Properties

Label 289.3.e.b.65.1
Level $289$
Weight $3$
Character 289.65
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,-8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 65.1
Root \(-0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 289.65
Dual form 289.3.e.b.249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.03153 + 0.841487i) q^{2} +(0.0315301 - 0.158513i) q^{3} +(0.590587 - 0.590587i) q^{4} +(-4.46088 + 2.98067i) q^{5} +(0.0693320 + 0.348555i) q^{6} +(5.19212 + 3.46927i) q^{7} +(2.66313 - 6.42935i) q^{8} +(8.29078 + 3.43416i) q^{9} +(6.55423 - 9.80910i) q^{10} +(14.3240 - 2.84923i) q^{11} +(-0.0749942 - 0.112237i) q^{12} +(-4.79884 - 4.79884i) q^{13} +(-13.4673 - 2.67881i) q^{14} +(0.331821 + 0.801088i) q^{15} +18.6433i q^{16} -19.7328 q^{18} +(-23.0841 + 9.56175i) q^{19} +(-0.874196 + 4.39488i) q^{20} +(0.713631 - 0.713631i) q^{21} +(-26.7021 + 17.8418i) q^{22} +(2.55513 + 12.8455i) q^{23} +(-0.935165 - 0.624858i) q^{24} +(1.44803 - 3.49585i) q^{25} +(13.7871 + 5.71082i) q^{26} +(1.61388 - 2.41534i) q^{27} +(5.11530 - 1.01750i) q^{28} +(18.3520 + 27.4657i) q^{29} +(-1.34821 - 1.34821i) q^{30} +(1.19090 + 0.236886i) q^{31} +(-5.03558 - 12.1570i) q^{32} -2.36038i q^{33} -33.5022 q^{35} +(6.92459 - 2.86826i) q^{36} +(-9.06812 + 45.5885i) q^{37} +(38.8500 - 38.8500i) q^{38} +(-0.911984 + 0.609368i) q^{39} +(7.28387 + 36.6185i) q^{40} +(26.1505 + 17.4732i) q^{41} +(-0.849251 + 2.05027i) q^{42} +(-67.3441 - 27.8948i) q^{43} +(6.77687 - 10.1423i) q^{44} +(-47.2203 + 9.39270i) q^{45} +(-16.0002 - 23.9459i) q^{46} +(10.4882 + 10.4882i) q^{47} +(2.95520 + 0.587825i) q^{48} +(-3.82915 - 9.24438i) q^{49} +8.32041i q^{50} -5.66826 q^{52} +(-4.77624 + 1.97838i) q^{53} +(-1.24616 + 6.26489i) q^{54} +(-55.4053 + 55.4053i) q^{55} +(36.1324 - 24.1429i) q^{56} +(0.787813 + 3.96061i) q^{57} +(-60.3947 - 40.3544i) q^{58} +(-10.8115 + 26.1013i) q^{59} +(0.669081 + 0.277142i) q^{60} +(-45.9135 + 68.7144i) q^{61} +(-2.61870 + 0.520891i) q^{62} +(31.1328 + 46.5935i) q^{63} +(-32.2713 - 32.2713i) q^{64} +(35.7108 + 7.10332i) q^{65} +(1.98623 + 4.79518i) q^{66} -44.5324i q^{67} +2.11674 q^{69} +(68.0607 - 28.1917i) q^{70} +(11.3064 - 56.8410i) q^{71} +(44.1588 - 44.1588i) q^{72} +(-1.12032 + 0.748576i) q^{73} +(-19.9400 - 100.245i) q^{74} +(-0.508479 - 0.339755i) q^{75} +(-7.98612 + 19.2802i) q^{76} +(84.2570 + 34.9004i) q^{77} +(1.33995 - 2.00537i) q^{78} +(29.1507 - 5.79844i) q^{79} +(-55.5694 - 83.1655i) q^{80} +(56.7774 + 56.7774i) q^{81} +(-67.8290 - 13.4920i) q^{82} +(25.7951 + 62.2748i) q^{83} -0.842922i q^{84} +160.285 q^{86} +(4.93230 - 2.04303i) q^{87} +(19.8280 - 99.6823i) q^{88} +(-90.1397 + 90.1397i) q^{89} +(88.0256 - 58.8169i) q^{90} +(-8.26771 - 41.5646i) q^{91} +(9.09541 + 6.07736i) q^{92} +(0.0750988 - 0.181304i) q^{93} +(-30.1327 - 12.4814i) q^{94} +(74.4751 - 111.460i) q^{95} +(-2.08580 + 0.414892i) q^{96} +(-37.5767 - 56.2374i) q^{97} +(15.5581 + 15.5581i) q^{98} +(128.542 + 25.5687i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 8 q^{3} - 32 q^{6} - 8 q^{7} - 40 q^{8} + 8 q^{9} - 32 q^{10} + 24 q^{11} + 8 q^{12} - 16 q^{13} - 24 q^{14} + 56 q^{18} - 48 q^{19} + 80 q^{20} + 64 q^{21} - 48 q^{22} - 24 q^{23} + 120 q^{24}+ \cdots + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{9}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.03153 + 0.841487i −1.01577 + 0.420744i −0.827555 0.561385i \(-0.810269\pi\)
−0.188210 + 0.982129i \(0.560269\pi\)
\(3\) 0.0315301 0.158513i 0.0105100 0.0528376i −0.975174 0.221438i \(-0.928925\pi\)
0.985684 + 0.168601i \(0.0539249\pi\)
\(4\) 0.590587 0.590587i 0.147647 0.147647i
\(5\) −4.46088 + 2.98067i −0.892177 + 0.596134i −0.914932 0.403607i \(-0.867756\pi\)
0.0227553 + 0.999741i \(0.492756\pi\)
\(6\) 0.0693320 + 0.348555i 0.0115553 + 0.0580926i
\(7\) 5.19212 + 3.46927i 0.741732 + 0.495609i 0.868109 0.496373i \(-0.165335\pi\)
−0.126378 + 0.991982i \(0.540335\pi\)
\(8\) 2.66313 6.42935i 0.332891 0.803669i
\(9\) 8.29078 + 3.43416i 0.921198 + 0.381573i
\(10\) 6.55423 9.80910i 0.655423 0.980910i
\(11\) 14.3240 2.84923i 1.30219 0.259021i 0.505192 0.863007i \(-0.331422\pi\)
0.796995 + 0.603986i \(0.206422\pi\)
\(12\) −0.0749942 0.112237i −0.00624952 0.00935306i
\(13\) −4.79884 4.79884i −0.369141 0.369141i 0.498023 0.867164i \(-0.334060\pi\)
−0.867164 + 0.498023i \(0.834060\pi\)
\(14\) −13.4673 2.67881i −0.961950 0.191344i
\(15\) 0.331821 + 0.801088i 0.0221214 + 0.0534058i
\(16\) 18.6433i 1.16520i
\(17\) 0 0
\(18\) −19.7328 −1.09627
\(19\) −23.0841 + 9.56175i −1.21495 + 0.503250i −0.895802 0.444454i \(-0.853398\pi\)
−0.319151 + 0.947704i \(0.603398\pi\)
\(20\) −0.874196 + 4.39488i −0.0437098 + 0.219744i
\(21\) 0.713631 0.713631i 0.0339824 0.0339824i
\(22\) −26.7021 + 17.8418i −1.21373 + 0.810991i
\(23\) 2.55513 + 12.8455i 0.111093 + 0.558500i 0.995737 + 0.0922345i \(0.0294009\pi\)
−0.884645 + 0.466266i \(0.845599\pi\)
\(24\) −0.935165 0.624858i −0.0389652 0.0260357i
\(25\) 1.44803 3.49585i 0.0579211 0.139834i
\(26\) 13.7871 + 5.71082i 0.530274 + 0.219647i
\(27\) 1.61388 2.41534i 0.0597733 0.0894570i
\(28\) 5.11530 1.01750i 0.182689 0.0363392i
\(29\) 18.3520 + 27.4657i 0.632828 + 0.947093i 0.999857 + 0.0168842i \(0.00537466\pi\)
−0.367030 + 0.930209i \(0.619625\pi\)
\(30\) −1.34821 1.34821i −0.0449403 0.0449403i
\(31\) 1.19090 + 0.236886i 0.0384163 + 0.00764147i 0.214261 0.976776i \(-0.431266\pi\)
−0.175845 + 0.984418i \(0.556266\pi\)
\(32\) −5.03558 12.1570i −0.157362 0.379905i
\(33\) 2.36038i 0.0715267i
\(34\) 0 0
\(35\) −33.5022 −0.957206
\(36\) 6.92459 2.86826i 0.192350 0.0796739i
\(37\) −9.06812 + 45.5885i −0.245084 + 1.23212i 0.640614 + 0.767863i \(0.278680\pi\)
−0.885699 + 0.464260i \(0.846320\pi\)
\(38\) 38.8500 38.8500i 1.02237 1.02237i
\(39\) −0.911984 + 0.609368i −0.0233842 + 0.0156248i
\(40\) 7.28387 + 36.6185i 0.182097 + 0.915463i
\(41\) 26.1505 + 17.4732i 0.637817 + 0.426176i 0.831989 0.554792i \(-0.187202\pi\)
−0.194172 + 0.980967i \(0.562202\pi\)
\(42\) −0.849251 + 2.05027i −0.0202203 + 0.0488161i
\(43\) −67.3441 27.8948i −1.56614 0.648717i −0.579999 0.814617i \(-0.696947\pi\)
−0.986142 + 0.165901i \(0.946947\pi\)
\(44\) 6.77687 10.1423i 0.154020 0.230507i
\(45\) −47.2203 + 9.39270i −1.04934 + 0.208727i
\(46\) −16.0002 23.9459i −0.347829 0.520564i
\(47\) 10.4882 + 10.4882i 0.223153 + 0.223153i 0.809825 0.586672i \(-0.199562\pi\)
−0.586672 + 0.809825i \(0.699562\pi\)
\(48\) 2.95520 + 0.587825i 0.0615666 + 0.0122464i
\(49\) −3.82915 9.24438i −0.0781458 0.188661i
\(50\) 8.32041i 0.166408i
\(51\) 0 0
\(52\) −5.66826 −0.109005
\(53\) −4.77624 + 1.97838i −0.0901178 + 0.0373280i −0.427287 0.904116i \(-0.640531\pi\)
0.337169 + 0.941444i \(0.390531\pi\)
\(54\) −1.24616 + 6.26489i −0.0230771 + 0.116017i
\(55\) −55.4053 + 55.4053i −1.00737 + 1.00737i
\(56\) 36.1324 24.1429i 0.645222 0.431123i
\(57\) 0.787813 + 3.96061i 0.0138213 + 0.0694843i
\(58\) −60.3947 40.3544i −1.04129 0.695766i
\(59\) −10.8115 + 26.1013i −0.183246 + 0.442394i −0.988632 0.150356i \(-0.951958\pi\)
0.805386 + 0.592751i \(0.201958\pi\)
\(60\) 0.669081 + 0.277142i 0.0111513 + 0.00461904i
\(61\) −45.9135 + 68.7144i −0.752680 + 1.12647i 0.235306 + 0.971921i \(0.424391\pi\)
−0.987986 + 0.154544i \(0.950609\pi\)
\(62\) −2.61870 + 0.520891i −0.0422370 + 0.00840147i
\(63\) 31.1328 + 46.5935i 0.494171 + 0.739579i
\(64\) −32.2713 32.2713i −0.504239 0.504239i
\(65\) 35.7108 + 7.10332i 0.549397 + 0.109282i
\(66\) 1.98623 + 4.79518i 0.0300944 + 0.0726543i
\(67\) 44.5324i 0.664663i −0.943163 0.332332i \(-0.892165\pi\)
0.943163 0.332332i \(-0.107835\pi\)
\(68\) 0 0
\(69\) 2.11674 0.0306774
