Properties

Label 4160.2
Level 4160
Weight 2
Dimension 261492
Nonzero newspaces 104
Sturm bound 2064384

Downloads

Learn more

Defining parameters

Level: N N = 4160=26513 4160 = 2^{6} \cdot 5 \cdot 13
Weight: k k = 2 2
Nonzero newspaces: 104 104
Sturm bound: 20643842064384

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(4160))M_{2}(\Gamma_1(4160)).

Total New Old
Modular forms 523008 264396 258612
Cusp forms 509185 261492 247693
Eisenstein series 13823 2904 10919

Decomposition of S2new(Γ1(4160))S_{2}^{\mathrm{new}}(\Gamma_1(4160))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
4160.2.a χ4160(1,)\chi_{4160}(1, \cdot) 4160.2.a.a 1 1
4160.2.a.b 1
4160.2.a.c 1
4160.2.a.d 1
4160.2.a.e 1
4160.2.a.f 1
4160.2.a.g 1
4160.2.a.h 1
4160.2.a.i 1
4160.2.a.j 1
4160.2.a.k 1
4160.2.a.l 1
4160.2.a.m 1
4160.2.a.n 1
4160.2.a.o 1
4160.2.a.p 1
4160.2.a.q 1
4160.2.a.r 1
4160.2.a.s 1
4160.2.a.t 1
4160.2.a.u 2
4160.2.a.v 2
4160.2.a.w 2
4160.2.a.x 2
4160.2.a.y 2
4160.2.a.z 2
4160.2.a.ba 2
4160.2.a.bb 2
4160.2.a.bc 2
4160.2.a.bd 2
4160.2.a.be 2
4160.2.a.bf 2
4160.2.a.bg 2
4160.2.a.bh 2
4160.2.a.bi 2
4160.2.a.bj 2
4160.2.a.bk 2
4160.2.a.bl 2
4160.2.a.bm 2
4160.2.a.bn 2
4160.2.a.bo 3
4160.2.a.bp 3
4160.2.a.bq 3
4160.2.a.br 3
4160.2.a.bs 4
4160.2.a.bt 4
4160.2.a.bu 4
4160.2.a.bv 4
4160.2.a.bw 4
4160.2.a.bx 4
4160.2.d χ4160(3329,)\chi_{4160}(3329, \cdot) n/a 144 1
4160.2.e χ4160(3041,)\chi_{4160}(3041, \cdot) n/a 112 1
4160.2.f χ4160(129,)\chi_{4160}(129, \cdot) n/a 164 1
4160.2.g χ4160(2081,)\chi_{4160}(2081, \cdot) 4160.2.g.a 2 1
4160.2.g.b 2
4160.2.g.c 6
4160.2.g.d 6
4160.2.g.e 8
4160.2.g.f 8
4160.2.g.g 16
4160.2.g.h 16
4160.2.g.i 16
4160.2.g.j 16
4160.2.j χ4160(1249,)\chi_{4160}(1249, \cdot) n/a 144 1
4160.2.k χ4160(961,)\chi_{4160}(961, \cdot) n/a 112 1
4160.2.p χ4160(2209,)\chi_{4160}(2209, \cdot) n/a 168 1
4160.2.q χ4160(321,)\chi_{4160}(321, \cdot) n/a 224 2
4160.2.s χ4160(177,)\chi_{4160}(177, \cdot) n/a 328 2
4160.2.u χ4160(2111,)\chi_{4160}(2111, \cdot) n/a 224 2
4160.2.v χ4160(1327,)\chi_{4160}(1327, \cdot) n/a 288 2
4160.2.y χ4160(2287,)\chi_{4160}(2287, \cdot) n/a 328 2
4160.2.z χ4160(3359,)\chi_{4160}(3359, \cdot) n/a 336 2
4160.2.bb χ4160(593,)\chi_{4160}(593, \cdot) n/a 328 2
4160.2.be χ4160(1169,)\chi_{4160}(1169, \cdot) n/a 328 2
4160.2.bg χ4160(577,)\chi_{4160}(577, \cdot) n/a 328 2
4160.2.bi χ4160(1633,)\chi_{4160}(1633, \cdot) n/a 336 2
4160.2.bj χ4160(1041,)\chi_{4160}(1041, \cdot) n/a 192 2
4160.2.bm χ4160(1071,)\chi_{4160}(1071, \cdot) n/a 224 2
4160.2.bp χ4160(703,)\chi_{4160}(703, \cdot) n/a 288 2
4160.2.bq χ4160(1247,)\chi_{4160}(1247, \cdot) n/a 336 2
4160.2.bs χ4160(239,)\chi_{4160}(239, \cdot) n/a 328 2
4160.2.bt χ4160(1711,)\chi_{4160}(1711, \cdot) n/a 224 2
4160.2.bv χ4160(1663,)\chi_{4160}(1663, \cdot) n/a 328 2
4160.2.bw χ4160(287,)\chi_{4160}(287, \cdot) n/a 288 2
4160.2.bz χ4160(879,)\chi_{4160}(879, \cdot) n/a 328 2
4160.2.cc χ4160(209,)\chi_{4160}(209, \cdot) n/a 288 2
4160.2.cd χ4160(1217,)\chi_{4160}(1217, \cdot) n/a 328 2
