153.856 −0.601002
\(257\) 48.7819 20.2061i 0.189813 0.0786230i −0.285753 0.958303i \(-0.592244\pi\)
0.475565 + 0.879680i \(0.342244\pi\)
\(258\) 25.4071 + 5.05380i 0.0984773 + 0.0195884i
\(259\) −205.242 + 205.242i −0.792439 + 0.792439i
\(260\) 16.8952 + 25.2854i 0.0649815 + 0.0972517i
\(261\) 290.736 57.8310i 1.11393 0.221575i
\(262\) −52.4062 + 78.4315i −0.200024 + 0.299357i
\(263\) −194.228 + 468.907i −0.738509 + 1.78292i −0.126654 + 0.991947i \(0.540424\pi\)
−0.611854 + 0.790970i \(0.709576\pi\)
\(264\) 15.1757 + 6.28599i 0.0574838 + 0.0238106i
\(265\) −23.0617 15.4094i −0.0870254 0.0581485i
\(266\) −66.9329 336.495i −0.251628 1.26502i
\(267\) −17.1304 + 11.4462i −0.0641588 + 0.0428696i
\(268\) −26.3003 26.3003i −0.0981353 0.0981353i
\(269\) 34.3858 172.869i 0.127828 0.642637i −0.862743 0.505642i \(-0.831256\pi\)
0.990572 0.136995i \(-0.0437443\pi\)
\(270\) 13.1146 + 31.6614i 0.0485725 + 0.117264i
\(271\) 464.255i 1.71312i 0.516050 + 0.856559i \(0.327402\pi\)
−0.516050 + 0.856559i \(0.672598\pi\)
\(272\) 0 0
\(273\) −6.84919 −0.0250886
\(274\) −129.659 + 53.7064i −0.473207 + 0.196009i
\(275\) 54.2004 + 10.7811i 0.197093 + 0.0392041i
\(276\) 1.25012 1.25012i 0.00452941 0.00452941i
\(277\) 98.1048 + 146.824i 0.354169 + 0.530051i 0.965185 0.261567i \(-0.0842391\pi\)
−0.611017 + 0.791618i \(0.709239\pi\)
\(278\) −563.594 + 112.106i −2.02732 + 0.403258i
\(279\) 6.05372 9.06003i 0.0216979 0.0324732i
\(280\) 89.2206 215.398i 0.318645 0.769277i
\(281\) −369.073 152.875i −1.31343 0.544040i −0.387545 0.921851i \(-0.626677\pi\)
−0.925883 + 0.377811i \(0.876677\pi\)
\(282\) 4.38287 + 2.92854i 0.0155421 + 0.0103849i
\(283\) 69.7677 + 350.746i 0.246529 + 1.23938i 0.883476 + 0.468477i \(0.155197\pi\)
−0.636947 + 0.770908i \(0.719803\pi\)
\(284\) 40.2469 26.8921i 0.141715 0.0946906i
\(285\) −15.3196 15.3196i −0.0537530 0.0537530i
\(286\) −42.5193 + 213.759i −0.148669 + 0.747409i
\(287\) −75.1574 181.446i −0.261872 0.632216i
\(288\) 118.084i 0.410013i
\(289\) 0 0
\(290\) 389.697 1.34378
\(291\) 10.0991 4.18320i 0.0347050 0.0143753i
\(292\) −1.10375 0.219549i −0.00377995 0.000751880i
\(293\) 169.002 169.002i 0.576800 0.576800i −0.357220 0.934020i \(-0.616275\pi\)
0.934020 + 0.357220i \(0.116275\pi\)
\(294\) 1.97560 + 2.95670i 0.00671973 + 0.0100568i
\(295\) −148.660 + 29.5704i −0.503933 + 0.100239i
\(296\) 179.710 268.955i 0.607129 0.908633i
\(297\) −16.2354 + 39.1958i −0.0546647 + 0.131972i
\(298\) 240.187 + 99.4888i 0.805997 + 0.333855i
\(299\) −73.9051 49.3818i −0.247174 0.165157i
\(300\) 0.0996463 + 0.500956i 0.000332154 + 0.00166985i
\(301\) 378.468 252.884i 1.25737 0.840147i
\(302\) 43.0590 + 43.0590i 0.142579 + 0.142579i
\(303\) 1.09222 5.49096i 0.00360468 0.0181220i
\(304\) 178.262 + 430.363i 0.586389 + 1.41567i
\(305\) 443.380i 1.45370i
\(306\) 0 0
\(307\) 409.955 1.33536 0.667679 0.744450i \(-0.267288\pi\)
0.667679 + 0.744450i \(0.267288\pi\)
\(308\) −70.3727 + 29.1493i −0.228483 + 0.0946407i
\(309\) 23.9618 + 4.76629i 0.0775462 + 0.0154249i
\(310\) 10.1291 10.1291i 0.0326745 0.0326745i
\(311\) 120.340 + 180.101i 0.386944 + 0.579103i 0.972896 0.231243i \(-0.0742793\pi\)
−0.585952 + 0.810346i \(0.699279\pi\)
\(312\) 7.48629 1.48912i 0.0239945 0.00477281i
\(313\) −263.015 + 393.629i −0.840302 + 1.25760i 0.123863 + 0.992299i \(0.460472\pi\)
−0.964165 + 0.265302i \(0.914528\pi\)
\(314\) 66.5184 160.590i 0.211842 0.511432i
\(315\) 277.759 + 115.052i 0.881776 + 0.365244i
\(316\) −20.6405 13.7915i −0.0653180 0.0436441i
\(317\) 50.0110 + 251.422i 0.157763 + 0.793130i 0.975919 + 0.218133i \(0.0699967\pi\)
−0.818156 + 0.574997i \(0.805003\pi\)
\(318\) 1.52762 1.02072i 0.00480384 0.00320982i
\(319\) 341.131 + 341.131i 1.06938 + 1.06938i
\(320\) −47.7685 + 240.149i −0.149277 + 0.750464i
\(321\) −0.589905 1.42416i −0.00183771 0.00443663i
\(322\) 179.839i 0.558506i
\(323\) 0 0
\(324\) 67.0640 0.206988
\(325\) 23.7248 9.82715i 0.0729995 0.0302374i
\(326\) 119.728 + 23.8154i 0.367265 + 0.0730535i
\(327\) 13.2945 13.2945i 0.0406560 0.0406560i
\(328\) 121.597 + 181.983i 0.370724 + 0.554828i
\(329\) 90.8421 18.0696i 0.276116 0.0549229i
\(330\) −15.4705 + 23.1532i −0.0468802 + 0.0701612i
\(331\) 86.3966 208.580i 0.261017 0.630151i −0.737985 0.674817i \(-0.764222\pi\)
0.999002 + 0.0446663i \(0.0142225\pi\)
\(332\) −52.0129 21.5444i −0.156665 0.0648929i
\(333\) 346.823 + 231.740i 1.04151 + 0.695916i
\(334\) 22.1615 + 111.413i 0.0663516 + 0.333572i
\(335\) −198.654 + 132.736i −0.592997 + 0.396228i
\(336\) 13.3044 + 13.3044i 0.0395965 + 0.0395965i
\(337\) −70.4547 + 354.200i −0.209064 + 1.05104i 0.723580 + 0.690241i \(0.242495\pi\)
−0.932644 + 0.360797i \(0.882505\pi\)
\(338\) −103.454 249.761i −0.306078 0.738938i
\(339\) 10.6588i 0.0314420i
\(340\) 0 0
\(341\) 17.7335 0.0520045
\(342\) −455.513 + 188.680i −1.33191 + 0.551695i
\(343\) 361.384 + 71.8838i 1.05360 + 0.209574i
\(344\) −358.691 + 358.691i −1.04271 + 1.04271i
\(345\) −6.30930 9.44253i −0.0182878 0.0273697i
\(346\) −39.8358 + 7.92384i −0.115132 + 0.0229013i
\(347\) 8.81030 13.1855i 0.0253899 0.0379987i −0.818558 0.574425i \(-0.805226\pi\)
0.843947 + 0.536426i \(0.180226\pi\)
\(348\) −1.70637 + 4.11954i −0.00490336 + 0.0118377i
\(349\) 292.270 + 121.062i 0.837448 + 0.346883i 0.759847 0.650102i \(-0.225274\pi\)
0.0776015 + 0.996984i \(0.475274\pi\)