\(70\) 68.0607 28.1917i 0.972296 0.402738i
\(71\) 11.3064 56.8410i 0.159245 0.800577i −0.815759 0.578391i \(-0.803681\pi\)
0.975004 0.222186i \(-0.0713193\pi\)
\(72\) 44.1588 44.1588i 0.613317 0.613317i
\(73\) −1.12032 + 0.748576i −0.0153469 + 0.0102545i −0.563220 0.826307i \(-0.690438\pi\)
0.547873 + 0.836561i \(0.315438\pi\)
\(74\) −19.9400 100.245i −0.269460 1.35466i
\(75\) −0.508479 0.339755i −0.00677973 0.00453007i
\(76\) −7.98612 + 19.2802i −0.105081 + 0.253687i
\(77\) 84.2570 + 34.9004i 1.09425 + 0.453252i
\(78\) 1.33995 2.00537i 0.0171788 0.0257099i
\(79\) 29.1507 5.79844i 0.368996 0.0733979i −0.00710935 0.999975i \(-0.502263\pi\)
0.376106 + 0.926577i \(0.377263\pi\)
\(80\) −55.5694 83.1655i −0.694618 1.03957i
\(81\) 56.7774 + 56.7774i 0.700956 + 0.700956i
\(82\) −67.8290 13.4920i −0.827183 0.164537i
\(83\) 25.7951 + 62.2748i 0.310784 + 0.750298i 0.999676 + 0.0254351i \(0.00809712\pi\)
−0.688893 + 0.724863i \(0.741903\pi\)
\(84\) 0.842922i 0.0100348i
\(85\) 0 0
\(86\) 160.285 1.86377
\(87\) 4.93230 2.04303i 0.0566931 0.0234831i
\(88\) 19.8280 99.6823i 0.225319 1.13275i
\(89\) −90.1397 + 90.1397i −1.01281 + 1.01281i −0.0128890 + 0.999917i \(0.504103\pi\)
−0.999917 + 0.0128890i \(0.995897\pi\)
\(90\) 88.0256 58.8169i 0.978063 0.653521i
\(91\) −8.26771 41.5646i −0.0908540 0.456754i
\(92\) 9.09541 + 6.07736i 0.0988632 + 0.0660582i
\(93\) 0.0750988 0.181304i 0.000807514 0.00194951i
\(94\) −30.1327 12.4814i −0.320561 0.132781i
\(95\) 74.4751 111.460i 0.783949 1.17326i
\(96\) −2.08580 + 0.414892i −0.0217271 + 0.00432180i
\(97\) −37.5767 56.2374i −0.387388 0.579767i 0.585606 0.810596i \(-0.300856\pi\)
−0.972995 + 0.230828i \(0.925856\pi\)
\(98\) 15.5581 + 15.5581i 0.158756 + 0.158756i
\(99\) 128.542 + 25.5687i 1.29841 + 0.258269i
\(100\) −1.20941 2.91979i −0.0120941 0.0291979i
\(101\) 34.6405i 0.342975i −0.985186 0.171488i \(-0.945143\pi\)
0.985186 0.171488i \(-0.0548573\pi\)
\(102\) 0 0
\(103\) 151.166 1.46763 0.733817 0.679347i \(-0.237737\pi\)
0.733817 + 0.679347i \(0.237737\pi\)
\(104\) −43.6333 + 18.0735i −0.419551 + 0.173784i
\(105\) −1.05633 + 5.31052i −0.0100603 + 0.0505764i
\(106\) 8.03830 8.03830i 0.0758330 0.0758330i
\(107\) −7.93047 + 5.29897i −0.0741166 + 0.0495231i −0.592076 0.805882i \(-0.701692\pi\)
0.517960 + 0.855405i \(0.326692\pi\)
\(108\) −0.473332 2.37960i −0.00438271 0.0220334i
\(109\) 96.7260 + 64.6303i 0.887395 + 0.592938i 0.913553 0.406720i \(-0.133327\pi\)
−0.0261584 + 0.999658i \(0.508327\pi\)
\(110\) 65.9347 159.180i 0.599406 1.44710i
\(111\) 6.94044 + 2.87483i 0.0625265 + 0.0258993i
\(112\) −64.6785 + 96.7982i −0.577487 + 0.864270i
\(113\) 64.6835 12.8663i 0.572420 0.113861i 0.0996113 0.995026i \(-0.468240\pi\)
0.472809 + 0.881165i \(0.343240\pi\)
\(114\) −4.93327 7.38315i −0.0432743 0.0647645i
\(115\) −49.6863 49.6863i −0.432055 0.432055i
\(116\) 27.0593 + 5.38243i 0.233270 + 0.0464003i
\(117\) −23.3062 56.2660i −0.199198 0.480906i
\(118\) 62.1233i 0.526468i
\(119\) 0 0
\(120\) 6.03416 0.0502847
\(121\) 85.2709 35.3203i 0.704718 0.291904i
\(122\) 35.4523 178.231i 0.290593 1.46091i
\(123\) 3.59425 3.59425i 0.0292216 0.0292216i
\(124\) 0.843234 0.563431i 0.00680027 0.00454380i
\(125\) −22.2063 111.639i −0.177650 0.893109i
\(126\) −102.455 68.4583i −0.813135 0.543319i
\(127\) −36.5576 + 88.2580i −0.287855 + 0.694945i −0.999975 0.00711395i \(-0.997736\pi\)
0.712119 + 0.702059i \(0.247736\pi\)
\(128\) 141.344 + 58.5465i 1.10425 + 0.457395i
\(129\) −6.54505 + 9.79536i −0.0507368 + 0.0759330i
\(130\) −78.5249 + 15.6196i −0.604038 + 0.120151i
\(131\) 23.8328 + 35.6683i 0.181930 + 0.272277i 0.911214 0.411934i \(-0.135147\pi\)
−0.729284 + 0.684211i \(0.760147\pi\)
\(132\) −1.39401 1.39401i −0.0105607 0.0105607i
\(133\) −153.028 30.4391i −1.15058 0.228866i
\(134\) 37.4735 + 90.4690i 0.279653 + 0.675142i
\(135\) 15.5850i 0.115444i
\(136\) 0 0
\(137\) −63.8232 −0.465863 −0.232931 0.972493i \(-0.574832\pi\)
−0.232931 + 0.972493i \(0.574832\pi\)
\(138\) −4.30022 + 1.78121i −0.0311610 + 0.0129073i
\(139\) −50.9824 + 256.306i −0.366780 + 1.84393i 0.151160 + 0.988509i \(0.451699\pi\)
−0.517940 + 0.855417i \(0.673301\pi\)
\(140\) −19.7860 + 19.7860i −0.141328 + 0.141328i
\(141\) 1.99320 1.33181i 0.0141362 0.00944549i
\(142\) 24.8617 + 124.988i 0.175083 + 0.880200i
\(143\) −82.4117 55.0658i −0.576306 0.385075i
\(144\) −64.0239 + 154.567i −0.444610 + 1.07338i
\(145\) −163.732 67.8201i −1.12919 0.467725i
\(146\) 1.64605 2.46349i 0.0112743 0.0168732i
\(147\) −1.58608 + 0.315492i −0.0107897 + 0.00214620i
\(148\) 21.5685 + 32.2795i 0.145733 + 0.218105i
\(149\) 83.6010 + 83.6010i 0.561080 + 0.561080i 0.929614 0.368534i \(-0.120140\pi\)
−0.368534 + 0.929614i \(0.620140\pi\)
\(150\) 1.31889 + 0.262344i 0.00879261 + 0.00174896i
\(151\) −10.5977 25.5851i −0.0701833 0.169437i 0.884895 0.465790i \(-0.154230\pi\)
−0.955079 + 0.296352i \(0.904230\pi\)
\(152\) 173.880i 1.14395i
\(153\) 0 0
\(154\) −200.539 −1.30220
\(155\) −6.01857 + 2.49297i −0.0388295 + 0.0160837i
\(156\) −0.178721 + 0.898490i −0.00114565 + 0.00575955i
\(157\) 55.8958 55.8958i 0.356024 0.356024i −0.506321 0.862345i \(-0.668995\pi\)
0.862345 + 0.506321i \(0.168995\pi\)
\(158\) −54.3412 + 36.3096i −0.343932 + 0.229808i
\(159\) 0.163003 + 0.819474i 0.00102518 + 0.00515392i
\(160\) 58.6990 + 39.2214i 0.366869 + 0.245134i
\(161\) −31.2979 + 75.5599i −0.194397 + 0.469316i
\(162\) −163.123 67.5676i −1.00693 0.417084i
\(163\) −30.8428 + 46.1595i −0.189220 + 0.283187i −0.913935 0.405862i \(-0.866971\pi\)
0.724715 + 0.689049i \(0.241971\pi\)
\(164\) 25.7636 5.12469i 0.157095 0.0312481i
\(165\) 7.03551 + 10.5294i 0.0426394 + 0.0638144i
\(166\) −104.807 104.807i −0.631367 0.631367i
\(167\) 50.6674 + 10.0784i 0.303398 + 0.0603495i 0.344441 0.938808i \(-0.388068\pi\)
−0.0410439 + 0.999157i \(0.513068\pi\)
\(168\) −2.68770 6.48868i −0.0159982 0.0386231i
\(169\) 122.942i 0.727470i
\(170\) 0 0
\(171\) −224.222 −1.31124
\(172\) −56.2468 + 23.2982i −0.327016 + 0.135455i
\(173\) −3.60353 + 18.1162i −0.0208296 + 0.104718i −0.989802 0.142453i \(-0.954501\pi\)
0.968972 + 0.247171i \(0.0795009\pi\)
\(174\) −8.30094 + 8.30094i −0.0477066 + 0.0477066i
\(175\) 19.6464 13.1273i 0.112265 0.0750130i
\(176\) 53.1190 + 267.047i 0.301812 + 1.51731i
\(177\) 3.79649 + 2.53674i 0.0214491 + 0.0143318i
\(178\) 107.270 258.973i 0.602641 1.45490i
\(179\) 57.8989 + 23.9825i 0.323457 + 0.133980i 0.538503 0.842624i \(-0.318990\pi\)
−0.215046 + 0.976604i \(0.568990\pi\)
\(180\) −22.3405 + 33.4349i −0.124114 + 0.185749i
\(181\) −102.589 + 20.4063i −0.566792 + 0.112742i −0.470165 0.882579i \(-0.655806\pi\)
−0.0966274 + 0.995321i \(0.530806\pi\)
\(182\) 51.7722 + 77.4825i 0.284462 + 0.425728i
\(183\) 9.44444 + 9.44444i 0.0516090 + 0.0516090i
\(184\) 89.3930 + 17.7814i 0.485831 + 0.0966378i
\(185\) −95.4324 230.394i −0.515851 1.24537i
\(186\) 0.431520i 0.00232000i
\(187\) 0 0
\(188\) 12.3883 0.0658954
\(189\) 16.7589 6.94177i 0.0886715 0.0367289i
\(190\) −57.5064 + 289.104i −0.302665 + 1.52160i
\(191\) 137.930 137.930i 0.722145 0.722145i −0.246897 0.969042i \(-0.579411\pi\)
0.969042 + 0.246897i \(0.0794109\pi\)
\(192\) −6.13293 + 4.09789i −0.0319423 + 0.0213432i
\(193\) 17.2466 + 86.7045i 0.0893606 + 0.449246i 0.999397 + 0.0347181i \(0.0110533\pi\)
−0.910037 + 0.414528i \(0.863947\pi\)
\(194\) 123.661 + 82.6278i 0.637429 + 0.425916i
\(195\) 2.25193 5.43664i 0.0115484 0.0278802i
\(196\) −7.72105 3.19816i −0.0393931 0.0163172i
\(197\) 142.990 214.000i 0.725838 1.08629i −0.266631 0.963799i \(-0.585911\pi\)
0.992469 0.122495i \(-0.0390894\pi\)
\(198\) −282.653 + 56.2232i −1.42754 + 0.283956i
