Defining parameters
Level: | \( N \) | = | \( 32 = 2^{5} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(32))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 23 | 25 |
Cusp forms | 17 | 13 | 4 |
Eisenstein series | 31 | 10 | 21 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(32))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(32)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)