4160.2.cf χ4160(993,)\chi_{4160}(993, \cdot) n/a 336 2
4160.2.ch χ4160(2001,)\chi_{4160}(2001, \cdot) n/a 224 2
4160.2.cj χ4160(2033,)\chi_{4160}(2033, \cdot) n/a 328 2
4160.2.cm χ4160(31,)\chi_{4160}(31, \cdot) n/a 224 2
4160.2.cn χ4160(3407,)\chi_{4160}(3407, \cdot) n/a 288 2
4160.2.cq χ4160(207,)\chi_{4160}(207, \cdot) n/a 328 2
4160.2.cr χ4160(1279,)\chi_{4160}(1279, \cdot) n/a 328 2
4160.2.cu χ4160(1617,)\chi_{4160}(1617, \cdot) n/a 328 2
4160.2.cv χ4160(1889,)\chi_{4160}(1889, \cdot) n/a 336 2
4160.2.da χ4160(641,)\chi_{4160}(641, \cdot) n/a 224 2
4160.2.db χ4160(289,)\chi_{4160}(289, \cdot) n/a 336 2
4160.2.de χ4160(1121,)\chi_{4160}(1121, \cdot) n/a 224 2
4160.2.df χ4160(1089,)\chi_{4160}(1089, \cdot) n/a 328 2
4160.2.dg χ4160(2721,)\chi_{4160}(2721, \cdot) n/a 224 2
4160.2.dh χ4160(2369,)\chi_{4160}(2369, \cdot) n/a 328 2
4160.2.dk χ4160(1399,)\chi_{4160}(1399, \cdot) None 0 4
4160.2.dm χ4160(1223,)\chi_{4160}(1223, \cdot) None 0 4
4160.2.dp χ4160(1143,)\chi_{4160}(1143, \cdot) None 0 4
4160.2.dr χ4160(1191,)\chi_{4160}(1191, \cdot) None 0 4
4160.2.ds χ4160(441,)\chi_{4160}(441, \cdot) None 0 4
4160.2.dv χ4160(521,)\chi_{4160}(521, \cdot) None 0 4
4160.2.dw χ4160(473,)\chi_{4160}(473, \cdot) None 0 4
4160.2.dz χ4160(1097,)\chi_{4160}(1097, \cdot) None 0 4
4160.2.eb χ4160(697,)\chi_{4160}(697, \cdot) None 0 4
4160.2.ec χ4160(57,)\chi_{4160}(57, \cdot) None 0 4
4160.2.ef χ4160(649,)\chi_{4160}(649, \cdot) None 0 4
4160.2.eg χ4160(729,)\chi_{4160}(729, \cdot) None 0 4
4160.2.ej χ4160(359,)\chi_{4160}(359, \cdot) None 0 4
4160.2.el χ4160(103,)\chi_{4160}(103, \cdot) None 0 4
4160.2.em χ4160(183,)\chi_{4160}(183, \cdot) None 0 4
4160.2.eo χ4160(151,)\chi_{4160}(151, \cdot) None 0 4
4160.2.eq χ4160(977,)\chi_{4160}(977, \cdot) n/a 656 4
4160.2.et χ4160(319,)\chi_{4160}(319, \cdot) n/a 656 4
4160.2.ev χ4160(2447,)\chi_{4160}(2447, \cdot) n/a 656 4
4160.2.ew χ4160(303,)\chi_{4160}(303, \cdot) n/a 656 4
4160.2.ey χ4160(1311,)\chi_{4160}(1311, \cdot) n/a 448 4
4160.2.fb χ4160(657,)\chi_{4160}(657, \cdot) n/a 656 4
4160.2.fd χ4160(881,)\chi_{4160}(881, \cdot) n/a 448 4
4160.2.ff χ4160(353,)\chi_{4160}(353, \cdot) n/a 672 4
4160.2.fh χ4160(513,)\chi_{4160}(513, \cdot) n/a 656 4
4160.2.fi χ4160(529,)\chi_{4160}(529, \cdot) n/a 656 4
4160.2.fk χ4160(1519,)\chi_{4160}(1519, \cdot) n/a 656 4
4160.2.fm χ4160(607,)\chi_{4160}(607, \cdot) n/a 672 4
4160.2.fn χ4160(127,)\chi_{4160}(127, \cdot) n/a 656 4
4160.2.fq χ4160(111,)\chi_{4160}(111, \cdot) n/a 448 4
4160.2.ft χ4160(1359,)\chi_{4160}(1359, \cdot) n/a 656 4
4160.2.fw χ4160(543,)\chi_{4160}(543, \cdot) n/a 672 4
4160.2.fx χ4160(1023,)\chi_{4160}(1023, \cdot) n/a 656 4
4160.2.fz χ4160(271,)\chi_{4160}(271, \cdot) n/a 448 4
4160.2.gb χ4160(81,)\chi_{4160}(81, \cdot) n/a 448 4
4160.2.gc χ4160(33,)\chi_{4160}(33, \cdot) n/a 672 4
4160.2.ge χ4160(193,)\chi_{4160}(193, \cdot) n/a 656 4
4160.2.gg χ4160(49,)\chi_{4160}(49, \cdot) n/a 656 4
4160.2.gj χ4160(1137,)\chi_{4160}(1137, \cdot) n/a 656 4
4160.2.gl χ4160(479,)\chi_{4160}(479, \cdot) n/a 672 4