\(199\) 126.364 + 189.117i 0.634996 + 0.950338i 0.999815 + 0.0192597i \(0.00613092\pi\)
−0.364819 + 0.931079i \(0.618869\pi\)
\(200\) −18.6198 18.6198i −0.0930988 0.0930988i
\(201\) −7.05896 1.40411i −0.0351192 0.00698564i
\(202\) 29.1495 + 70.3732i 0.144305 + 0.348382i
\(203\) 206.273i 1.01612i
\(204\) 0 0
\(205\) −168.736 −0.823103
\(206\) −307.099 + 127.204i −1.49077 + 0.617498i
\(207\) −22.9294 + 115.274i −0.110770 + 0.556879i
\(208\) 89.4660 89.4660i 0.430125 0.430125i
\(209\) −303.414 + 202.735i −1.45174 + 0.970023i
\(210\) −2.32277 11.6774i −0.0110608 0.0556065i
\(211\) 6.72473 + 4.49332i 0.0318708 + 0.0212954i 0.571404 0.820669i \(-0.306399\pi\)
−0.539533 + 0.841965i \(0.681399\pi\)
\(212\) −1.65238 + 3.98919i −0.00779423 + 0.0188169i
\(213\) −8.65353 3.58441i −0.0406269 0.0168282i
\(214\) 11.6520 17.4384i 0.0544485 0.0814879i
\(215\) 383.559 76.2947i 1.78400 0.354859i
\(216\) −11.2311 16.8086i −0.0519959 0.0778174i
\(217\) 5.36151 + 5.36151i 0.0247074 + 0.0247074i
\(218\) −250.887 49.9046i −1.15086 0.228920i
\(219\) 0.0833348 + 0.201188i 0.000380524 + 0.000918667i
\(220\) 65.4433i 0.297469i
\(221\) 0 0
\(222\) −16.5188 −0.0744092
\(223\) 45.3315 18.7769i 0.203280 0.0842014i −0.278720 0.960372i \(-0.589910\pi\)
0.482001 + 0.876171i \(0.339910\pi\)
\(224\) 16.0304 80.5902i 0.0715642 0.359778i
\(225\) 24.0106 24.0106i 0.106714 0.106714i
\(226\) −120.580 + 80.5687i −0.533538 + 0.356499i
\(227\) −32.7870 164.831i −0.144436 0.726129i −0.983329 0.181833i \(-0.941797\pi\)
0.838893 0.544296i \(-0.183203\pi\)
\(228\) 2.80435 + 1.87381i 0.0122998 + 0.00821846i
\(229\) −47.5197 + 114.723i −0.207510 + 0.500972i −0.993030 0.117864i \(-0.962395\pi\)
0.785520 + 0.618836i \(0.212395\pi\)
\(230\) 142.750 + 59.1289i 0.620651 + 0.257082i
\(231\) 8.18879 12.2554i 0.0354493 0.0530536i
\(232\) 225.460 44.8469i 0.971812 0.193305i
\(233\) −196.158 293.571i −0.841880 1.25996i −0.963587 0.267396i \(-0.913837\pi\)
0.121707 0.992566i \(-0.461163\pi\)
\(234\) 94.6943 + 94.6943i 0.404677 + 0.404677i
\(235\) −78.0483 15.5248i −0.332120 0.0660628i
\(236\) 9.02993 + 21.8002i 0.0382624 + 0.0923737i
\(237\) 4.80358i 0.0202683i
\(238\) 0 0
\(239\) 206.527 0.864131 0.432066 0.901842i \(-0.357785\pi\)
0.432066 + 0.901842i \(0.357785\pi\)
\(240\) −14.9349 + 6.18624i −0.0622287 + 0.0257760i
\(241\) 56.1919 282.496i 0.233161 1.17218i −0.669827 0.742517i \(-0.733632\pi\)
0.902989 0.429665i \(-0.141368\pi\)
\(242\) −143.509 + 143.509i −0.593011 + 0.593011i
\(243\) 32.5282 21.7347i 0.133861 0.0894430i
\(244\) 13.4659 + 67.6977i 0.0551881 + 0.277450i
\(245\) 44.6358 + 29.8247i 0.182187 + 0.121733i
\(246\) −4.27731 + 10.3263i −0.0173875 + 0.0419770i
\(247\) 156.662 + 64.8915i 0.634259 + 0.262719i
\(248\) 4.69455 7.02589i 0.0189296 0.0283302i
\(249\) 10.6847 2.12531i 0.0429103 0.00853539i
\(250\) 139.055 + 208.111i 0.556221 + 0.832444i
\(251\) −191.096 191.096i −0.761337 0.761337i 0.215227 0.976564i \(-0.430951\pi\)
−0.976564 + 0.215227i \(0.930951\pi\)
\(252\) 45.9041 + 9.13089i 0.182159 + 0.0362337i
\(253\) 73.1996 + 176.720i 0.289327 + 0.698496i
\(254\) 210.062i 0.827014i
\(255\) 0 0
\(256\) −153.856 −0.601002
\(257\) −48.7819 + 20.2061i −0.189813 + 0.0786230i −0.475565 0.879680i \(-0.657756\pi\)
0.285753 + 0.958303i \(0.407756\pi\)
\(258\) 5.05380 25.4071i 0.0195884 0.0984773i
\(259\) −205.242 + 205.242i −0.792439 + 0.792439i
\(260\) 25.2854 16.8952i 0.0972517 0.0649815i
\(261\) 57.8310 + 290.736i 0.221575 + 1.11393i
\(262\) −78.4315 52.4062i −0.299357 0.200024i
\(263\) 194.228 468.907i 0.738509 1.78292i 0.126654 0.991947i \(-0.459576\pi\)
0.611854 0.790970i \(-0.290424\pi\)
\(264\) −15.1757 6.28599i −0.0574838 0.0238106i
\(265\) 15.4094 23.0617i 0.0581485 0.0870254i
\(266\) 336.495 66.9329i 1.26502 0.251628i
\(267\) 11.4462 + 17.1304i 0.0428696 + 0.0641588i
\(268\) −26.3003 26.3003i −0.0981353 0.0981353i
\(269\) −172.869 34.3858i −0.642637 0.127828i −0.136995 0.990572i \(-0.543744\pi\)
−0.505642 + 0.862743i \(0.668744\pi\)
\(270\) −13.1146 31.6614i −0.0485725 0.117264i
\(271\) 464.255i 1.71312i 0.516050 + 0.856559i \(0.327402\pi\)
−0.516050 + 0.856559i \(0.672598\pi\)
\(272\) 0 0
\(273\) −6.84919 −0.0250886
\(274\) 129.659 53.7064i 0.473207 0.196009i
\(275\) 10.7811 54.2004i 0.0392041 0.197093i
\(276\) 1.25012 1.25012i 0.00452941 0.00452941i
\(277\) 146.824 98.1048i 0.530051 0.354169i −0.261567 0.965185i \(-0.584239\pi\)
0.791618 + 0.611017i \(0.209239\pi\)
\(278\) −112.106 563.594i −0.403258 2.02732i
\(279\) 9.06003 + 6.05372i 0.0324732 + 0.0216979i
\(280\) −89.2206 + 215.398i −0.318645 + 0.769277i
\(281\) 369.073 + 152.875i 1.31343 + 0.544040i 0.925883 0.377811i \(-0.123323\pi\)
0.387545 + 0.921851i \(0.373323\pi\)
\(282\) −2.92854 + 4.38287i −0.0103849 + 0.0155421i
\(283\) −350.746 + 69.7677i −1.23938 + 0.246529i −0.770908 0.636947i \(-0.780197\pi\)
−0.468477 + 0.883476i \(0.655197\pi\)
\(284\) −26.8921 40.2469i −0.0946906 0.141715i
\(285\) −15.3196 15.3196i −0.0537530 0.0537530i
\(286\) 213.759 + 42.5193i 0.747409 + 0.148669i
\(287\) 75.1574 + 181.446i 0.261872 + 0.632216i
\(288\) 118.084i 0.410013i
\(289\) 0 0
\(290\) 389.697 1.34378
\(291\) −10.0991 + 4.18320i −0.0347050 + 0.0143753i
\(292\) −0.219549 + 1.10375i −0.000751880 + 0.00377995i
\(293\) 169.002 169.002i 0.576800 0.576800i −0.357220 0.934020i \(-0.616275\pi\)
0.934020 + 0.357220i \(0.116275\pi\)
\(294\) 2.95670 1.97560i 0.0100568 0.00671973i
\(295\) −29.5704 148.660i −0.100239 0.503933i
\(296\) 268.955 + 179.710i 0.908633 + 0.607129i
\(297\) 16.2354 39.1958i 0.0546647 0.131972i
\(298\) −240.187 99.4888i −0.805997 0.333855i
\(299\) 49.3818 73.9051i 0.165157 0.247174i
\(300\) −0.500956 + 0.0996463i −0.00166985 + 0.000332154i
\(301\) −252.884 378.468i −0.840147 1.25737i
\(302\) 43.0590 + 43.0590i 0.142579 + 0.142579i
\(303\) −5.49096 1.09222i −0.0181220 0.00360468i
\(304\) −178.262 430.363i −0.586389 1.41567i
\(305\) 443.380i 1.45370i
\(306\) 0 0
\(307\) 409.955 1.33536 0.667679 0.744450i \(-0.267288\pi\)
0.667679 + 0.744450i \(0.267288\pi\)
\(308\) 70.3727 29.1493i 0.228483 0.0946407i
\(309\) 4.76629 23.9618i 0.0154249 0.0775462i
\(310\) 10.1291 10.1291i 0.0326745 0.0326745i
\(311\) 180.101 120.340i 0.579103 0.386944i −0.231243 0.972896i \(-0.574279\pi\)
0.810346 + 0.585952i \(0.199279\pi\)
\(312\) 1.48912 + 7.48629i 0.00477281 + 0.0239945i
\(313\) −393.629 263.015i −1.25760 0.840302i −0.265302 0.964165i \(-0.585472\pi\)
−0.992299 + 0.123863i \(0.960472\pi\)
\(314\) −66.5184 + 160.590i −0.211842 + 0.511432i
\(315\) −277.759 115.052i −0.881776 0.365244i
\(316\) 13.7915 20.6405i 0.0436441 0.0653180i
\(317\) −251.422 + 50.0110i −0.793130 + 0.157763i −0.574997 0.818156i \(-0.694997\pi\)
−0.218133 + 0.975919i \(0.569997\pi\)
\(318\) −1.02072 1.52762i −0.00320982 0.00480384i
\(319\) 341.131 + 341.131i 1.06938 + 1.06938i
\(320\) 240.149 + 47.7685i 0.750464 + 0.149277i
\(321\) 0.589905 + 1.42416i 0.00183771 + 0.00443663i
\(322\) 179.839i 0.558506i
\(323\) 0 0
\(324\) 67.0640 0.206988
\(325\) −23.7248 + 9.82715i −0.0729995 + 0.0302374i
\(326\) 23.8154 119.728i 0.0730535 0.367265i
\(327\) 13.2945 13.2945i 0.0406560 0.0406560i
\(328\) 181.983 121.597i 0.554828 0.370724i
\(329\) 18.0696 + 90.8421i 0.0549229 + 0.276116i
\(330\) −23.1532 15.4705i −0.0701612 0.0468802i
\(331\) −86.3966 + 208.580i −0.261017 + 0.630151i −0.999002 0.0446663i \(-0.985778\pi\)
0.737985 + 0.674817i \(0.235778\pi\)
\(332\) 52.0129 + 21.5444i 0.156665 + 0.0648929i
\(333\) −231.740 + 346.823i −0.695916 + 1.04151i
\(334\) −111.413 + 22.1615i −0.333572 + 0.0663516i
\(335\) 132.736 + 198.654i 0.396228 + 0.592997i
\(336\) 13.3044 + 13.3044i 0.0395965 + 0.0395965i