\(350\) 43.2006 + 28.8657i 0.123430 + 0.0824735i
\(351\) 3.84608 + 19.3356i 0.0109575 + 0.0550870i
\(352\) 159.789 106.768i 0.453947 0.303318i
\(353\) −191.613 191.613i −0.542812 0.542812i 0.381540 0.924352i \(-0.375394\pi\)
−0.924352 + 0.381540i \(0.875394\pi\)
\(354\) 1.95875 9.84732i 0.00553320 0.0278173i
\(355\) −118.988 287.262i −0.335177 0.809188i
\(356\) 106.471i 0.299075i
\(357\) 0 0
\(358\) −137.804 −0.384928
\(359\) −146.269 + 60.5865i −0.407434 + 0.168765i −0.576981 0.816757i \(-0.695769\pi\)
0.169547 + 0.985522i \(0.445769\pi\)
\(360\) −328.610 65.3646i −0.912806 0.181568i
\(361\) 186.183 186.183i 0.515743 0.515743i
\(362\) 127.784 + 191.242i 0.352994 + 0.528292i
\(363\) −14.6302 + 2.91012i −0.0403035 + 0.00801686i
\(364\) −19.6647 + 29.4303i −0.0540239 + 0.0808524i
\(365\) −2.76638 + 6.67862i −0.00757911 + 0.0182976i
\(366\) 27.1340 + 11.2393i 0.0741367 + 0.0307084i
\(367\) 406.581 + 271.669i 1.10785 + 0.740242i 0.968254 0.249967i \(-0.0804197\pi\)
0.139596 + 0.990209i \(0.455420\pi\)
\(368\) 47.6360 + 239.482i 0.129446 + 0.650767i
\(369\) −234.671 + 156.802i −0.635966 + 0.424939i
\(370\) 387.748 + 387.748i 1.04797 + 1.04797i
\(371\) 6.29804 31.6624i 0.0169759 0.0853434i
\(372\) 0.0627237 + 0.151428i 0.000168612 + 0.000407065i
\(373\) 573.453i 1.53741i −0.639605 0.768704i \(-0.720902\pi\)
0.639605 0.768704i \(-0.279098\pi\)
\(374\) 0 0
\(375\) −18.3963 −0.0490568
\(376\) −95.3635 + 39.5008i −0.253626 + 0.105055i
\(377\) 219.872 + 43.7352i 0.583214 + 0.116008i
\(378\) −28.2048 + 28.2048i −0.0746159 + 0.0746159i
\(379\) 390.013 + 583.696i 1.02906 + 1.54009i 0.828168 + 0.560480i \(0.189383\pi\)
0.200890 + 0.979614i \(0.435617\pi\)
\(380\) −109.811 + 21.8427i −0.288976 + 0.0574808i
\(381\) 8.57764 12.8373i 0.0225135 0.0336938i
\(382\) 164.142 396.274i 0.429692 1.03737i
\(383\) 284.935 + 118.024i 0.743956 + 0.308157i 0.722273 0.691608i \(-0.243098\pi\)
0.0216830 + 0.999765i \(0.493098\pi\)
\(384\) −20.5588 13.7370i −0.0535386 0.0357733i
\(385\) 95.4555 + 479.887i 0.247936 + 1.24646i
\(386\) 161.630 107.998i 0.418731 0.279787i
\(387\) −462.540 462.540i −1.19519 1.19519i
\(388\) 11.0208 55.4053i 0.0284041 0.142797i
\(389\) 109.097 + 263.382i 0.280454 + 0.677076i 0.999846 0.0175282i \(-0.00557969\pi\)
−0.719392 + 0.694604i \(0.755580\pi\)
\(390\) 12.9397i 0.0331787i
\(391\) 0 0
\(392\) −69.6329 −0.177635
\(393\) −6.40533 + 2.65317i −0.0162986 + 0.00675108i
\(394\) −555.071 110.411i −1.40881 0.280230i
\(395\) −112.755 + 112.755i −0.285455 + 0.285455i
\(396\) 60.8149 + 91.0159i 0.153573 + 0.229838i
\(397\) 121.959 24.2591i 0.307201 0.0611061i −0.0390826 0.999236i \(-0.512444\pi\)
0.346283 + 0.938130i \(0.387444\pi\)
\(398\) −277.864 + 415.852i −0.698150 + 1.04486i
\(399\) 9.64997 23.2971i 0.0241854 0.0583887i
\(400\) −65.1740 26.9960i −0.162935 0.0674899i
\(401\) 355.016 + 237.214i 0.885328 + 0.591557i 0.912955 0.408061i \(-0.133795\pi\)
−0.0276268 + 0.999618i \(0.508795\pi\)
\(402\) −3.08752 15.5220i −0.00768041 0.0386120i
\(403\) 6.85173 4.57818i 0.0170018 0.0113602i
\(404\) −20.4582 20.4582i −0.0506391 0.0506391i
\(405\) 84.0429 422.512i 0.207513 1.04324i
\(406\) 173.576 + 419.050i 0.427528 + 1.03214i
\(407\) 678.850i 1.66794i
\(408\) 0 0
\(409\) −215.550 −0.527018 −0.263509 0.964657i \(-0.584880\pi\)
−0.263509 + 0.964657i \(0.584880\pi\)
\(410\) −342.793 + 141.989i −0.836079 + 0.346315i
\(411\) −10.1168 2.01235i −0.0246150 0.00489624i
\(412\) 89.2768 89.2768i 0.216691 0.216691i
\(413\) −98.0131 146.687i −0.237320 0.355174i
\(414\) −253.477 + 50.4198i −0.612264 + 0.121787i
\(415\) −200.914 + 300.689i −0.484130 + 0.724552i
\(416\) 34.1743 82.5042i 0.0821499 0.198327i
\(417\) −39.0202 16.1627i −0.0935737 0.0387595i
\(418\) −667.181 445.796i −1.59613 1.06650i
\(419\) −121.382 610.227i −0.289694 1.45639i −0.801864 0.597506i \(-0.796158\pi\)
0.512170 0.858884i \(-0.328842\pi\)
\(420\) −3.76018 + 2.51247i −0.00895280 + 0.00598207i
\(421\) 36.3708 + 36.3708i 0.0863916 + 0.0863916i 0.748982 0.662590i \(-0.230543\pi\)
−0.662590 + 0.748982i \(0.730543\pi\)
\(422\) 3.46954 17.4426i 0.00822166 0.0413331i
\(423\) −50.9371 122.973i −0.120419 0.290717i
\(424\) 35.9769i 0.0848511i
\(425\) 0 0
\(426\) 20.5961 0.0483477
\(427\) 476.777 197.488i 1.11657 0.462500i
\(428\) −7.81313 1.55413i −0.0182550 0.00363114i
\(429\) −11.3271 + 11.3271i −0.0264034 + 0.0264034i
\(430\) −477.755 715.011i −1.11106 1.66282i
\(431\) 461.572 91.8124i 1.07093 0.213022i 0.372017 0.928226i \(-0.378666\pi\)
0.698916 + 0.715204i \(0.253666\pi\)
\(432\) 30.0880 45.0299i 0.0696481 0.104236i
\(433\) −246.289 + 594.595i −0.568798 + 1.37320i 0.333772 + 0.942654i \(0.391679\pi\)
−0.902569 + 0.430545i \(0.858321\pi\)
\(434\) 15.4037 + 6.38042i 0.0354924 + 0.0147014i
\(435\) 23.8153 + 15.9129i 0.0547477 + 0.0365813i
\(436\) −18.9553 95.2948i −0.0434755 0.218566i
\(437\) 272.095 181.808i 0.622644 0.416037i
\(438\) −0.338594 0.338594i −0.000773047 0.000773047i
\(439\) −161.428 + 811.551i −0.367717 + 1.84864i 0.144129 + 0.989559i \(0.453962\pi\)
−0.511846 + 0.859077i \(0.671038\pi\)
\(440\) −208.669 503.772i −0.474248 1.14494i
\(441\) 89.7930i 0.203612i
\(442\) 0 0
\(443\) 354.430 0.800068 0.400034 0.916500i \(-0.368998\pi\)
0.400034 + 0.916500i \(0.368998\pi\)
\(444\) −5.79677 + 2.40110i −0.0130558 + 0.00540788i
\(445\) 670.780 + 133.426i 1.50737 + 0.299835i