4160.2.gn χ4160(367,)\chi_{4160}(367, \cdot) n/a 656 4
4160.2.go χ4160(1967,)\chi_{4160}(1967, \cdot) n/a 656 4
4160.2.gq χ4160(1151,)\chi_{4160}(1151, \cdot) n/a 448 4
4160.2.gs χ4160(817,)\chi_{4160}(817, \cdot) n/a 656 4
4160.2.gu χ4160(363,)\chi_{4160}(363, \cdot) n/a 5344 8
4160.2.gx χ4160(333,)\chi_{4160}(333, \cdot) n/a 5344 8
4160.2.gy χ4160(437,)\chi_{4160}(437, \cdot) n/a 5344 8
4160.2.ha χ4160(443,)\chi_{4160}(443, \cdot) n/a 4608 8
4160.2.hd χ4160(261,)\chi_{4160}(261, \cdot) n/a 3072 8
4160.2.he χ4160(469,)\chi_{4160}(469, \cdot) n/a 4608 8
4160.2.hh χ4160(811,)\chi_{4160}(811, \cdot) n/a 3584 8
4160.2.hi χ4160(499,)\chi_{4160}(499, \cdot) n/a 5344 8
4160.2.hk χ4160(99,)\chi_{4160}(99, \cdot) n/a 5344 8
4160.2.hn χ4160(291,)\chi_{4160}(291, \cdot) n/a 3584 8
4160.2.hp χ4160(389,)\chi_{4160}(389, \cdot) n/a 5344 8
4160.2.hq χ4160(181,)\chi_{4160}(181, \cdot) n/a 3584 8
4160.2.hs χ4160(883,)\chi_{4160}(883, \cdot) n/a 5344 8
4160.2.hv χ4160(317,)\chi_{4160}(317, \cdot) n/a 5344 8
4160.2.hw χ4160(213,)\chi_{4160}(213, \cdot) n/a 5344 8
4160.2.hy χ4160(27,)\chi_{4160}(27, \cdot) n/a 4608 8
4160.2.ib χ4160(71,)\chi_{4160}(71, \cdot) None 0 8
4160.2.ic χ4160(503,)\chi_{4160}(503, \cdot) None 0 8
4160.2.if χ4160(407,)\chi_{4160}(407, \cdot) None 0 8
4160.2.ig χ4160(119,)\chi_{4160}(119, \cdot) None 0 8
4160.2.ii χ4160(329,)\chi_{4160}(329, \cdot) None 0 8
4160.2.il χ4160(9,)\chi_{4160}(9, \cdot) None 0 8
4160.2.in χ4160(553,)\chi_{4160}(553, \cdot) None 0 8
4160.2.io χ4160(873,)\chi_{4160}(873, \cdot) None 0 8
4160.2.iq χ4160(457,)\chi_{4160}(457, \cdot) None 0 8
4160.2.it χ4160(137,)\chi_{4160}(137, \cdot) None 0 8
4160.2.iv χ4160(121,)\chi_{4160}(121, \cdot) None 0 8
4160.2.iw χ4160(601,)\chi_{4160}(601, \cdot) None 0 8
4160.2.iy χ4160(951,)\chi_{4160}(951, \cdot) None 0 8
4160.2.jb χ4160(23,)\chi_{4160}(23, \cdot) None 0 8
4160.2.jc χ4160(87,)\chi_{4160}(87, \cdot) None 0 8
4160.2.jf χ4160(1159,)\chi_{4160}(1159, \cdot) None 0 8
4160.2.jh χ4160(563,)\chi_{4160}(563, \cdot) n/a 10688 16
4160.2.jj χ4160(397,)\chi_{4160}(397, \cdot) n/a 10688 16
4160.2.jk χ4160(293,)\chi_{4160}(293, \cdot) n/a 10688 16
4160.2.jn χ4160(3,)\chi_{4160}(3, \cdot) n/a 10688 16
4160.2.jp χ4160(29,)\chi_{4160}(29, \cdot) n/a 10688 16
4160.2.jq χ4160(61,)\chi_{4160}(61, \cdot) n/a 7168 16
4160.2.jt χ4160(19,)\chi_{4160}(19, \cdot) n/a 10688 16
4160.2.ju χ4160(171,)\chi_{4160}(171, \cdot) n/a 7168 16
4160.2.jw χ4160(11,)\chi_{4160}(11, \cdot) n/a 7168 16
4160.2.jz χ4160(379,)\chi_{4160}(379, \cdot) n/a 10688 16
4160.2.kb χ4160(101,)\chi_{4160}(101, \cdot) n/a 7168 16
4160.2.kc χ4160(69,)\chi_{4160}(69, \cdot) n/a 10688 16
4160.2.kf χ4160(43,)\chi_{4160}(43, \cdot) n/a 10688 16
4160.2.kh χ4160(37,)\chi_{4160}(37, \cdot) n/a 10688 16
4160.2.ki χ4160(197,)\chi_{4160}(197, \cdot) n/a 10688 16
4160.2.kl χ4160(523,)\chi_{4160}(523, \cdot) n/a 10688 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(4160))S_{2}^{\mathrm{old}}(\Gamma_1(4160)) into lower level spaces