\(337\) 354.200 + 70.4547i 1.05104 + 0.209064i 0.690241 0.723580i \(-0.257505\pi\)
0.360797 + 0.932644i \(0.382505\pi\)
\(338\) 103.454 + 249.761i 0.306078 + 0.738938i
\(339\) 10.6588i 0.0314420i
\(340\) 0 0
\(341\) 17.7335 0.0520045
\(342\) 455.513 188.680i 1.33191 0.551695i
\(343\) 71.8838 361.384i 0.209574 1.05360i
\(344\) −358.691 + 358.691i −1.04271 + 1.04271i
\(345\) −9.44253 + 6.30930i −0.0273697 + 0.0182878i
\(346\) −7.92384 39.8358i −0.0229013 0.115132i
\(347\) 13.1855 + 8.81030i 0.0379987 + 0.0253899i 0.574425 0.818558i \(-0.305226\pi\)
−0.536426 + 0.843947i \(0.680226\pi\)
\(348\) 1.70637 4.11954i 0.00490336 0.0118377i
\(349\) −292.270 121.062i −0.837448 0.346883i −0.0776015 0.996984i \(-0.524726\pi\)
−0.759847 + 0.650102i \(0.774726\pi\)
\(350\) −28.8657 + 43.2006i −0.0824735 + 0.123430i
\(351\) −19.3356 + 3.84608i −0.0550870 + 0.0109575i
\(352\) −106.768 159.789i −0.303318 0.453947i
\(353\) −191.613 191.613i −0.542812 0.542812i 0.381540 0.924352i \(-0.375394\pi\)
−0.924352 + 0.381540i \(0.875394\pi\)
\(354\) −9.84732 1.95875i −0.0278173 0.00553320i
\(355\) 118.988 + 287.262i 0.335177 + 0.809188i
\(356\) 106.471i 0.299075i
\(357\) 0 0
\(358\) −137.804 −0.384928
\(359\) 146.269 60.5865i 0.407434 0.168765i −0.169547 0.985522i \(-0.554231\pi\)
0.576981 + 0.816757i \(0.304231\pi\)
\(360\) −65.3646 + 328.610i −0.181568 + 0.912806i
\(361\) 186.183 186.183i 0.515743 0.515743i
\(362\) 191.242 127.784i 0.528292 0.352994i
\(363\) −2.91012 14.6302i −0.00801686 0.0403035i
\(364\) −29.4303 19.6647i −0.0808524 0.0540239i
\(365\) 2.76638 6.67862i 0.00757911 0.0182976i
\(366\) −27.1340 11.2393i −0.0741367 0.0307084i
\(367\) −271.669 + 406.581i −0.740242 + 1.10785i 0.249967 + 0.968254i \(0.419580\pi\)
−0.990209 + 0.139596i \(0.955420\pi\)
\(368\) −239.482 + 47.6360i −0.650767 + 0.129446i
\(369\) 156.802 + 234.671i 0.424939 + 0.635966i
\(370\) 387.748 + 387.748i 1.04797 + 1.04797i
\(371\) −31.6624 6.29804i −0.0853434 0.0169759i
\(372\) −0.0627237 0.151428i −0.000168612 0.000407065i
\(373\) 573.453i 1.53741i −0.639605 0.768704i \(-0.720902\pi\)
0.639605 0.768704i \(-0.279098\pi\)
\(374\) 0 0
\(375\) −18.3963 −0.0490568
\(376\) 95.3635 39.5008i 0.253626 0.105055i
\(377\) 43.7352 219.872i 0.116008 0.583214i
\(378\) −28.2048 + 28.2048i −0.0746159 + 0.0746159i
\(379\) 583.696 390.013i 1.54009 1.02906i 0.560480 0.828168i \(-0.310617\pi\)
0.979614 0.200890i \(-0.0643832\pi\)
\(380\) −21.8427 109.811i −0.0574808 0.288976i
\(381\) 12.8373 + 8.57764i 0.0336938 + 0.0225135i
\(382\) −164.142 + 396.274i −0.429692 + 1.03737i
\(383\) −284.935 118.024i −0.743956 0.308157i −0.0216830 0.999765i \(-0.506902\pi\)
−0.722273 + 0.691608i \(0.756902\pi\)
\(384\) 13.7370 20.5588i 0.0357733 0.0535386i
\(385\) −479.887 + 95.4555i −1.24646 + 0.247936i
\(386\) −107.998 161.630i −0.279787 0.418731i
\(387\) −462.540 462.540i −1.19519 1.19519i
\(388\) −55.4053 11.0208i −0.142797 0.0284041i
\(389\) −109.097 263.382i −0.280454 0.677076i 0.719392 0.694604i \(-0.244420\pi\)
−0.999846 + 0.0175282i \(0.994420\pi\)
\(390\) 12.9397i 0.0331787i
\(391\) 0 0
\(392\) −69.6329 −0.177635
\(393\) 6.40533 2.65317i 0.0162986 0.00675108i
\(394\) −110.411 + 555.071i −0.280230 + 1.40881i
\(395\) −112.755 + 112.755i −0.285455 + 0.285455i
\(396\) 91.0159 60.8149i 0.229838 0.153573i
\(397\) 24.2591 + 121.959i 0.0611061 + 0.307201i 0.999236 0.0390826i \(-0.0124435\pi\)
−0.938130 + 0.346283i \(0.887444\pi\)
\(398\) −415.852 277.864i −1.04486 0.698150i
\(399\) −9.64997 + 23.2971i −0.0241854 + 0.0583887i
\(400\) 65.1740 + 26.9960i 0.162935 + 0.0674899i
\(401\) −237.214 + 355.016i −0.591557 + 0.885328i −0.999618 0.0276268i \(-0.991205\pi\)
0.408061 + 0.912955i \(0.366205\pi\)
\(402\) 15.5220 3.08752i 0.0386120 0.00768041i
\(403\) −4.57818 6.85173i −0.0113602 0.0170018i
\(404\) −20.4582 20.4582i −0.0506391 0.0506391i
\(405\) −422.512 84.0429i −1.04324 0.207513i
\(406\) −173.576 419.050i −0.427528 1.03214i
\(407\) 678.850i 1.66794i
\(408\) 0 0
\(409\) −215.550 −0.527018 −0.263509 0.964657i \(-0.584880\pi\)
−0.263509 + 0.964657i \(0.584880\pi\)
\(410\) 342.793 141.989i 0.836079 0.346315i
\(411\) −2.01235 + 10.1168i −0.00489624 + 0.0246150i
\(412\) 89.2768 89.2768i 0.216691 0.216691i
\(413\) −146.687 + 98.0131i −0.355174 + 0.237320i
\(414\) −50.4198 253.477i −0.121787 0.612264i
\(415\) −300.689 200.914i −0.724552 0.484130i
\(416\) −34.1743 + 82.5042i −0.0821499 + 0.198327i
\(417\) 39.0202 + 16.1627i 0.0935737 + 0.0387595i
\(418\) 445.796 667.181i 1.06650 1.59613i
\(419\) 610.227 121.382i 1.45639 0.289694i 0.597506 0.801864i \(-0.296158\pi\)
0.858884 + 0.512170i \(0.171158\pi\)
\(420\) 2.51247 + 3.76018i 0.00598207 + 0.00895280i
\(421\) 36.3708 + 36.3708i 0.0863916 + 0.0863916i 0.748982 0.662590i \(-0.230543\pi\)
−0.662590 + 0.748982i \(0.730543\pi\)
\(422\) −17.4426 3.46954i −0.0413331 0.00822166i
\(423\) 50.9371 + 122.973i 0.120419 + 0.290717i
\(424\) 35.9769i 0.0848511i
\(425\) 0 0
\(426\) 20.5961 0.0483477
\(427\) −476.777 + 197.488i −1.11657 + 0.462500i
\(428\) −1.55413 + 7.81313i −0.00363114 + 0.0182550i
\(429\) −11.3271 + 11.3271i −0.0264034 + 0.0264034i
\(430\) −715.011 + 477.755i −1.66282 + 1.11106i
\(431\) 91.8124 + 461.572i 0.213022 + 1.07093i 0.928226 + 0.372017i \(0.121334\pi\)
−0.715204 + 0.698916i \(0.753666\pi\)
\(432\) 45.0299 + 30.0880i 0.104236 + 0.0696481i
\(433\) 246.289 594.595i 0.568798 1.37320i −0.333772 0.942654i \(-0.608321\pi\)
0.902569 0.430545i \(-0.141679\pi\)
\(434\) −15.4037 6.38042i −0.0354924 0.0147014i
\(435\) −15.9129 + 23.8153i −0.0365813 + 0.0547477i
\(436\) 95.2948 18.9553i 0.218566 0.0434755i
\(437\) −181.808 272.095i −0.416037 0.622644i
\(438\) −0.338594 0.338594i −0.000773047 0.000773047i
\(439\) 811.551 + 161.428i 1.84864 + 0.367717i 0.989559 0.144129i \(-0.0460380\pi\)
0.859077 + 0.511846i \(0.171038\pi\)
\(440\) 208.669 + 503.772i 0.474248 + 1.14494i
\(441\) 89.7930i 0.203612i
\(442\) 0 0
\(443\) 354.430 0.800068 0.400034 0.916500i \(-0.368998\pi\)
0.400034 + 0.916500i \(0.368998\pi\)
\(444\) 5.79677 2.40110i 0.0130558 0.00540788i
\(445\) 133.426 670.780i 0.299835 1.50737i
\(446\) −76.2917 + 76.2917i −0.171058 + 0.171058i
\(447\) 15.8878 10.6159i 0.0355431 0.0237491i
\(448\) −55.5988 279.514i −0.124105 0.623916i
\(449\) 653.488 + 436.647i 1.45543 + 0.972487i 0.996463 + 0.0840341i \(0.0267805\pi\)
0.458967 + 0.888453i \(0.348220\pi\)
\(450\) −28.5736 + 68.9828i −0.0634969 + 0.153295i
\(451\) 424.366 + 175.778i 0.940945 + 0.389752i
\(452\) 30.6025 45.7999i 0.0677047 0.101327i
\(453\) −4.38970 + 0.873166i −0.00969029 + 0.00192752i
\(454\) 205.311 + 307.270i 0.452227 + 0.676806i
\(455\) 160.772 + 160.772i 0.353344 + 0.353344i
\(456\) 27.5622 + 5.48246i 0.0604434 + 0.0120229i
\(457\) −124.426 300.390i −0.272266 0.657309i 0.727313 0.686306i \(-0.240769\pi\)
−0.999580 + 0.0289968i \(0.990769\pi\)
\(458\) 273.050i 0.596178i
\(459\) 0 0
\(460\) −58.6882 −0.127583
\(461\) −227.477 + 94.2242i −0.493444 + 0.204391i −0.615507 0.788131i \(-0.711049\pi\)
0.122064 + 0.992522i \(0.461049\pi\)
\(462\) −6.32302 + 31.7879i −0.0136862 + 0.0688051i
\(463\) 248.069 248.069i 0.535786 0.535786i −0.386503 0.922288i \(-0.626317\pi\)
0.922288 + 0.386503i \(0.126317\pi\)
\(464\) −512.051 + 342.141i −1.10356 + 0.737374i
\(465\) 0.205401 + 1.03262i 0.000441724 + 0.00222069i
\(466\) 645.537 + 431.334i 1.38527 + 0.925610i
\(467\) 83.7591 202.212i 0.179356 0.433003i −0.808476 0.588529i \(-0.799707\pi\)
0.987832 + 0.155526i \(0.0497073\pi\)
\(468\) −46.9943 19.4657i −0.100415 0.0415933i
\(469\) 154.495 231.218i 0.329413 0.493002i
\(470\) 171.621 34.1376i 0.365152 0.0726332i