\(446\) −76.2917 + 76.2917i −0.171058 + 0.171058i
\(447\) 10.6159 + 15.8878i 0.0237491 + 0.0355431i
\(448\) −279.514 + 55.5988i −0.623916 + 0.124105i
\(449\) 436.647 653.488i 0.972487 1.45543i 0.0840341 0.996463i \(-0.473220\pi\)
0.888453 0.458967i \(-0.151780\pi\)
\(450\) 28.5736 68.9828i 0.0634969 0.153295i
\(451\) −424.366 175.778i −0.940945 0.389752i
\(452\) −45.7999 30.6025i −0.101327 0.0677047i
\(453\) 0.873166 + 4.38970i 0.00192752 + 0.00969029i
\(454\) −307.270 + 205.311i −0.676806 + 0.452227i
\(455\) 160.772 + 160.772i 0.353344 + 0.353344i
\(456\) −5.48246 + 27.5622i −0.0120229 + 0.0604434i
\(457\) 124.426 + 300.390i 0.272266 + 0.657309i 0.999580 0.0289968i \(-0.00923125\pi\)
−0.727313 + 0.686306i \(0.759231\pi\)
\(458\) 273.050i 0.596178i
\(459\) 0 0
\(460\) −58.6882 −0.127583
\(461\) 227.477 94.2242i 0.493444 0.204391i −0.122064 0.992522i \(-0.538951\pi\)
0.615507 + 0.788131i \(0.288951\pi\)
\(462\) −31.7879 6.32302i −0.0688051 0.0136862i
\(463\) 248.069 248.069i 0.535786 0.535786i −0.386503 0.922288i \(-0.626317\pi\)
0.922288 + 0.386503i \(0.126317\pi\)
\(464\) −342.141 512.051i −0.737374 1.10356i
\(465\) 1.03262 0.205401i 0.00222069 0.000441724i
\(466\) 431.334 645.537i 0.925610 1.38527i
\(467\) −83.7591 + 202.212i −0.179356 + 0.433003i −0.987832 0.155526i \(-0.950293\pi\)
0.808476 + 0.588529i \(0.200293\pi\)
\(468\) 46.9943 + 19.4657i 0.100415 + 0.0415933i
\(469\) −231.218 154.495i −0.493002 0.329413i
\(470\) −34.1376 171.621i −0.0726332 0.365152i
\(471\) 10.6226 7.09779i 0.0225533 0.0150696i
\(472\) 139.022 + 139.022i 0.294538 + 0.294538i
\(473\) 207.688 1044.12i 0.439087 2.20744i
\(474\) −4.04215 9.75862i −0.00852775 0.0205878i
\(475\) 94.5441i 0.199040i
\(476\) 0 0
\(477\) −46.3929 −0.0972597
\(478\) 419.566 173.790i 0.877754 0.363578i
\(479\) −492.815 98.0271i −1.02884 0.204649i −0.348319 0.937376i \(-0.613247\pi\)
−0.680523 + 0.732727i \(0.738247\pi\)
\(480\) 8.06788 8.06788i 0.0168081 0.0168081i
\(481\) 175.255 + 262.288i 0.364356 + 0.545298i
\(482\) 621.183 123.561i 1.28876 0.256351i
\(483\) 7.34353 10.9904i 0.0152040 0.0227544i
\(484\) −29.5001 + 71.2196i −0.0609506 + 0.147148i
\(485\) −335.250 138.865i −0.691238 0.286320i
\(486\) 71.5267 + 47.7926i 0.147174 + 0.0983387i
\(487\) −49.1210 246.948i −0.100864 0.507080i −0.997880 0.0650809i \(-0.979269\pi\)
0.897016 0.441999i \(-0.145731\pi\)
\(488\) −478.189 + 319.516i −0.979896 + 0.654745i
\(489\) 6.34439 + 6.34439i 0.0129742 + 0.0129742i
\(490\) 23.0293 115.776i 0.0469986 0.236278i
\(491\) −86.6215 209.123i −0.176418 0.425912i 0.810792 0.585334i \(-0.199037\pi\)
−0.987210 + 0.159423i \(0.949037\pi\)
\(492\) 4.24543i 0.00862893i
\(493\) 0 0
\(494\) −372.869 −0.754796
\(495\) 649.624 269.083i 1.31237 0.543602i
\(496\) −22.2024 4.41633i −0.0447628 0.00890388i
\(497\) 255.901 255.901i 0.514891 0.514891i
\(498\) −13.3086 19.9178i −0.0267242 0.0399956i
\(499\) −211.701 + 42.1099i −0.424250 + 0.0843886i −0.402598 0.915377i \(-0.631893\pi\)
−0.0216522 + 0.999766i \(0.506893\pi\)
\(500\) −52.8175 + 79.0470i −0.105635 + 0.158094i
\(501\) −3.19510 + 7.71365i −0.00637744 + 0.0153965i
\(502\) −549.021 227.412i −1.09367 0.453012i
\(503\) −733.755 490.279i −1.45876 0.974710i −0.996105 0.0881697i \(-0.971898\pi\)
−0.462651 0.886540i \(-0.653102\pi\)
\(504\) −76.0793 382.477i −0.150951 0.758882i
\(505\) −154.527 + 103.252i −0.305994 + 0.204459i
\(506\) −297.414 297.414i −0.587776 0.587776i
\(507\) 3.87639 19.4879i 0.00764574 0.0384377i
\(508\) −30.5335 73.7144i −0.0601053 0.145107i
\(509\) 459.446i 0.902645i 0.892361 + 0.451323i \(0.149048\pi\)
−0.892361 + 0.451323i \(0.850952\pi\)
\(510\) 0 0
\(511\) −8.41386 −0.0164655
\(512\) 252.811 104.718i 0.493772 0.204527i
\(513\) −71.1874 14.1601i −0.138767 0.0276025i
\(514\) 82.0986 82.0986i 0.159725 0.159725i
\(515\) −450.576 674.335i −0.874906 1.30939i
\(516\) 9.65043 1.91959i 0.0187024 0.00372013i
\(517\) 120.350 180.116i 0.232785 0.348387i
\(518\) −244.246 + 589.663i −0.471518 + 1.13835i
\(519\) −2.75802 1.14241i −0.00531411 0.00220117i
\(520\) −210.680 140.772i −0.405154 0.270716i
\(521\) 19.7317 + 99.1978i 0.0378727 + 0.190399i 0.995090 0.0989697i \(-0.0315547\pi\)
−0.957218 + 0.289369i \(0.906555\pi\)
\(522\) 541.975 362.136i 1.03827 0.693747i
\(523\) −395.099 395.099i −0.755448 0.755448i 0.220042 0.975490i \(-0.429380\pi\)
−0.975490 + 0.220042i \(0.929380\pi\)
\(524\) −6.98989 + 35.1406i −0.0133395 + 0.0670621i
\(525\) 1.46139 + 3.52810i 0.00278360 + 0.00672019i
\(526\) 1116.04i 2.12175i
\(527\) 0 0
\(528\) 44.0052 0.0833432
\(529\) −330.254 + 136.796i −0.624299 + 0.258593i
\(530\) −59.8174 11.8984i −0.112863 0.0224499i
\(531\) −179.272 + 179.272i −0.337611 + 0.337611i
\(532\) −72.3992 108.353i −0.136089 0.203671i
\(533\) −209.343 + 41.6409i −0.392763 + 0.0781255i
\(534\) −25.1691 + 37.6683i −0.0471332 + 0.0705398i
\(535\) −19.5824 + 47.2762i −0.0366027 + 0.0883667i
\(536\) 286.315 + 118.596i 0.534170 + 0.221260i
\(537\) −8.42153 5.62709i −0.0156826 0.0104788i
\(538\) −75.6114 380.124i −0.140542 0.706551i
\(539\) 121.507 81.1882i 0.225430 0.150628i
\(540\) 9.20429 + 9.20429i 0.0170450 + 0.0170450i
\(541\) −7.96429 + 40.0392i −0.0147214 + 0.0740095i −0.987448 0.157947i \(-0.949513\pi\)
0.972726 + 0.231956i \(0.0745126\pi\)
\(542\) 390.665 + 943.148i 0.720783 + 1.74012i
\(543\) 16.9051i 0.0311328i