S2old(Γ1(4160)) S_{2}^{\mathrm{old}}(\Gamma_1(4160)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))28^{\oplus 28}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))24^{\oplus 24}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))20^{\oplus 20}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))14^{\oplus 14}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))16^{\oplus 16}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))12^{\oplus 12}\oplusS2new(Γ1(13))S_{2}^{\mathrm{new}}(\Gamma_1(13))14^{\oplus 14}\oplusS2new(Γ1(16))S_{2}^{\mathrm{new}}(\Gamma_1(16))12^{\oplus 12}\oplusS2new(Γ1(20))S_{2}^{\mathrm{new}}(\Gamma_1(20))10^{\oplus 10}\oplusS2new(Γ1(26))S_{2}^{\mathrm{new}}(\Gamma_1(26))12^{\oplus 12}\oplusS2new(Γ1(32))S_{2}^{\mathrm{new}}(\Gamma_1(32))8^{\oplus 8}\oplusS2new(Γ1(40))S_{2}^{\mathrm{new}}(\Gamma_1(40))8^{\oplus 8}\oplusS2new(Γ1(52))S_{2}^{\mathrm{new}}(\Gamma_1(52))10^{\oplus 10}\oplusS2new(Γ1(64))S_{2}^{\mathrm{new}}(\Gamma_1(64))4^{\oplus 4}\oplusS2new(Γ1(65))S_{2}^{\mathrm{new}}(\Gamma_1(65))7^{\oplus 7}\oplusS2new(Γ1(80))S_{2}^{\mathrm{new}}(\Gamma_1(80))6^{\oplus 6}\oplusS2new(Γ1(104))S_{2}^{\mathrm{new}}(\Gamma_1(104))8^{\oplus 8}\oplusS2new(Γ1(130))S_{2}^{\mathrm{new}}(\Gamma_1(130))6^{\oplus 6}\oplusS2new(Γ1(160))S_{2}^{\mathrm{new}}(\Gamma_1(160))4^{\oplus 4}\oplusS2new(Γ1(208))S_{2}^{\mathrm{new}}(\Gamma_1(208))6^{\oplus 6}\oplusS2new(Γ1(260))S_{2}^{\mathrm{new}}(\Gamma_1(260))5^{\oplus 5}\oplusS2new(Γ1(320))S_{2}^{\mathrm{new}}(\Gamma_1(320))2^{\oplus 2}\oplusS2new(Γ1(416))S_{2}^{\mathrm{new}}(\Gamma_1(416))4^{\oplus 4}\oplusS2new(Γ1(520))S_{2}^{\mathrm{new}}(\Gamma_1(520))4^{\oplus 4}\oplusS2new(Γ1(832))S_{2}^{\mathrm{new}}(\Gamma_1(832))2^{\oplus 2}\oplusS2new(Γ1(1040))S_{2}^{\mathrm{new}}(\Gamma_1(1040))3^{\oplus 3}\oplusS2new(Γ1(2080))S_{2}^{\mathrm{new}}(\Gamma_1(2080))2^{\oplus 2}