\(471\) −7.09779 10.6226i −0.0150696 0.0225533i
\(472\) 139.022 + 139.022i 0.294538 + 0.294538i
\(473\) −1044.12 207.688i −2.20744 0.439087i
\(474\) 4.04215 + 9.75862i 0.00852775 + 0.0205878i
\(475\) 94.5441i 0.199040i
\(476\) 0 0
\(477\) −46.3929 −0.0972597
\(478\) −419.566 + 173.790i −0.877754 + 0.363578i
\(479\) −98.0271 + 492.815i −0.204649 + 1.02884i 0.732727 + 0.680523i \(0.238247\pi\)
−0.937376 + 0.348319i \(0.886753\pi\)
\(480\) 8.06788 8.06788i 0.0168081 0.0168081i
\(481\) 262.288 175.255i 0.545298 0.364356i
\(482\) 123.561 + 621.183i 0.256351 + 1.28876i
\(483\) 10.9904 + 7.34353i 0.0227544 + 0.0152040i
\(484\) 29.5001 71.2196i 0.0609506 0.147148i
\(485\) 335.250 + 138.865i 0.691238 + 0.286320i
\(486\) −47.7926 + 71.5267i −0.0983387 + 0.147174i
\(487\) 246.948 49.1210i 0.507080 0.100864i 0.0650809 0.997880i \(-0.479269\pi\)
0.441999 + 0.897016i \(0.354269\pi\)
\(488\) 319.516 + 478.189i 0.654745 + 0.979896i
\(489\) 6.34439 + 6.34439i 0.0129742 + 0.0129742i
\(490\) −115.776 23.0293i −0.236278 0.0469986i
\(491\) 86.6215 + 209.123i 0.176418 + 0.425912i 0.987210 0.159423i \(-0.0509632\pi\)
−0.810792 + 0.585334i \(0.800963\pi\)
\(492\) 4.24543i 0.00862893i
\(493\) 0 0
\(494\) −372.869 −0.754796
\(495\) −649.624 + 269.083i −1.31237 + 0.543602i
\(496\) −4.41633 + 22.2024i −0.00890388 + 0.0447628i
\(497\) 255.901 255.901i 0.514891 0.514891i
\(498\) −19.9178 + 13.3086i −0.0399956 + 0.0267242i
\(499\) −42.1099 211.701i −0.0843886 0.424250i −0.999766 0.0216522i \(-0.993107\pi\)
0.915377 0.402598i \(-0.131893\pi\)
\(500\) −79.0470 52.8175i −0.158094 0.105635i
\(501\) 3.19510 7.71365i 0.00637744 0.0153965i
\(502\) 549.021 + 227.412i 1.09367 + 0.453012i
\(503\) 490.279 733.755i 0.974710 1.45876i 0.0881697 0.996105i \(-0.471898\pi\)
0.886540 0.462651i \(-0.153102\pi\)
\(504\) 382.477 76.0793i 0.758882 0.150951i
\(505\) 103.252 + 154.527i 0.204459 + 0.305994i
\(506\) −297.414 297.414i −0.587776 0.587776i
\(507\) −19.4879 3.87639i −0.0384377 0.00764574i
\(508\) 30.5335 + 73.7144i 0.0601053 + 0.145107i
\(509\) 459.446i 0.902645i 0.892361 + 0.451323i \(0.149048\pi\)
−0.892361 + 0.451323i \(0.850952\pi\)
\(510\) 0 0
\(511\) −8.41386 −0.0164655
\(512\) −252.811 + 104.718i −0.493772 + 0.204527i
\(513\) −14.1601 + 71.1874i −0.0276025 + 0.138767i
\(514\) 82.0986 82.0986i 0.159725 0.159725i
\(515\) −674.335 + 450.576i −1.30939 + 0.874906i
\(516\) 1.91959 + 9.65043i 0.00372013 + 0.0187024i
\(517\) 180.116 + 120.350i 0.348387 + 0.232785i
\(518\) 244.246 589.663i 0.471518 1.13835i
\(519\) 2.75802 + 1.14241i 0.00531411 + 0.00220117i
\(520\) 140.772 210.680i 0.270716 0.405154i
\(521\) −99.1978 + 19.7317i −0.190399 + 0.0378727i −0.289369 0.957218i \(-0.593445\pi\)
0.0989697 + 0.995090i \(0.468445\pi\)
\(522\) −362.136 541.975i −0.693747 1.03827i
\(523\) −395.099 395.099i −0.755448 0.755448i 0.220042 0.975490i \(-0.429380\pi\)
−0.975490 + 0.220042i \(0.929380\pi\)
\(524\) 35.1406 + 6.98989i 0.0670621 + 0.0133395i
\(525\) −1.46139 3.52810i −0.00278360 0.00672019i
\(526\) 1116.04i 2.12175i
\(527\) 0 0
\(528\) 44.0052 0.0833432
\(529\) 330.254 136.796i 0.624299 0.258593i
\(530\) −11.8984 + 59.8174i −0.0224499 + 0.112863i
\(531\) −179.272 + 179.272i −0.337611 + 0.337611i
\(532\) −108.353 + 72.3992i −0.203671 + 0.136089i
\(533\) −41.6409 209.343i −0.0781255 0.392763i
\(534\) −37.6683 25.1691i −0.0705398 0.0471332i
\(535\) 19.5824 47.2762i 0.0366027 0.0883667i
\(536\) −286.315 118.596i −0.534170 0.221260i
\(537\) 5.62709 8.42153i 0.0104788 0.0156826i
\(538\) 380.124 75.6114i 0.706551 0.140542i
\(539\) −81.1882 121.507i −0.150628 0.225430i
\(540\) 9.20429 + 9.20429i 0.0170450 + 0.0170450i
\(541\) 40.0392 + 7.96429i 0.0740095 + 0.0147214i 0.231956 0.972726i \(-0.425487\pi\)
−0.157947 + 0.987448i \(0.550487\pi\)
\(542\) −390.665 943.148i −0.720783 1.74012i
\(543\) 16.9051i 0.0311328i
\(544\) 0 0
\(545\) −624.125 −1.14518
\(546\) 13.9143 5.76351i 0.0254841 0.0105559i
\(547\) −13.2836 + 66.7811i −0.0242844 + 0.122086i −0.991026 0.133669i \(-0.957324\pi\)
0.966742 + 0.255755i \(0.0823241\pi\)
\(548\) −37.6931 + 37.6931i −0.0687830 + 0.0687830i
\(549\) −616.635 + 412.022i −1.12320 + 0.750496i
\(550\) 23.7068 + 119.182i 0.0431032 + 0.216695i
\(551\) −686.260 458.544i −1.24548 0.832203i
\(552\) 5.63714 13.6093i 0.0102122 0.0246545i
\(553\) 171.470 + 71.0254i 0.310073 + 0.128436i
\(554\) −215.724 + 322.853i −0.389393 + 0.582768i
\(555\) −39.5294 + 7.86289i −0.0712242 + 0.0141674i
\(556\) 121.261 + 181.480i 0.218096 + 0.326403i
\(557\) 208.814 + 208.814i 0.374890 + 0.374890i 0.869255 0.494365i \(-0.164599\pi\)
−0.494365 + 0.869255i \(0.664599\pi\)
\(558\) −23.4999 4.67441i −0.0421144 0.00837708i
\(559\) 189.310 + 457.036i 0.338659 + 0.817595i
\(560\) 624.591i 1.11534i
\(561\) 0 0
\(562\) −878.426 −1.56304
\(563\) 408.295 169.121i 0.725212 0.300393i 0.0106294 0.999944i \(-0.496616\pi\)
0.714583 + 0.699551i \(0.246616\pi\)
\(564\) 0.390606 1.96371i 0.000692564 0.00348175i
\(565\) −250.195 + 250.195i −0.442824 + 0.442824i
\(566\) 653.842 436.883i 1.15520 0.771879i
\(567\) 97.8195 + 491.772i 0.172521 + 0.867322i
\(568\) −335.341 224.067i −0.590388 0.394485i
\(569\) −246.656 + 595.479i −0.433490 + 1.04654i 0.544664 + 0.838654i \(0.316657\pi\)
−0.978154 + 0.207882i \(0.933343\pi\)
\(570\) 44.0135 + 18.2310i 0.0772166 + 0.0319842i
\(571\) −66.5484 + 99.5967i −0.116547 + 0.174425i −0.885157 0.465293i \(-0.845949\pi\)
0.768610 + 0.639718i \(0.220949\pi\)
\(572\) −81.1924 + 16.1502i −0.141945 + 0.0282346i
\(573\) −17.5147 26.2125i −0.0305666 0.0457461i
\(574\) −305.369 305.369i −0.532002 0.532002i
\(575\) 48.6058 + 9.66830i 0.0845319 + 0.0168144i
\(576\) −156.730 378.379i −0.272100 0.656908i
\(577\) 177.008i 0.306773i −0.988166 0.153387i \(-0.950982\pi\)
0.988166 0.153387i \(-0.0490180\pi\)
\(578\) 0 0
\(579\) 14.2876 0.0246763
\(580\) −136.752 + 56.6444i −0.235779 + 0.0976628i
\(581\) −82.1166 + 412.828i −0.141337 + 0.710548i
\(582\) 16.9966 16.9966i 0.0292038 0.0292038i
\(583\) −62.7783 + 41.9471i −0.107681 + 0.0719504i
\(584\) 1.82930 + 9.19651i 0.00313236 + 0.0157474i
\(585\) 271.677 + 181.528i 0.464404 + 0.310305i
\(586\) −201.120 + 485.547i −0.343208 + 0.828578i
\(587\) −577.480 239.200i −0.983781 0.407496i −0.167956 0.985794i \(-0.553717\pi\)
−0.815825 + 0.578299i \(0.803717\pi\)
\(588\) −0.750395 + 1.12305i −0.00127618 + 0.00190994i
\(589\) −29.7560 + 5.91884i −0.0505195 + 0.0100490i
\(590\) 185.169 + 277.125i 0.313845 + 0.469703i
\(591\) −29.4132 29.4132i −0.0497685 0.0497685i
\(592\) −849.920 169.060i −1.43568 0.285574i
\(593\) 57.3899 + 138.551i 0.0967789 + 0.233645i 0.964853 0.262789i \(-0.0846424\pi\)
−0.868074 + 0.496434i \(0.834642\pi\)
\(594\) 93.2893i 0.157053i
\(595\) 0 0
\(596\) 98.7472 0.165683
\(597\) 33.9618 14.0674i 0.0568874 0.0235635i
\(598\) −38.1304 + 191.695i −0.0637633 + 0.320560i
\(599\) 217.159 217.159i 0.362536 0.362536i −0.502210 0.864746i \(-0.667480\pi\)
0.864746 + 0.502210i \(0.167480\pi\)
\(600\) −3.53855 + 2.36438i −0.00589759 + 0.00394064i
\(601\) 79.2601 + 398.467i 0.131880 + 0.663007i 0.989003 + 0.147895i \(0.0472498\pi\)
−0.857123 + 0.515112i \(0.827750\pi\)
\(602\) 832.218 + 556.070i 1.38242 + 0.923705i
\(603\) 152.931 369.209i 0.253617 0.612287i
\(604\) −21.3690 8.85135i −0.0353792 0.0146545i
\(605\) −275.105 + 411.724i −0.454719 + 0.680536i
\(606\) 12.0741 2.40169i 0.0199243 0.00396319i
\(607\) 576.178 + 862.312i 0.949223 + 1.42061i 0.906823 + 0.421511i \(0.138500\pi\)
0.0423995 + 0.999101i \(0.486500\pi\)
\(608\) 232.484 + 232.484i 0.382374 + 0.382374i
\(609\) 32.6969 + 6.50382i 0.0536895 + 0.0106795i
\(610\) 373.099 + 900.740i 0.611637 + 1.47662i