\(544\) 0 0
\(545\) −624.125 −1.14518
\(546\) −13.9143 + 5.76351i −0.0254841 + 0.0105559i
\(547\) −66.7811 13.2836i −0.122086 0.0242844i 0.133669 0.991026i \(-0.457324\pi\)
−0.255755 + 0.966742i \(0.582324\pi\)
\(548\) −37.6931 + 37.6931i −0.0687830 + 0.0687830i
\(549\) −412.022 616.635i −0.750496 1.12320i
\(550\) 119.182 23.7068i 0.216695 0.0431032i
\(551\) −458.544 + 686.260i −0.832203 + 1.24548i
\(552\) −5.63714 + 13.6093i −0.0102122 + 0.0246545i
\(553\) −171.470 71.0254i −0.310073 0.128436i
\(554\) 322.853 + 215.724i 0.582768 + 0.389393i
\(555\) 7.86289 + 39.5294i 0.0141674 + 0.0712242i
\(556\) −181.480 + 121.261i −0.326403 + 0.218096i
\(557\) 208.814 + 208.814i 0.374890 + 0.374890i 0.869255 0.494365i \(-0.164599\pi\)
−0.494365 + 0.869255i \(0.664599\pi\)
\(558\) 4.67441 23.4999i 0.00837708 0.0421144i
\(559\) −189.310 457.036i −0.338659 0.817595i
\(560\) 624.591i 1.11534i
\(561\) 0 0
\(562\) −878.426 −1.56304
\(563\) −408.295 + 169.121i −0.725212 + 0.300393i −0.714583 0.699551i \(-0.753384\pi\)
−0.0106294 + 0.999944i \(0.503384\pi\)
\(564\) 1.96371 + 0.390606i 0.00348175 + 0.000692564i
\(565\) −250.195 + 250.195i −0.442824 + 0.442824i
\(566\) 436.883 + 653.842i 0.771879 + 1.15520i
\(567\) 491.772 97.8195i 0.867322 0.172521i
\(568\) −224.067 + 335.341i −0.394485 + 0.590388i
\(569\) 246.656 595.479i 0.433490 1.04654i −0.544664 0.838654i \(-0.683343\pi\)
0.978154 0.207882i \(-0.0666571\pi\)
\(570\) −44.0135 18.2310i −0.0772166 0.0319842i
\(571\) 99.5967 + 66.5484i 0.174425 + 0.116547i 0.639718 0.768610i \(-0.279051\pi\)
−0.465293 + 0.885157i \(0.654051\pi\)
\(572\) 16.1502 + 81.1924i 0.0282346 + 0.141945i
\(573\) 26.2125 17.5147i 0.0457461 0.0305666i
\(574\) −305.369 305.369i −0.532002 0.532002i
\(575\) −9.66830 + 48.6058i −0.0168144 + 0.0845319i
\(576\) 156.730 + 378.379i 0.272100 + 0.656908i
\(577\) 177.008i 0.306773i −0.988166 0.153387i \(-0.950982\pi\)
0.988166 0.153387i \(-0.0490180\pi\)
\(578\) 0 0
\(579\) 14.2876 0.0246763
\(580\) 136.752 56.6444i 0.235779 0.0976628i
\(581\) −412.828 82.1166i −0.710548 0.141337i
\(582\) 16.9966 16.9966i 0.0292038 0.0292038i
\(583\) −41.9471 62.7783i −0.0719504 0.107681i
\(584\) 9.19651 1.82930i 0.0157474 0.00313236i
\(585\) 181.528 271.677i 0.310305 0.464404i
\(586\) 201.120 485.547i 0.343208 0.828578i
\(587\) 577.480 + 239.200i 0.983781 + 0.407496i 0.815825 0.578299i \(-0.196283\pi\)
0.167956 + 0.985794i \(0.446283\pi\)
\(588\) 1.12305 + 0.750395i 0.00190994 + 0.00127618i
\(589\) 5.91884 + 29.7560i 0.0100490 + 0.0505195i
\(590\) −277.125 + 185.169i −0.469703 + 0.313845i
\(591\) −29.4132 29.4132i −0.0497685 0.0497685i
\(592\) 169.060 849.920i 0.285574 1.43568i
\(593\) −57.3899 138.551i −0.0967789 0.233645i 0.868074 0.496434i \(-0.165358\pi\)
−0.964853 + 0.262789i \(0.915358\pi\)
\(594\) 93.2893i 0.157053i
\(595\) 0 0
\(596\) 98.7472 0.165683
\(597\) −33.9618 + 14.0674i −0.0568874 + 0.0235635i
\(598\) −191.695 38.1304i −0.320560 0.0637633i
\(599\) 217.159 217.159i 0.362536 0.362536i −0.502210 0.864746i \(-0.667480\pi\)
0.864746 + 0.502210i \(0.167480\pi\)
\(600\) −2.36438 3.53855i −0.00394064 0.00589759i
\(601\) 398.467 79.2601i 0.663007 0.131880i 0.147895 0.989003i \(-0.452750\pi\)
0.515112 + 0.857123i \(0.327750\pi\)
\(602\) 556.070 832.218i 0.923705 1.38242i
\(603\) −152.931 + 369.209i −0.253617 + 0.612287i
\(604\) 21.3690 + 8.85135i 0.0353792 + 0.0146545i
\(605\) 411.724 + 275.105i 0.680536 + 0.454719i
\(606\) −2.40169 12.0741i −0.00396319 0.0199243i
\(607\) −862.312 + 576.178i −1.42061 + 0.949223i −0.421511 + 0.906823i \(0.638500\pi\)
−0.999101 + 0.0423995i \(0.986500\pi\)
\(608\) 232.484 + 232.484i 0.382374 + 0.382374i
\(609\) −6.50382 + 32.6969i −0.0106795 + 0.0536895i
\(610\) −373.099 900.740i −0.611637 1.47662i
\(611\) 100.662i 0.164750i
\(612\) 0 0
\(613\) 132.402 0.215991 0.107995 0.994151i \(-0.465557\pi\)
0.107995 + 0.994151i \(0.465557\pi\)
\(614\) 832.835 344.972i 1.35641 0.561843i
\(615\) −26.7468 5.32027i −0.0434908 0.00865085i
\(616\) 448.774 448.774i 0.728529 0.728529i
\(617\) 142.375 + 213.080i 0.230754 + 0.345348i 0.928719 0.370784i \(-0.120911\pi\)
−0.697965 + 0.716132i \(0.745911\pi\)
\(618\) 52.6898 10.4807i 0.0852586 0.0169590i
\(619\) −51.0630 + 76.4213i −0.0824928 + 0.123459i −0.870421 0.492307i \(-0.836154\pi\)
0.787929 + 0.615767i \(0.211154\pi\)
\(620\) 2.08217 5.02680i 0.00335834 0.00810774i
\(621\) −35.1499 14.5596i −0.0566021 0.0234454i
\(622\) 396.026 + 264.616i 0.636698 + 0.425428i
\(623\) 155.298 + 780.735i 0.249274 + 1.25319i
\(624\) 17.0024 11.3606i 0.0272474 0.0182061i
\(625\) 498.708 + 498.708i 0.797932 + 0.797932i
\(626\) −203.088 + 1020.99i −0.324422 + 1.63098i
\(627\) −22.5694 54.4872i −0.0359958 0.0869015i
\(628\) 66.0226i 0.105131i
\(629\) 0 0
\(630\) 661.091 1.04935
\(631\) −530.804 + 219.866i −0.841210 + 0.348441i −0.761331 0.648364i \(-0.775454\pi\)
−0.0798795 + 0.996805i \(0.525454\pi\)
\(632\) 202.862 + 40.3518i 0.320984 + 0.0638478i
\(633\) 0.924280 0.924280i 0.00146016 0.00146016i
\(634\) 313.167 + 468.688i 0.493955 + 0.739256i
\(635\) −502.675 + 99.9882i −0.791614 + 0.157462i
\(636\) 0.387703 0.580238i 0.000609595 0.000912324i
\(637\) 25.9868 62.7377i 0.0407956 0.0984893i
\(638\) 980.076 + 405.961i 1.53617 + 0.636302i
\(639\) −432.429 288.940i −0.676727 0.452175i
\(640\) 160.130 + 805.026i 0.250203 + 1.25785i