\(611\) 100.662i 0.164750i
\(612\) 0 0
\(613\) 132.402 0.215991 0.107995 0.994151i \(-0.465557\pi\)
0.107995 + 0.994151i \(0.465557\pi\)
\(614\) −832.835 + 344.972i −1.35641 + 0.561843i
\(615\) −5.32027 + 26.7468i −0.00865085 + 0.0434908i
\(616\) 448.774 448.774i 0.728529 0.728529i
\(617\) 213.080 142.375i 0.345348 0.230754i −0.370784 0.928719i \(-0.620911\pi\)
0.716132 + 0.697965i \(0.245911\pi\)
\(618\) 10.4807 + 52.6898i 0.0169590 + 0.0852586i
\(619\) −76.4213 51.0630i −0.123459 0.0824928i 0.492307 0.870421i \(-0.336154\pi\)
−0.615767 + 0.787929i \(0.711154\pi\)
\(620\) −2.08217 + 5.02680i −0.00335834 + 0.00810774i
\(621\) 35.1499 + 14.5596i 0.0566021 + 0.0234454i
\(622\) −264.616 + 396.026i −0.425428 + 0.636698i
\(623\) −780.735 + 155.298i −1.25319 + 0.249274i
\(624\) −11.3606 17.0024i −0.0182061 0.0272474i
\(625\) 498.708 + 498.708i 0.797932 + 0.797932i
\(626\) 1020.99 + 203.088i 1.63098 + 0.324422i
\(627\) 22.5694 + 54.4872i 0.0359958 + 0.0869015i
\(628\) 66.0226i 0.105131i
\(629\) 0 0
\(630\) 661.091 1.04935
\(631\) 530.804 219.866i 0.841210 0.348441i 0.0798795 0.996805i \(-0.474546\pi\)
0.761331 + 0.648364i \(0.224546\pi\)
\(632\) 40.3518 202.862i 0.0638478 0.320984i
\(633\) 0.924280 0.924280i 0.00146016 0.00146016i
\(634\) 468.688 313.167i 0.739256 0.493955i
\(635\) −99.9882 502.675i −0.157462 0.791614i
\(636\) 0.580238 + 0.387703i 0.000912324 + 0.000609595i
\(637\) −25.9868 + 62.7377i −0.0407956 + 0.0984893i
\(638\) −980.076 405.961i −1.53617 0.636302i
\(639\) 288.940 432.429i 0.452175 0.676727i
\(640\) −805.026 + 160.130i −1.25785 + 0.250203i
\(641\) −547.351 819.168i −0.853901 1.27795i −0.958975 0.283489i \(-0.908508\pi\)
0.105074 0.994464i \(-0.466492\pi\)
\(642\) −2.39682 2.39682i −0.00373337 0.00373337i
\(643\) 34.6996 + 6.90218i 0.0539652 + 0.0107343i 0.221999 0.975047i \(-0.428742\pi\)
−0.168034 + 0.985781i \(0.553742\pi\)
\(644\) 26.1405 + 63.1088i 0.0405909 + 0.0979950i
\(645\) 63.2046i 0.0979916i
\(646\) 0 0
\(647\) −472.176 −0.729793 −0.364897 0.931048i \(-0.618896\pi\)
−0.364897 + 0.931048i \(0.618896\pi\)
\(648\) 516.248 213.837i 0.796679 0.329995i
\(649\) −80.4959 + 404.680i −0.124031 + 0.623544i
\(650\) 39.9283 39.9283i 0.0614281 0.0614281i
\(651\) 1.01892 0.680818i 0.00156515 0.00104580i
\(652\) 9.04585 + 45.4766i 0.0138740 + 0.0697493i
\(653\) −529.021 353.481i −0.810140 0.541318i 0.0801126 0.996786i \(-0.474472\pi\)
−0.890252 + 0.455468i \(0.849472\pi\)
\(654\) −15.8210 + 38.1953i −0.0241912 + 0.0584026i
\(655\) −212.631 88.0746i −0.324627 0.134465i
\(656\) −325.758 + 487.531i −0.496582 + 0.743187i
\(657\) −11.8591 + 2.35892i −0.0180504 + 0.00359044i
\(658\) −113.151 169.343i −0.171963 0.257360i
\(659\) −128.530 128.530i −0.195037 0.195037i 0.602831 0.797869i \(-0.294039\pi\)
−0.797869 + 0.602831i \(0.794039\pi\)
\(660\) 10.3736 + 2.06344i 0.0157176 + 0.00312642i
\(661\) −445.481 1075.49i −0.673950 1.62706i −0.774837 0.632161i \(-0.782168\pi\)
0.100887 0.994898i \(-0.467832\pi\)
\(662\) 496.438i 0.749906i
\(663\) 0 0
\(664\) 469.082 0.706449
\(665\) 773.368 320.340i 1.16296 0.481714i
\(666\) 178.939 899.588i 0.268678 1.35073i
\(667\) −305.919 + 305.919i −0.458649 + 0.458649i
\(668\) 35.8756 23.9713i 0.0537060 0.0358852i
\(669\) −1.54707 7.77765i −0.00231251 0.0116258i
\(670\) −436.823 291.876i −0.651975 0.435635i
\(671\) −461.884 + 1115.09i −0.688352 + 1.66183i
\(672\) −12.2691 5.08204i −0.0182576 0.00756256i
\(673\) 59.6248 89.2349i 0.0885956 0.132593i −0.784525 0.620098i \(-0.787093\pi\)
0.873120 + 0.487505i \(0.162093\pi\)
\(674\) −778.854 + 154.924i −1.15557 + 0.229857i
\(675\) −6.10672 9.13935i −0.00904699 0.0135398i
\(676\) −72.6081 72.6081i −0.107408 0.107408i
\(677\) 1034.24 + 205.722i 1.52767 + 0.303873i 0.886211 0.463281i \(-0.153328\pi\)
0.641463 + 0.767154i \(0.278328\pi\)
\(678\) 8.96927 + 21.6537i 0.0132290 + 0.0319377i
\(679\) 422.355i 0.622025i
\(680\) 0 0
\(681\) −27.1616 −0.0398849
\(682\) −36.0262 + 14.9225i −0.0528243 + 0.0218805i
\(683\) −119.170 + 599.107i −0.174480 + 0.877170i 0.790019 + 0.613083i \(0.210071\pi\)
−0.964499 + 0.264088i \(0.914929\pi\)
\(684\) −132.422 + 132.422i −0.193600 + 0.193600i
\(685\) 284.708 190.236i 0.415632 0.277716i
\(686\) 158.066 + 794.652i 0.230417 + 1.15838i
\(687\) 16.6867 + 11.1497i 0.0242892 + 0.0162295i
\(688\) 520.051 1255.51i 0.755888 1.82488i
\(689\) 32.4143 + 13.4265i 0.0470455 + 0.0194869i
\(690\) 13.8736 20.7633i 0.0201067 0.0300917i
\(691\) 962.080 191.370i 1.39230 0.276946i 0.558726 0.829352i \(-0.311290\pi\)
0.833575 + 0.552406i \(0.186290\pi\)
\(692\) 8.57096 + 12.8274i 0.0123858 + 0.0185366i
\(693\) 578.703 + 578.703i 0.835069 + 0.835069i
\(694\) −34.2006 6.80292i −0.0492804 0.00980248i
\(695\) −536.536 1295.31i −0.771994 1.86376i
\(696\) 37.1524i 0.0533798i
\(697\) 0 0
\(698\) 695.626 0.996600
\(699\) −52.7196 + 21.8372i −0.0754215 + 0.0312406i
\(700\) 3.85008 19.3557i 0.00550012 0.0276510i
\(701\) −52.7814 + 52.7814i −0.0752944 + 0.0752944i −0.743751 0.668457i \(-0.766955\pi\)
0.668457 + 0.743751i \(0.266955\pi\)
\(702\) 36.0443 24.0841i 0.0513452 0.0343078i
\(703\) −226.577 1139.08i −0.322300 1.62031i
\(704\) −554.204 370.307i −0.787222 0.526005i
\(705\) −4.92174 + 11.8821i −0.00698120 + 0.0168541i
\(706\) 550.507 + 228.027i 0.779755 + 0.322985i
\(707\) 120.177 179.858i 0.169982 0.254396i
\(708\) 3.74032 0.743996i 0.00528294 0.00105084i
\(709\) −426.329 638.046i −0.601310 0.899923i 0.398542 0.917150i \(-0.369516\pi\)
−0.999852 + 0.0172267i \(0.994516\pi\)
\(710\) −483.454 483.454i −0.680921 0.680921i
\(711\) 261.595 + 52.0345i 0.367925 + 0.0731849i
\(712\) 339.487 + 819.594i 0.476807 + 1.15111i
\(713\) 15.9030i 0.0223044i
\(714\) 0 0
\(715\) 531.762 0.743723
\(716\) 48.3580 20.0306i 0.0675392 0.0279756i
\(717\) 6.51183 32.7372i 0.00908206 0.0456586i
\(718\) −246.167 + 246.167i −0.342851 + 0.342851i
\(719\) 958.597 640.514i 1.33324 0.890840i 0.334565 0.942373i \(-0.391410\pi\)
0.998671 + 0.0515322i \(0.0164105\pi\)
\(720\) −175.111 880.341i −0.243209 1.22270i
\(721\) 784.874 + 524.436i 1.08859 + 0.727373i
\(722\) −221.566 + 534.907i −0.306878 + 0.740869i
\(723\) −43.0074 17.8143i −0.0594847 0.0246394i
\(724\) −48.5362 + 72.6396i −0.0670390 + 0.100331i
\(725\) 122.590 24.3847i 0.169090 0.0336340i
\(726\) 18.2231 + 27.2728i 0.0251007 + 0.0375658i
\(727\) −195.955 195.955i −0.269539 0.269539i 0.559376 0.828914i \(-0.311041\pi\)
−0.828914 + 0.559376i \(0.811041\pi\)
\(728\) −289.251 57.5357i −0.397323 0.0790325i
\(729\) 274.130 + 661.808i 0.376036 + 0.907830i
\(730\) 15.8957i 0.0217749i
\(731\) 0 0
\(732\) 11.1555 0.0152398
\(733\) 409.632 169.675i 0.558843 0.231480i −0.0853397 0.996352i \(-0.527198\pi\)
0.644183 + 0.764871i \(0.277198\pi\)
\(734\) 209.770 1054.59i 0.285791 1.43677i
\(735\) 6.13496 6.13496i 0.00834689 0.00834689i
\(736\) 143.296 95.7472i 0.194695 0.130091i
\(737\) −126.883 637.885i −0.172162 0.865515i
\(738\) −516.022 344.795i −0.699216 0.467201i
\(739\) −40.6523 + 98.1432i −0.0550098 + 0.132805i −0.948995 0.315291i \(-0.897898\pi\)
0.893985 + 0.448096i \(0.147898\pi\)
\(740\) −192.429 79.7067i −0.260039 0.107712i
\(741\) 15.2257 22.7869i 0.0205475 0.0307515i
\(742\) 69.6228 13.8488i 0.0938313 0.0186642i
\(743\) 513.057 + 767.844i 0.690521 + 1.03344i 0.996677 + 0.0814563i \(0.0259571\pi\)
−0.306156 + 0.951981i \(0.599043\pi\)
\(744\) −0.965673 0.965673i −0.00129795 0.00129795i
\(745\) −622.121 123.748i −0.835062 0.166104i
\(746\) 482.554 + 1164.99i 0.646855 + 1.56165i
\(747\) 604.891i 0.809760i
\(748\) 0 0
\(749\) −59.5595 −0.0795187
\(750\) 37.3727 15.4803i 0.0498302 0.0206403i
\(751\) 223.569 1123.96i 0.297695 1.49662i −0.485167 0.874421i \(-0.661241\pi\)
0.782863 0.622195i \(-0.213759\pi\)
\(752\) −195.534 + 195.534i −0.260018 + 0.260018i
\(753\) −36.3164 + 24.2658i −0.0482289 + 0.0322255i
\(754\) 96.1698 + 483.478i 0.127546 + 0.641218i
\(755\) 123.536 + 82.5438i 0.163623 + 0.109330i
\(756\) 5.79787 13.9973i 0.00766915 0.0185150i
\(757\) 59.3832 + 24.5973i 0.0784455 + 0.0324932i 0.421561 0.906800i \(-0.361482\pi\)
−0.343116 + 0.939293i \(0.611482\pi\)
\(758\) −857.604 + 1283.50i −1.13140 + 1.69327i
\(759\) 30.3203 6.03108i 0.0399477 0.00794608i
\(760\) −518.279 775.659i −0.681945 1.02060i
\(761\) 173.164 + 173.164i 0.227548 + 0.227548i 0.811668 0.584120i \(-0.198560\pi\)
−0.584120 + 0.811668i \(0.698560\pi\)
\(762\) −33.2974 6.62327i −0.0436974 0.00869195i
\(763\) 277.994 + 671.137i 0.364343 + 0.879602i
\(764\) 162.919i 0.213245i
\(765\) 0 0
\(766\) 678.170 0.885339
\(767\) 177.138 73.3731i 0.230950 0.0956624i
\(768\) −4.85111 + 24.3882i −0.00631655 + 0.0317555i
\(769\) −550.339 + 550.339i −0.715655 + 0.715655i −0.967712 0.252057i \(-0.918893\pi\)
0.252057 + 0.967712i \(0.418893\pi\)
\(770\) 894.581 597.740i 1.16179 0.776285i
\(771\) 1.66483 + 8.36964i 0.00215931 + 0.0108556i
\(772\) 61.3921 + 41.0209i 0.0795235 + 0.0531359i
\(773\) −165.492 + 399.534i −0.214091 + 0.516861i −0.994044 0.108976i \(-0.965243\pi\)
0.779953 + 0.625837i \(0.215243\pi\)
\(774\) 1328.89 + 550.442i 1.71691 + 0.711166i
\(775\) 2.55258 3.82020i 0.00329365 0.00492929i
\(776\) −461.642 + 91.8263i −0.594899 + 0.118333i
\(777\) 26.0621 + 39.0047i 0.0335420 + 0.0501991i
\(778\) 443.266 + 443.266i 0.569751 + 0.569751i
\(779\) −770.735 153.309i −0.989390 0.196802i
\(780\) −1.88085 4.54077i −0.00241134 0.00582150i
\(781\) 846.408i 1.08375i
\(782\) 0 0
\(783\) 95.9569 0.122550
\(784\) 172.345 71.3878i 0.219828 0.0910559i
\(785\) −82.7379 + 415.951i −0.105399 + 0.529874i
\(786\) −10.7800 + 10.7800i −0.0137150 + 0.0137150i
\(787\) −947.377 + 633.017i −1.20378 + 0.804342i −0.985189 0.171474i \(-0.945147\pi\)
−0.218594 + 0.975816i \(0.570147\pi\)
\(788\) −41.9374 210.833i −0.0532200 0.267555i
\(789\) −68.2037 45.5723i −0.0864432 0.0577595i
\(790\) 134.183 323.946i 0.169852 0.410059i
\(791\) 380.481 + 157.601i 0.481013 + 0.199242i
\(792\) 506.714 758.351i 0.639791 0.957515i
\(793\) 550.080 109.418i 0.693670 0.137980i
\(794\) −151.910 227.349i −0.191322 0.286334i
\(795\) −3.16972 3.16972i −0.00398707 0.00398707i
\(796\) 186.319 + 37.0612i 0.234069 + 0.0465593i
\(797\) −43.1132 104.084i −0.0540943 0.130595i 0.894522 0.447024i \(-0.147516\pi\)
−0.948616 + 0.316429i \(0.897516\pi\)
\(798\) 55.4491i 0.0694850i
\(799\) 0 0
\(800\) −49.7905 −0.0622381
\(801\) −1056.88 + 437.775i −1.31945 + 0.546536i
\(802\) 183.166 920.840i 0.228387 1.14818i
\(803\) −13.9147 + 13.9147i −0.0173284 + 0.0173284i
\(804\) −4.99818 + 3.33967i −0.00621664 + 0.00415382i
\(805\) −85.6025 430.353i −0.106338 0.534600i
\(806\) 15.0664 + 10.0670i 0.0186927 + 0.0124901i
\(807\) −10.9012 + 26.3178i −0.0135083 + 0.0326119i
\(808\) −222.716 92.2520i −0.275639 0.114173i
\(809\) 361.469 540.977i 0.446810 0.668698i −0.537878 0.843022i \(-0.680774\pi\)
0.984688 + 0.174324i \(0.0557741\pi\)
\(810\) 929.068 184.803i 1.14700 0.228152i
\(811\) −357.615 535.209i −0.440956 0.659937i 0.542715 0.839917i \(-0.317397\pi\)
−0.983670 + 0.179980i \(0.942397\pi\)
\(812\) 121.822 + 121.822i 0.150027 + 0.150027i
\(813\) 73.5903 + 14.6380i 0.0905169 + 0.0180049i
\(814\) −571.243 1379.10i −0.701773 1.69423i
\(815\) 297.845i 0.365453i
\(816\) 0 0
\(817\) 1821.30 2.22925
\(818\) 437.897 181.383i 0.535326 0.221739i
\(819\) 74.1934 372.996i 0.0905903 0.455428i
\(820\) −99.6533 + 99.6533i −0.121528 + 0.121528i
\(821\) −743.294 + 496.653i −0.905352 + 0.604937i −0.918692 0.394974i \(-0.870754\pi\)
0.0133400 + 0.999911i \(0.495754\pi\)
\(822\) −4.42499 22.2459i −0.00538320 0.0270632i
\(823\) 768.962 + 513.804i 0.934340 + 0.624306i 0.926756 0.375665i \(-0.122586\pi\)
0.00758474 + 0.999971i \(0.497586\pi\)
\(824\) 402.575 971.901i 0.488562 1.17949i
\(825\) −8.25153 3.41789i −0.0100018 0.00414290i
\(826\) 215.522 322.552i 0.260923 0.390498i
\(827\) 831.543 165.404i 1.00549 0.200005i 0.335237 0.942134i \(-0.391184\pi\)
0.670257 + 0.742129i \(0.266184\pi\)
\(828\) 54.5375 + 81.6211i 0.0658665 + 0.0985762i
\(829\) −862.801 862.801i −1.04077 1.04077i −0.999133 0.0416400i \(-0.986742\pi\)
−0.0416400 0.999133i \(-0.513258\pi\)
\(830\) 779.926 + 155.137i 0.939670 + 0.186912i
\(831\) −10.9215 26.3667i −0.0131426 0.0317289i
\(832\) 309.729i 0.372271i
\(833\) 0 0
\(834\) −92.8715 −0.111357
\(835\) −256.062 + 106.064i −0.306661 + 0.127023i
\(836\) −59.4598 + 298.925i −0.0711242 + 0.357566i
\(837\) 2.49414 2.49414i 0.00297985 0.00297985i
\(838\) −1137.55 + 760.089i −1.35746 + 0.907028i
\(839\) −74.9935 377.018i −0.0893844 0.449366i −0.999395 0.0347806i \(-0.988927\pi\)
0.910011 0.414585i \(-0.136073\pi\)
\(840\) 31.3301 + 20.9341i 0.0372977 + 0.0249216i
\(841\) −95.7324 + 231.119i −0.113832 + 0.274814i
\(842\) −104.494 43.2829i −0.124102 0.0514048i
\(843\) 35.8696 53.6826i 0.0425499 0.0636804i
\(844\) 6.62523 1.31784i 0.00784980 0.00156142i
\(845\) 366.450 + 548.432i 0.433669 + 0.649032i
\(846\) −206.961 206.961i −0.244634 0.244634i
\(847\) 565.273 + 112.440i 0.667382 + 0.132751i
\(848\) −36.8836 89.0448i −0.0434948 0.105006i
\(849\) 57.7975i 0.0680771i
\(850\) 0 0
\(851\) −608.778 −0.715368
\(852\) −7.22756 + 2.99375i −0.00848305 + 0.00351380i
\(853\) −170.470 + 857.011i −0.199848 + 1.00470i 0.742444 + 0.669908i \(0.233667\pi\)
−0.942291 + 0.334794i \(0.891333\pi\)
\(854\) 802.404 802.404i 0.939583 0.939583i
\(855\) 1000.23 668.331i 1.16986 0.781673i
\(856\) 12.9491 + 65.0997i 0.0151275 + 0.0760510i
\(857\) −1116.86 746.263i −1.30322 0.870786i −0.306515 0.951866i \(-0.599163\pi\)
−0.996708 + 0.0810800i \(0.974163\pi\)
\(858\) 13.4797 32.5429i 0.0157106 0.0379288i
\(859\) −236.510 97.9655i −0.275331 0.114046i 0.240745 0.970588i \(-0.422608\pi\)
−0.516077 + 0.856542i \(0.672608\pi\)
\(860\) 181.466 271.584i 0.211007 0.315795i
\(861\) 31.1312 6.19238i 0.0361570 0.00719208i
\(862\) −574.927 860.439i −0.666968 0.998189i
\(863\) 1137.90 + 1137.90i 1.31854 + 1.31854i 0.914930 + 0.403612i \(0.132245\pi\)
0.403612 + 0.914930i \(0.367755\pi\)
\(864\) −37.4900 7.45722i −0.0433912 0.00863105i
\(865\) −37.9233 91.5550i −0.0438420 0.105844i
\(866\) 1415.19i 1.63417i
\(867\) 0 0
\(868\) 6.33287 0.00729593
\(869\) 401.035 166.114i 0.461490 0.191156i
\(870\) 12.2872 61.7719i 0.0141232 0.0710022i
\(871\) −213.704 + 213.704i −0.245355 + 0.245355i
\(872\) 673.124 449.767i 0.771932 0.515788i
\(873\) −118.412 595.296i −0.135638 0.681897i
\(874\) 598.314 + 399.781i 0.684570 + 0.457415i
\(875\) 272.006 656.681i 0.310864 0.750493i
\(876\) 0.168035 + 0.0696025i 0.000191821 + 7.94550e-5i
\(877\) −273.902 + 409.924i −0.312317 + 0.467416i −0.954107 0.299465i \(-0.903192\pi\)
0.641790 + 0.766880i \(0.278192\pi\)
\(878\) −1784.53 + 354.965i −2.03249 + 0.404288i
\(879\) −21.4604 32.1177i −0.0244145 0.0365389i
\(880\) −1032.94 1032.94i −1.17379 1.17379i
\(881\) 394.389 + 78.4489i 0.447661 + 0.0890453i 0.413772 0.910380i \(-0.364211\pi\)
0.0338884 + 0.999426i \(0.489211\pi\)
\(882\) 75.5597 + 182.417i 0.0856686 + 0.206822i
\(883\) 907.327i 1.02755i −0.857925 0.513775i \(-0.828246\pi\)
0.857925 0.513775i \(-0.171754\pi\)
\(884\) 0 0
\(885\) −24.4969 −0.0276801
\(886\) −720.035 + 298.248i −0.812681 + 0.336624i
\(887\) −247.891 + 1246.23i −0.279471 + 1.40500i 0.544689 + 0.838638i \(0.316648\pi\)
−0.824160 + 0.566357i \(0.808352\pi\)
\(888\) 36.9665 36.9665i 0.0416290 0.0416290i