\(641\) 819.168 547.351i 1.27795 0.853901i 0.283489 0.958975i \(-0.408508\pi\)
0.994464 + 0.105074i \(0.0335079\pi\)
\(642\) −2.39682 2.39682i −0.00373337 0.00373337i
\(643\) −6.90218 + 34.6996i −0.0107343 + 0.0539652i −0.985781 0.168034i \(-0.946258\pi\)
0.975047 + 0.221999i \(0.0712582\pi\)
\(644\) −26.1405 63.1088i −0.0405909 0.0979950i
\(645\) 63.2046i 0.0979916i
\(646\) 0 0
\(647\) −472.176 −0.729793 −0.364897 0.931048i \(-0.618896\pi\)
−0.364897 + 0.931048i \(0.618896\pi\)
\(648\) −516.248 + 213.837i −0.796679 + 0.329995i
\(649\) −404.680 80.4959i −0.623544 0.124031i
\(650\) 39.9283 39.9283i 0.0614281 0.0614281i
\(651\) 0.680818 + 1.01892i 0.00104580 + 0.00156515i
\(652\) 45.4766 9.04585i 0.0697493 0.0138740i
\(653\) −353.481 + 529.021i −0.541318 + 0.810140i −0.996786 0.0801126i \(-0.974472\pi\)
0.455468 + 0.890252i \(0.349472\pi\)
\(654\) 15.8210 38.1953i 0.0241912 0.0584026i
\(655\) 212.631 + 88.0746i 0.324627 + 0.134465i
\(656\) 487.531 + 325.758i 0.743187 + 0.496582i
\(657\) 2.35892 + 11.8591i 0.00359044 + 0.0180504i
\(658\) 169.343 113.151i 0.257360 0.171963i
\(659\) −128.530 128.530i −0.195037 0.195037i 0.602831 0.797869i \(-0.294039\pi\)
−0.797869 + 0.602831i \(0.794039\pi\)
\(660\) −2.06344 + 10.3736i −0.00312642 + 0.0157176i
\(661\) 445.481 + 1075.49i 0.673950 + 1.62706i 0.774837 + 0.632161i \(0.217832\pi\)
−0.100887 + 0.994898i \(0.532168\pi\)
\(662\) 496.438i 0.749906i
\(663\) 0 0
\(664\) 469.082 0.706449
\(665\) −773.368 + 320.340i −1.16296 + 0.481714i
\(666\) 899.588 + 178.939i 1.35073 + 0.268678i
\(667\) −305.919 + 305.919i −0.458649 + 0.458649i
\(668\) 23.9713 + 35.8756i 0.0358852 + 0.0537060i
\(669\) −7.77765 + 1.54707i −0.0116258 + 0.00231251i
\(670\) −291.876 + 436.823i −0.435635 + 0.651975i
\(671\) 461.884 1115.09i 0.688352 1.66183i
\(672\) 12.2691 + 5.08204i 0.0182576 + 0.00756256i
\(673\) −89.2349 59.6248i −0.132593 0.0885956i 0.487505 0.873120i \(-0.337907\pi\)
−0.620098 + 0.784525i \(0.712907\pi\)
\(674\) 154.924 + 778.854i 0.229857 + 1.15557i
\(675\) 9.13935 6.10672i 0.0135398 0.00904699i
\(676\) −72.6081 72.6081i −0.107408 0.107408i
\(677\) −205.722 + 1034.24i −0.303873 + 1.52767i 0.463281 + 0.886211i \(0.346672\pi\)
−0.767154 + 0.641463i \(0.778328\pi\)
\(678\) −8.96927 21.6537i −0.0132290 0.0319377i
\(679\) 422.355i 0.622025i
\(680\) 0 0
\(681\) −27.1616 −0.0398849
\(682\) 36.0262 14.9225i 0.0528243 0.0218805i
\(683\) −599.107 119.170i −0.877170 0.174480i −0.264088 0.964499i \(-0.585071\pi\)
−0.613083 + 0.790019i \(0.710071\pi\)
\(684\) −132.422 + 132.422i −0.193600 + 0.193600i
\(685\) 190.236 + 284.708i 0.277716 + 0.415632i
\(686\) 794.652 158.066i 1.15838 0.230417i
\(687\) 11.1497 16.6867i 0.0162295 0.0242892i
\(688\) −520.051 + 1255.51i −0.755888 + 1.82488i
\(689\) −32.4143 13.4265i −0.0470455 0.0194869i
\(690\) −20.7633 13.8736i −0.0300917 0.0201067i
\(691\) −191.370 962.080i −0.276946 1.39230i −0.829352 0.558726i \(-0.811290\pi\)
0.552406 0.833575i \(-0.313710\pi\)
\(692\) −12.8274 + 8.57096i −0.0185366 + 0.0123858i
\(693\) 578.703 + 578.703i 0.835069 + 0.835069i
\(694\) 6.80292 34.2006i 0.00980248 0.0492804i
\(695\) 536.536 + 1295.31i 0.771994 + 1.86376i
\(696\) 37.1524i 0.0533798i
\(697\) 0 0
\(698\) 695.626 0.996600
\(699\) 52.7196 21.8372i 0.0754215 0.0312406i
\(700\) 19.3557 + 3.85008i 0.0276510 + 0.00550012i
\(701\) −52.7814 + 52.7814i −0.0752944 + 0.0752944i −0.743751 0.668457i \(-0.766955\pi\)
0.668457 + 0.743751i \(0.266955\pi\)
\(702\) 24.0841 + 36.0443i 0.0343078 + 0.0513452i
\(703\) −1139.08 + 226.577i −1.62031 + 0.322300i
\(704\) −370.307 + 554.204i −0.526005 + 0.787222i
\(705\) 4.92174 11.8821i 0.00698120 0.0168541i
\(706\) −550.507 228.027i −0.779755 0.322985i
\(707\) −179.858 120.177i −0.254396 0.169982i
\(708\) −0.743996 3.74032i −0.00105084 0.00528294i
\(709\) 638.046 426.329i 0.899923 0.601310i −0.0172267 0.999852i \(-0.505484\pi\)
0.917150 + 0.398542i \(0.130484\pi\)
\(710\) −483.454 483.454i −0.680921 0.680921i
\(711\) −52.0345 + 261.595i −0.0731849 + 0.367925i
\(712\) −339.487 819.594i −0.476807 1.15111i
\(713\) 15.9030i 0.0223044i
\(714\) 0 0
\(715\) 531.762 0.743723
\(716\) −48.3580 + 20.0306i −0.0675392 + 0.0279756i
\(717\) 32.7372 + 6.51183i 0.0456586 + 0.00908206i
\(718\) −246.167 + 246.167i −0.342851 + 0.342851i
\(719\) 640.514 + 958.597i 0.890840 + 1.33324i 0.942373 + 0.334565i \(0.108590\pi\)
−0.0515322 + 0.998671i \(0.516410\pi\)
\(720\) −880.341 + 175.111i −1.22270 + 0.243209i
\(721\) 524.436 784.874i 0.727373 1.08859i
\(722\) 221.566 534.907i 0.306878 0.740869i
\(723\) 43.0074 + 17.8143i 0.0594847 + 0.0246394i
\(724\) 72.6396 + 48.5362i 0.100331 + 0.0670390i
\(725\) −24.3847 122.590i −0.0336340 0.169090i
\(726\) −27.2728 + 18.2231i −0.0375658 + 0.0251007i
\(727\) −195.955 195.955i −0.269539 0.269539i 0.559376 0.828914i \(-0.311041\pi\)
−0.828914 + 0.559376i \(0.811041\pi\)
\(728\) 57.5357 289.251i 0.0790325 0.397323i
\(729\) −274.130 661.808i −0.376036 0.907830i
\(730\) 15.8957i 0.0217749i
\(731\) 0 0
\(732\) 11.1555 0.0152398
\(733\) −409.632 + 169.675i −0.558843 + 0.231480i −0.644183 0.764871i \(-0.722802\pi\)
0.0853397 + 0.996352i \(0.472802\pi\)
\(734\) 1054.59 + 209.770i 1.43677 + 0.285791i
\(735\) 6.13496 6.13496i 0.00834689 0.00834689i
\(736\) 95.7472 + 143.296i 0.130091 + 0.194695i
\(737\) −637.885 + 126.883i −0.865515 + 0.172162i
\(738\) −344.795 + 516.022i −0.467201 + 0.699216i
\(739\) 40.6523 98.1432i 0.0550098 0.132805i −0.893985 0.448096i \(-0.852102\pi\)
0.948995 + 0.315291i \(0.102102\pi\)
\(740\) 192.429 + 79.7067i 0.260039 + 0.107712i
\(741\) −22.7869 15.2257i −0.0307515 0.0205475i
\(742\) −13.8488 69.6228i −0.0186642 0.0938313i
\(743\) −767.844 + 513.057i −1.03344 + 0.690521i −0.951981 0.306156i \(-0.900957\pi\)
−0.0814563 + 0.996677i \(0.525957\pi\)
\(744\) −0.965673 0.965673i −0.00129795 0.00129795i
\(745\) 123.748 622.121i 0.166104 0.835062i
\(746\) −482.554 1164.99i −0.646855 1.56165i
\(747\) 604.891i 0.809760i
\(748\) 0 0
\(749\) −59.5595 −0.0795187
\(750\) −37.3727 + 15.4803i −0.0498302 + 0.0206403i
\(751\) 1123.96 + 223.569i 1.49662 + 0.297695i 0.874421 0.485167i \(-0.161241\pi\)
0.622195 + 0.782863i \(0.286241\pi\)
\(752\) −195.534 + 195.534i −0.260018 + 0.260018i
\(753\) −24.2658 36.3164i −0.0322255 0.0482289i
\(754\) 483.478 96.1698i 0.641218 0.127546i
\(755\) 82.5438 123.536i 0.109330 0.163623i
\(756\) −5.79787 + 13.9973i −0.00766915 + 0.0185150i
\(757\) −59.3832 24.5973i −0.0784455 0.0324932i 0.343116 0.939293i \(-0.388518\pi\)
−0.421561 + 0.906800i \(0.638518\pi\)
\(758\) 1283.50 + 857.604i 1.69327 + 1.13140i
\(759\) −6.03108 30.3203i −0.00794608 0.0399477i
\(760\) 775.659 518.279i 1.02060 0.681945i
\(761\) 173.164 + 173.164i 0.227548 + 0.227548i 0.811668 0.584120i \(-0.198560\pi\)
−0.584120 + 0.811668i \(0.698560\pi\)
\(762\) 6.62327 33.2974i 0.00869195 0.0436974i
\(763\) −277.994 671.137i −0.364343 0.879602i
\(764\) 162.919i 0.213245i
\(765\) 0 0
\(766\) 678.170 0.885339
\(767\) −177.138 + 73.3731i −0.230950 + 0.0956624i
\(768\) −24.3882 4.85111i −0.0317555 0.00631655i
\(769\) −550.339 + 550.339i −0.715655 + 0.715655i −0.967712 0.252057i \(-0.918893\pi\)
0.252057 + 0.967712i \(0.418893\pi\)
\(770\) 597.740 + 894.581i 0.776285 + 1.16179i
\(771\) 8.36964 1.66483i 0.0108556 0.00215931i
\(772\) 41.0209 61.3921i 0.0531359 0.0795235i
\(773\) 165.492 399.534i 0.214091 0.516861i −0.779953 0.625837i \(-0.784757\pi\)
0.994044 + 0.108976i \(0.0347573\pi\)
\(774\) −1328.89 550.442i −1.71691 0.711166i
\(775\) −3.82020 2.55258i −0.00492929 0.00329365i
\(776\) 91.8263 + 461.642i 0.118333 + 0.594899i
\(777\) −39.0047 + 26.0621i −0.0501991 + 0.0335420i
\(778\) 443.266 + 443.266i 0.569751 + 0.569751i
\(779\) 153.309 770.735i 0.196802 0.989390i
\(780\) 1.88085 + 4.54077i 0.00241134 + 0.00582150i
\(781\) 846.408i 1.08375i
\(782\) 0 0
\(783\) 95.9569 0.122550
\(784\) −172.345 + 71.3878i −0.219828 + 0.0910559i
\(785\) −415.951 82.7379i −0.529874 0.105399i
\(786\) −10.7800 + 10.7800i −0.0137150 + 0.0137150i
\(787\) −633.017 947.377i −0.804342 1.20378i −0.975816 0.218594i \(-0.929853\pi\)
0.171474 0.985189i \(-0.445147\pi\)
\(788\) −210.833 + 41.9374i −0.267555 + 0.0532200i
\(789\) −45.5723 + 68.2037i −0.0577595 + 0.0864432i
\(790\) −134.183 + 323.946i −0.169852 + 0.410059i
\(791\) −380.481 157.601i −0.481013 0.199242i
\(792\) −758.351 506.714i −0.957515 0.639791i
\(793\) −109.418 550.080i −0.137980 0.693670i
\(794\) 227.349 151.910i 0.286334 0.191322i
\(795\) −3.16972 3.16972i −0.00398707 0.00398707i
\(796\) −37.0612 + 186.319i −0.0465593 + 0.234069i
\(797\) 43.1132 + 104.084i 0.0540943 + 0.130595i 0.948616 0.316429i \(-0.102484\pi\)
−0.894522 + 0.447024i \(0.852484\pi\)
\(798\) 55.4491i 0.0694850i
\(799\) 0 0
\(800\) −49.7905 −0.0622381
\(801\) 1056.88 437.775i 1.31945 0.546536i
\(802\) 920.840 + 183.166i 1.14818 + 0.228387i
\(803\) −13.9147 + 13.9147i −0.0173284 + 0.0173284i
\(804\) −3.33967 4.99818i −0.00415382 0.00621664i
\(805\) −430.353 + 85.6025i −0.534600 + 0.106338i
\(806\) 10.0670 15.0664i 0.0124901 0.0186927i
\(807\) 10.9012 26.3178i 0.0135083 0.0326119i
\(808\) 222.716 + 92.2520i 0.275639 + 0.114173i
\(809\) −540.977 361.469i −0.668698 0.446810i 0.174324 0.984688i \(-0.444226\pi\)
−0.843022 + 0.537878i \(0.819226\pi\)
\(810\) −184.803 929.068i −0.228152 1.14700i
\(811\) 535.209 357.615i 0.659937 0.440956i −0.179980 0.983670i \(-0.557603\pi\)
0.839917 + 0.542715i \(0.182603\pi\)
\(812\) 121.822 + 121.822i 0.150027 + 0.150027i
\(813\) −14.6380 + 73.5903i −0.0180049 + 0.0905169i
\(814\) 571.243 + 1379.10i 0.701773 + 1.69423i
\(815\) 297.845i 0.365453i
\(816\) 0 0
\(817\) 1821.30 2.22925
\(818\) −437.897 + 181.383i −0.535326 + 0.221739i
\(819\) 372.996 + 74.1934i 0.455428 + 0.0905903i
\(820\) −99.6533 + 99.6533i −0.121528 + 0.121528i
\(821\) −496.653 743.294i −0.604937 0.905352i 0.394974 0.918692i \(-0.370754\pi\)
−0.999911 + 0.0133400i \(0.995754\pi\)
\(822\) −22.2459 + 4.42499i −0.0270632 + 0.00538320i
\(823\) 513.804 768.962i 0.624306 0.934340i −0.375665 0.926756i \(-0.622586\pi\)
0.999971 0.00758474i \(-0.00241432\pi\)
\(824\) −402.575 + 971.901i −0.488562 + 1.17949i
\(825\) 8.25153 + 3.41789i 0.0100018 + 0.00414290i
\(826\) −322.552 215.522i −0.390498 0.260923i
\(827\) −165.404 831.543i −0.200005 1.00549i −0.942134 0.335237i \(-0.891184\pi\)
0.742129 0.670257i \(-0.233816\pi\)
\(828\) −81.6211 + 54.5375i −0.0985762 + 0.0658665i
\(829\) −862.801 862.801i −1.04077 1.04077i −0.999133 0.0416400i \(-0.986742\pi\)
−0.0416400 0.999133i \(-0.513258\pi\)
\(830\) −155.137 + 779.926i −0.186912 + 0.939670i
\(831\) 10.9215 + 26.3667i 0.0131426 + 0.0317289i
\(832\) 309.729i 0.372271i