\(889\) −496.002 + 331.418i −0.557933 + 0.372799i
\(890\) 293.393 + 1474.99i 0.329655 + 1.65729i
\(891\) 975.055 + 651.511i 1.09434 + 0.731213i
\(892\) 15.6828 37.8615i 0.0175816 0.0424457i
\(893\) −342.395 141.825i −0.383421 0.158818i
\(894\) −23.3434 + 34.9358i −0.0261111 + 0.0390781i
\(895\) −329.764 + 65.5942i −0.368452 + 0.0732896i
\(896\) 530.761 + 794.340i 0.592367 + 0.886540i
\(897\) −10.1579 10.1579i −0.0113243 0.0113243i
\(898\) −1695.01 337.159i −1.88754 0.375456i
\(899\) 15.3493 + 37.0564i 0.0170737 + 0.0412195i
\(900\) 28.3606i 0.0315118i
\(901\) 0 0
\(902\) −1010.03 −1.11976
\(903\) −67.9654 + 28.1522i −0.0752663 + 0.0311763i
\(904\) 89.5380 450.138i 0.0990464 0.497940i
\(905\) 396.815 396.815i 0.438470 0.438470i
\(906\) 8.18305 5.46774i 0.00903207 0.00603503i
\(907\) 299.309 + 1504.73i 0.329998 + 1.65901i 0.688313 + 0.725413i \(0.258351\pi\)
−0.358315 + 0.933601i \(0.616649\pi\)
\(908\) −116.711 77.9836i −0.128536 0.0858850i
\(909\) 118.961 287.197i 0.130870 0.315948i
\(910\) −461.899 191.325i −0.507582 0.210247i
\(911\) 203.486 304.539i 0.223366 0.334291i −0.702813 0.711374i \(-0.748073\pi\)
0.926179 + 0.377084i \(0.123073\pi\)
\(912\) −73.8387 + 14.6874i −0.0809634 + 0.0161046i
\(913\) 546.925 + 818.531i 0.599041 + 0.896529i
\(914\) 505.549 + 505.549i 0.553117 + 0.553117i
\(915\) −70.2813 13.9798i −0.0768102 0.0152785i
\(916\) 39.6892 + 95.8181i 0.0433288 + 0.104605i
\(917\) 267.877i 0.292123i
\(918\) 0 0
\(919\) −944.655 −1.02792 −0.513958 0.857815i \(-0.671821\pi\)
−0.513958 + 0.857815i \(0.671821\pi\)
\(920\) −451.772 + 187.130i −0.491057 + 0.203402i
\(921\) 12.9259 64.9830i 0.0140347 0.0705570i
\(922\) 382.839 382.839i 0.415226 0.415226i
\(923\) −327.028 + 218.513i −0.354310 + 0.236742i
\(924\) −2.40168 12.0741i −0.00259922 0.0130672i
\(925\) 146.240 + 97.7142i 0.158097 + 0.105637i
\(926\) −295.212 + 712.706i −0.318804 + 0.769661i
\(927\) 1253.29 + 519.128i 1.35198 + 0.560009i
\(928\) 241.487 361.410i 0.260223 0.389451i
\(929\) −952.999 + 189.563i −1.02583 + 0.204051i −0.679203 0.733951i \(-0.737674\pi\)
−0.346631 + 0.938002i \(0.612674\pi\)
\(930\) −1.28622 1.92496i −0.00138303 0.00206985i
\(931\) 176.785 + 176.785i 0.189887 + 0.189887i
\(932\) −289.228 57.5309i −0.310330 0.0617285i
\(933\) −13.3967 32.3426i −0.0143588 0.0346652i
\(934\) 481.282i 0.515292i
\(935\) 0 0
\(936\) −423.822 −0.452801
\(937\) −554.438 + 229.656i −0.591716 + 0.245097i −0.658389 0.752678i \(-0.728762\pi\)
0.0666728 + 0.997775i \(0.478762\pi\)
\(938\) −119.294 + 599.732i −0.127179 + 0.639373i
\(939\) −54.1023 + 54.1023i −0.0576170 + 0.0576170i
\(940\) −55.2630 + 36.9255i −0.0587904 + 0.0392825i
\(941\) 211.575 + 1063.66i 0.224840 + 1.13035i 0.913992 + 0.405732i \(0.132983\pi\)
−0.689152 + 0.724617i \(0.742017\pi\)
\(942\) 23.3581 + 15.6074i 0.0247963 + 0.0165684i
\(943\) −157.634 + 380.563i −0.167162 + 0.403566i
\(944\) −486.613 201.562i −0.515480 0.213519i
\(945\) −54.0685 + 80.9192i −0.0572153 + 0.0856288i
\(946\) 2295.93 456.688i 2.42698 0.482757i
\(947\) 387.099 + 579.335i 0.408764 + 0.611758i 0.977544 0.210731i \(-0.0675845\pi\)
−0.568780 + 0.822490i \(0.692584\pi\)
\(948\) −2.83693 2.83693i −0.00299254 0.00299254i
\(949\) 8.96854 + 1.78395i 0.00945051 + 0.00187982i
\(950\) −79.5577 192.069i −0.0837449 0.202178i
\(951\) 41.4305i 0.0435651i
\(952\) 0 0
\(953\) −1779.95 −1.86774 −0.933868 0.357618i \(-0.883589\pi\)
−0.933868 + 0.357618i \(0.883589\pi\)
\(954\) 94.2485 39.0390i 0.0987930 0.0409214i
\(955\) −204.166 + 1026.41i −0.213786 + 1.07478i
\(956\) 121.972 121.972i 0.127586 0.127586i
\(957\) 64.8295 43.3177i 0.0677424 0.0452640i
\(958\) −215.553 1083.66i −0.225003 1.13117i
\(959\) −331.378 221.420i −0.345545 0.230886i
\(960\) 15.1438 36.5604i 0.0157748 0.0380838i
\(961\) −886.486 367.195i −0.922462 0.382096i
\(962\) −385.371 + 576.749i −0.400594 + 0.599531i
\(963\) −83.9473 + 16.6982i −0.0871727 + 0.0173397i
\(964\) −133.652 200.024i −0.138643 0.207494i
\(965\) −335.373 335.373i −0.347536 0.347536i
\(966\) −28.5068 5.67035i −0.0295101 0.00586992i
\(967\) 231.136 + 558.012i 0.239024 + 0.577055i 0.997182 0.0750154i \(-0.0239006\pi\)
−0.758158 + 0.652071i \(0.773901\pi\)
\(968\) 642.299i 0.663532i
\(969\) 0 0
\(970\) −797.924 −0.822602
\(971\) 1017.06 421.281i 1.04744 0.433863i 0.208461 0.978031i \(-0.433155\pi\)
0.838976 + 0.544168i \(0.183155\pi\)
\(972\) 6.37453 32.0469i 0.00655816 0.0329701i
\(973\) −1153.90 + 1153.90i −1.18592 + 1.18592i
\(974\) −460.348 + 307.594i −0.472636 + 0.315805i
\(975\) 0.809680 + 4.07054i 0.000830441 + 0.00417491i
\(976\) −1281.06 855.978i −1.31256 0.877026i
\(977\) −419.266 + 1012.20i −0.429136 + 1.03603i 0.550426 + 0.834884i \(0.314465\pi\)
−0.979562 + 0.201142i \(0.935535\pi\)
\(978\) −18.2276 7.55010i −0.0186376 0.00771994i
\(979\) −1034.34 + 1547.99i −1.05652 + 1.58120i
\(980\) 43.9754 8.74724i 0.0448728 0.00892576i
\(981\) 579.984 + 868.008i 0.591217 + 0.884819i
\(982\) −351.948 351.948i −0.358399 0.358399i
\(983\) 1205.50 + 239.790i 1.22635 + 0.243937i 0.765439 0.643509i \(-0.222522\pi\)
0.460913 + 0.887445i \(0.347522\pi\)
\(984\) −13.5368 32.6807i −0.0137569 0.0332121i
\(985\) 1380.83i 1.40186i
\(986\) 0 0
\(987\) 14.9694 0.0151665
\(988\) 130.847 54.1984i 0.132436 0.0548567i
\(989\) 186.250 936.344i 0.188322 0.946758i
\(990\) 1093.30 1093.30i 1.10434 1.10434i
\(991\) −612.594 + 409.322i −0.618158 + 0.413040i −0.824838 0.565369i \(-0.808734\pi\)
0.206681 + 0.978408i \(0.433734\pi\)
\(992\) −3.11708 15.6706i −0.00314222 0.0157970i
\(993\) 30.3385 + 20.2715i 0.0305523 + 0.0204144i
\(994\) −304.533 + 735.207i −0.306371 + 0.739645i
\(995\) −1127.39 466.981i −1.13306 0.469328i
\(996\) 5.05504 7.56540i 0.00507534 0.00759578i
\(997\) −171.215 + 34.0568i −0.171730 + 0.0341593i −0.280206 0.959940i \(-0.590403\pi\)
0.108476 + 0.994099i \(0.465403\pi\)
\(998\) 263.691 + 394.641i 0.264219 + 0.395432i
\(999\) 95.4770 + 95.4770i 0.0955725 + 0.0955725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.b.65.1 8
17.2 even 8 289.3.e.c.158.1 8
17.3 odd 16 17.3.e.a.7.1 yes 8
17.4 even 4 289.3.e.l.224.1 8
17.5 odd 16 289.3.e.m.214.1 8
17.6 odd 16 289.3.e.d.249.1 8
17.7 odd 16 289.3.e.l.40.1 8
17.8 even 8 289.3.e.i.131.1 8
17.9 even 8 289.3.e.m.131.1 8
17.10 odd 16 289.3.e.k.40.1 8
17.11 odd 16 inner 289.3.e.b.249.1 8
17.12 odd 16 289.3.e.i.214.1 8
17.13 even 4 289.3.e.k.224.1 8
17.14 odd 16 289.3.e.c.75.1 8
17.15 even 8 17.3.e.a.5.1 8
17.16 even 2 289.3.e.d.65.1 8
51.20 even 16 153.3.p.b.109.1 8
51.32 odd 8 153.3.p.b.73.1 8
68.3 even 16 272.3.bh.c.177.1 8
68.15 odd 8 272.3.bh.c.209.1 8
85.3 even 16 425.3.t.c.24.1 8
85.32 odd 8 425.3.t.c.124.1 8
85.37 even 16 425.3.t.a.24.1 8
85.49 even 8 425.3.u.b.226.1 8
85.54 odd 16 425.3.u.b.126.1 8
85.83 odd 8 425.3.t.a.124.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.a.5.1 8 17.15 even 8
17.3.e.a.7.1 yes 8 17.3 odd 16
153.3.p.b.73.1 8 51.32 odd 8
153.3.p.b.109.1 8 51.20 even 16
272.3.bh.c.177.1 8 68.3 even 16
272.3.bh.c.209.1 8 68.15 odd 8
289.3.e.b.65.1 8 1.1 even 1 trivial
289.3.e.b.249.1 8 17.11 odd 16 inner
289.3.e.c.75.1 8 17.14 odd 16
289.3.e.c.158.1 8 17.2 even 8
289.3.e.d.65.1 8 17.16 even 2
289.3.e.d.249.1 8 17.6 odd 16
289.3.e.i.131.1 8 17.8 even 8
289.3.e.i.214.1 8 17.12 odd 16
289.3.e.k.40.1 8 17.10 odd 16
289.3.e.k.224.1 8 17.13 even 4
289.3.e.l.40.1 8 17.7 odd 16
289.3.e.l.224.1 8 17.4 even 4
289.3.e.m.131.1 8 17.9 even 8
289.3.e.m.214.1 8 17.5 odd 16
425.3.t.a.24.1 8 85.37 even 16
425.3.t.a.124.1 8 85.83 odd 8
425.3.t.c.24.1 8 85.3 even 16
425.3.t.c.124.1 8 85.32 odd 8
425.3.u.b.126.1 8 85.54 odd 16
425.3.u.b.226.1 8 85.49 even 8