\(833\) 0 0
\(834\) −92.8715 −0.111357
\(835\) 256.062 106.064i 0.306661 0.127023i
\(836\) −298.925 59.4598i −0.357566 0.0711242i
\(837\) 2.49414 2.49414i 0.00297985 0.00297985i
\(838\) −760.089 1137.55i −0.907028 1.35746i
\(839\) −377.018 + 74.9935i −0.449366 + 0.0893844i −0.414585 0.910011i \(-0.636073\pi\)
−0.0347806 + 0.999395i \(0.511073\pi\)
\(840\) 20.9341 31.3301i 0.0249216 0.0372977i
\(841\) 95.7324 231.119i 0.113832 0.274814i
\(842\) 104.494 + 43.2829i 0.124102 + 0.0514048i
\(843\) −53.6826 35.8696i −0.0636804 0.0425499i
\(844\) −1.31784 6.62523i −0.00156142 0.00784980i
\(845\) −548.432 + 366.450i −0.649032 + 0.433669i
\(846\) −206.961 206.961i −0.244634 0.244634i
\(847\) −112.440 + 565.273i −0.132751 + 0.667382i
\(848\) 36.8836 + 89.0448i 0.0434948 + 0.105006i
\(849\) 57.7975i 0.0680771i
\(850\) 0 0
\(851\) −608.778 −0.715368
\(852\) 7.22756 2.99375i 0.00848305 0.00351380i
\(853\) −857.011 170.470i −1.00470 0.199848i −0.334794 0.942291i \(-0.608667\pi\)
−0.669908 + 0.742444i \(0.733667\pi\)
\(854\) 802.404 802.404i 0.939583 0.939583i
\(855\) 668.331 + 1000.23i 0.781673 + 1.16986i
\(856\) 65.0997 12.9491i 0.0760510 0.0151275i
\(857\) −746.263 + 1116.86i −0.870786 + 1.30322i 0.0810800 + 0.996708i \(0.474163\pi\)
−0.951866 + 0.306515i \(0.900837\pi\)
\(858\) −13.4797 + 32.5429i −0.0157106 + 0.0379288i
\(859\) 236.510 + 97.9655i 0.275331 + 0.114046i 0.516077 0.856542i \(-0.327392\pi\)
−0.240745 + 0.970588i \(0.577392\pi\)
\(860\) −271.584 181.466i −0.315795 0.211007i
\(861\) −6.19238 31.1312i −0.00719208 0.0361570i
\(862\) 860.439 574.927i 0.998189 0.666968i
\(863\) 1137.90 + 1137.90i 1.31854 + 1.31854i 0.914930 + 0.403612i \(0.132245\pi\)
0.403612 + 0.914930i \(0.367755\pi\)
\(864\) 7.45722 37.4900i 0.00863105 0.0433912i
\(865\) 37.9233 + 91.5550i 0.0438420 + 0.105844i
\(866\) 1415.19i 1.63417i
\(867\) 0 0
\(868\) 6.33287 0.00729593
\(869\) −401.035 + 166.114i −0.461490 + 0.191156i
\(870\) 61.7719 + 12.2872i 0.0710022 + 0.0141232i
\(871\) −213.704 + 213.704i −0.245355 + 0.245355i
\(872\) 449.767 + 673.124i 0.515788 + 0.771932i
\(873\) −595.296 + 118.412i −0.681897 + 0.135638i
\(874\) 399.781 598.314i 0.457415 0.684570i
\(875\) −272.006 + 656.681i −0.310864 + 0.750493i
\(876\) −0.168035 0.0696025i −0.000191821 7.94550e-5i
\(877\) 409.924 + 273.902i 0.467416 + 0.312317i 0.766880 0.641790i \(-0.221808\pi\)
−0.299465 + 0.954107i \(0.596808\pi\)
\(878\) 354.965 + 1784.53i 0.404288 + 2.03249i
\(879\) 32.1177 21.4604i 0.0365389 0.0244145i
\(880\) −1032.94 1032.94i −1.17379 1.17379i
\(881\) −78.4489 + 394.389i −0.0890453 + 0.447661i 0.910380 + 0.413772i \(0.135789\pi\)
−0.999426 + 0.0338884i \(0.989211\pi\)
\(882\) −75.5597 182.417i −0.0856686 0.206822i
\(883\) 907.327i 1.02755i −0.857925 0.513775i \(-0.828246\pi\)
0.857925 0.513775i \(-0.171754\pi\)
\(884\) 0 0
\(885\) −24.4969 −0.0276801
\(886\) 720.035 298.248i 0.812681 0.336624i
\(887\) −1246.23 247.891i −1.40500 0.279471i −0.566357 0.824160i \(-0.691648\pi\)
−0.838638 + 0.544689i \(0.816648\pi\)
\(888\) 36.9665 36.9665i 0.0416290 0.0416290i
\(889\) −331.418 496.002i −0.372799 0.557933i
\(890\) 1474.99 293.393i 1.65729 0.329655i
\(891\) 651.511 975.055i 0.731213 1.09434i
\(892\) −15.6828 + 37.8615i −0.0175816 + 0.0424457i
\(893\) 342.395 + 141.825i 0.383421 + 0.158818i
\(894\) 34.9358 + 23.3434i 0.0390781 + 0.0261111i
\(895\) 65.5942 + 329.764i 0.0732896 + 0.368452i
\(896\) −794.340 + 530.761i −0.886540 + 0.592367i
\(897\) −10.1579 10.1579i −0.0113243 0.0113243i
\(898\) 337.159 1695.01i 0.375456 1.88754i
\(899\) −15.3493 37.0564i −0.0170737 0.0412195i
\(900\) 28.3606i 0.0315118i
\(901\) 0 0
\(902\) −1010.03 −1.11976
\(903\) 67.9654 28.1522i 0.0752663 0.0311763i
\(904\) 450.138 + 89.5380i 0.497940 + 0.0990464i
\(905\) 396.815 396.815i 0.438470 0.438470i
\(906\) 5.46774 + 8.18305i 0.00603503 + 0.00903207i
\(907\) 1504.73 299.309i 1.65901 0.329998i 0.725413 0.688313i \(-0.241649\pi\)
0.933601 + 0.358315i \(0.116649\pi\)
\(908\) −77.9836 + 116.711i −0.0858850 + 0.128536i
\(909\) −118.961 + 287.197i −0.130870 + 0.315948i
\(910\) 461.899 + 191.325i 0.507582 + 0.210247i
\(911\) −304.539 203.486i −0.334291 0.223366i 0.377084 0.926179i \(-0.376927\pi\)
−0.711374 + 0.702813i \(0.751927\pi\)
\(912\) 14.6874 + 73.8387i 0.0161046 + 0.0809634i
\(913\) −818.531 + 546.925i −0.896529 + 0.599041i
\(914\) 505.549 + 505.549i 0.553117 + 0.553117i
\(915\) 13.9798 70.2813i 0.0152785 0.0768102i
\(916\) −39.6892 95.8181i −0.0433288 0.104605i
\(917\) 267.877i 0.292123i
\(918\) 0 0
\(919\) −944.655 −1.02792 −0.513958 0.857815i \(-0.671821\pi\)
−0.513958 + 0.857815i \(0.671821\pi\)
\(920\) 451.772 187.130i 0.491057 0.203402i
\(921\) 64.9830 + 12.9259i 0.0705570 + 0.0140347i
\(922\) 382.839 382.839i 0.415226 0.415226i
\(923\) −218.513 327.028i −0.236742 0.354310i
\(924\) −12.0741 + 2.40168i −0.0130672 + 0.00259922i
\(925\) 97.7142 146.240i 0.105637 0.158097i
\(926\) 295.212 712.706i 0.318804 0.769661i
\(927\) −1253.29 519.128i −1.35198 0.560009i
\(928\) −361.410 241.487i −0.389451 0.260223i
\(929\) 189.563 + 952.999i 0.204051 + 1.02583i 0.938002 + 0.346631i \(0.112674\pi\)
−0.733951 + 0.679203i \(0.762326\pi\)
\(930\) 1.92496 1.28622i 0.00206985 0.00138303i
\(931\) 176.785 + 176.785i 0.189887 + 0.189887i
\(932\) 57.5309 289.228i 0.0617285 0.310330i
\(933\) 13.3967 + 32.3426i 0.0143588 + 0.0346652i
\(934\) 481.282i 0.515292i
\(935\) 0 0
\(936\) −423.822 −0.452801
\(937\) 554.438 229.656i 0.591716 0.245097i −0.0666728 0.997775i \(-0.521238\pi\)
0.658389 + 0.752678i \(0.271238\pi\)
\(938\) −599.732 119.294i −0.639373 0.127179i
\(939\) −54.1023 + 54.1023i −0.0576170 + 0.0576170i
\(940\) −36.9255 55.2630i −0.0392825 0.0587904i
\(941\) 1063.66 211.575i 1.13035 0.224840i 0.405732 0.913992i \(-0.367017\pi\)
0.724617 + 0.689152i \(0.242017\pi\)
\(942\) 15.6074 23.3581i 0.0165684 0.0247963i
\(943\) 157.634 380.563i 0.167162 0.403566i
\(944\) 486.613 + 201.562i 0.515480 + 0.213519i
\(945\) 80.9192 + 54.0685i 0.0856288 + 0.0572153i
\(946\) −456.688 2295.93i −0.482757 2.42698i
\(947\) −579.335 + 387.099i −0.611758 + 0.408764i −0.822490 0.568780i \(-0.807416\pi\)
0.210731 + 0.977544i \(0.432416\pi\)
\(948\) −2.83693 2.83693i −0.00299254 0.00299254i
\(949\) −1.78395 + 8.96854i −0.00187982 + 0.00945051i
\(950\) 79.5577 + 192.069i 0.0837449 + 0.202178i
\(951\) 41.4305i 0.0435651i
\(952\) 0 0
\(953\) −1779.95 −1.86774 −0.933868 0.357618i \(-0.883589\pi\)
−0.933868 + 0.357618i \(0.883589\pi\)
\(954\) −94.2485 + 39.0390i −0.0987930 + 0.0409214i
\(955\) −1026.41 204.166i −1.07478 0.213786i
\(956\) 121.972 121.972i 0.127586 0.127586i
\(957\) 43.3177 + 64.8295i 0.0452640 + 0.0677424i
\(958\) −1083.66 + 215.553i −1.13117 + 0.225003i
\(959\) −221.420 + 331.378i −0.230886 + 0.345545i
\(960\) −15.1438 + 36.5604i −0.0157748 + 0.0380838i
\(961\) 886.486 + 367.195i 0.922462 + 0.382096i
\(962\) 576.749 + 385.371i 0.599531 + 0.400594i
\(963\) 16.6982 + 83.9473i 0.0173397 + 0.0871727i
\(964\) 200.024 133.652i 0.207494 0.138643i
\(965\) −335.373 335.373i −0.347536 0.347536i
\(966\) 5.67035 28.5068i 0.00586992 0.0295101i
\(967\) −231.136 558.012i −0.239024 0.577055i 0.758158 0.652071i \(-0.226099\pi\)
−0.997182 + 0.0750154i \(0.976099\pi\)
\(968\) 642.299i 0.663532i
\(969\) 0 0
\(970\) −797.924 −0.822602
\(971\) −1017.06 + 421.281i −1.04744 + 0.433863i −0.838976 0.544168i \(-0.816845\pi\)
−0.208461 + 0.978031i \(0.566845\pi\)
\(972\) 32.0469 + 6.37453i 0.0329701 + 0.00655816i
\(973\) −1153.90 + 1153.90i −1.18592 + 1.18592i
\(974\) −307.594 460.348i −0.315805 0.472636i
\(975\) 4.07054 0.809680i 0.00417491 0.000830441i
\(976\) −855.978 + 1281.06i −0.877026 + 1.31256i
\(977\) 419.266 1012.20i 0.429136 1.03603i −0.550426 0.834884i \(-0.685535\pi\)
0.979562 0.201142i \(-0.0644654\pi\)
\(978\) 18.2276 + 7.55010i 0.0186376 + 0.00771994i
\(979\) 1547.99 + 1034.34i 1.58120 + 1.05652i
\(980\) −8.74724 43.9754i −0.00892576 0.0448728i
\(981\) −868.008 + 579.984i −0.884819 + 0.591217i
\(982\) −351.948 351.948i −0.358399 0.358399i
\(983\) −239.790 + 1205.50i −0.243937 + 1.22635i 0.643509 + 0.765439i \(0.277478\pi\)
−0.887445 + 0.460913i \(0.847522\pi\)
\(984\) 13.5368 + 32.6807i 0.0137569 + 0.0332121i
\(985\) 1380.83i 1.40186i
\(986\) 0 0
\(987\) 14.9694 0.0151665
\(988\) −130.847 + 54.1984i −0.132436 + 0.0548567i
\(989\) 936.344 + 186.250i 0.946758 + 0.188322i
\(990\) 1093.30 1093.30i 1.10434 1.10434i
\(991\) −409.322 612.594i −0.413040 0.618158i 0.565369 0.824838i \(-0.308734\pi\)
−0.978408 + 0.206681i \(0.933734\pi\)
\(992\) −15.6706 + 3.11708i −0.0157970 + 0.00314222i
\(993\) 20.2715 30.3385i 0.0204144 0.0305523i
\(994\) 304.533 735.207i 0.306371 0.739645i
\(995\) 1127.39 + 466.981i 1.13306 + 0.469328i
\(996\) −7.56540 5.05504i −0.00759578 0.00507534i
\(997\) 34.0568 + 171.215i 0.0341593 + 0.171730i 0.994099 0.108476i \(-0.0345971\pi\)
−0.959940 + 0.280206i \(0.909597\pi\)
\(998\) −394.641 + 263.691i −0.395432 + 0.264219i
\(999\) 95.4770 + 95.4770i 0.0955725 + 0.0955725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.k.224.1 8
17.2 even 8 289.3.e.m.131.1 8
17.3 odd 16 289.3.e.m.214.1 8
17.4 even 4 289.3.e.b.65.1 8
17.5 odd 16 289.3.e.c.75.1 8
17.6 odd 16 inner 289.3.e.k.40.1 8
17.7 odd 16 289.3.e.d.249.1 8
17.8 even 8 289.3.e.c.158.1 8
17.9 even 8 17.3.e.a.5.1 8
17.10 odd 16 289.3.e.b.249.1 8
17.11 odd 16 289.3.e.l.40.1 8
17.12 odd 16 17.3.e.a.7.1 yes 8
17.13 even 4 289.3.e.d.65.1 8
17.14 odd 16 289.3.e.i.214.1 8
17.15 even 8 289.3.e.i.131.1 8
17.16 even 2 289.3.e.l.224.1 8
51.26 odd 8 153.3.p.b.73.1 8
51.29 even 16 153.3.p.b.109.1 8
68.43 odd 8 272.3.bh.c.209.1 8
68.63 even 16 272.3.bh.c.177.1 8
85.9 even 8 425.3.u.b.226.1 8
85.12 even 16 425.3.t.a.24.1 8
85.29 odd 16 425.3.u.b.126.1 8
85.43 odd 8 425.3.t.a.124.1 8
85.63 even 16 425.3.t.c.24.1 8
85.77 odd 8 425.3.t.c.124.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.5.1 8 17.9 even 8
17.3.e.a.7.1 yes 8 17.12 odd 16
153.3.p.b.73.1 8 51.26 odd 8
153.3.p.b.109.1 8 51.29 even 16
272.3.bh.c.177.1 8 68.63 even 16
272.3.bh.c.209.1 8 68.43 odd 8
289.3.e.b.65.1 8 17.4 even 4
289.3.e.b.249.1 8 17.10 odd 16
289.3.e.c.75.1 8 17.5 odd 16
289.3.e.c.158.1 8 17.8 even 8
289.3.e.d.65.1 8 17.13 even 4
289.3.e.d.249.1 8 17.7 odd 16
289.3.e.i.131.1 8 17.15 even 8
289.3.e.i.214.1 8 17.14 odd 16
289.3.e.k.40.1 8 17.6 odd 16 inner
289.3.e.k.224.1 8 1.1 even 1 trivial
289.3.e.l.40.1 8 17.11 odd 16
289.3.e.l.224.1 8 17.16 even 2
289.3.e.m.131.1 8 17.2 even 8
289.3.e.m.214.1 8 17.3 odd 16
425.3.t.a.24.1 8 85.12 even 16
425.3.t.a.124.1 8 85.43 odd 8
425.3.t.c.24.1 8 85.63 even 16
425.3.t.c.124.1 8 85.77 odd 8
425.3.u.b.126.1 8 85.29 odd 16
425.3.u.b.226.1 8 85.9 even 8