Properties

Label 520.2
Level 520
Weight 2
Dimension 3976
Nonzero newspaces 32
Newform subspaces 78
Sturm bound 32256
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 32 \)
Newform subspaces: \( 78 \)
Sturm bound: \(32256\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(520))\).

Total New Old
Modular forms 8640 4240 4400
Cusp forms 7489 3976 3513
Eisenstein series 1151 264 887

Trace form

\( 3976 q - 16 q^{2} - 16 q^{3} - 16 q^{4} + 2 q^{5} - 56 q^{6} - 8 q^{7} - 16 q^{8} - 22 q^{9} - 28 q^{10} - 48 q^{11} - 40 q^{12} + 2 q^{13} - 64 q^{14} - 44 q^{15} - 88 q^{16} - 30 q^{17} - 72 q^{18} - 24 q^{19}+ \cdots - 400 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(520))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
520.2.a \(\chi_{520}(1, \cdot)\) 520.2.a.a 1 1
520.2.a.b 1
520.2.a.c 2
520.2.a.d 2
520.2.a.e 2
520.2.a.f 2
520.2.a.g 2
520.2.d \(\chi_{520}(209, \cdot)\) 520.2.d.a 2 1
520.2.d.b 6
520.2.d.c 10
520.2.e \(\chi_{520}(181, \cdot)\) 520.2.e.a 28 1
520.2.e.b 28
520.2.f \(\chi_{520}(129, \cdot)\) 520.2.f.a 10 1
520.2.f.b 10
520.2.g \(\chi_{520}(261, \cdot)\) 520.2.g.a 24 1
520.2.g.b 24
520.2.j \(\chi_{520}(469, \cdot)\) 520.2.j.a 36 1
520.2.j.b 36
520.2.k \(\chi_{520}(441, \cdot)\) 520.2.k.a 6 1
520.2.k.b 8
520.2.p \(\chi_{520}(389, \cdot)\) 520.2.p.a 8 1
520.2.p.b 72
520.2.q \(\chi_{520}(81, \cdot)\) 520.2.q.a 2 2
520.2.q.b 2
520.2.q.c 2
520.2.q.d 2
520.2.q.e 2
520.2.q.f 4
520.2.q.g 6
520.2.q.h 8
520.2.s \(\chi_{520}(31, \cdot)\) None 0 2
520.2.t \(\chi_{520}(99, \cdot)\) 520.2.t.a 4 2
520.2.t.b 4
520.2.t.c 152
520.2.w \(\chi_{520}(57, \cdot)\) 520.2.w.a 2 2
520.2.w.b 2
520.2.w.c 2
520.2.w.d 4
520.2.w.e 12
520.2.w.f 20
520.2.y \(\chi_{520}(317, \cdot)\) 520.2.y.a 160 2
520.2.bb \(\chi_{520}(183, \cdot)\) None 0 2
520.2.bc \(\chi_{520}(363, \cdot)\) 520.2.bc.a 12 2
520.2.bc.b 12
520.2.bc.c 136
520.2.bd \(\chi_{520}(103, \cdot)\) None 0 2
520.2.be \(\chi_{520}(27, \cdot)\) 520.2.be.a 144 2
520.2.bh \(\chi_{520}(177, \cdot)\) 520.2.bh.a 2 2
520.2.bh.b 2
520.2.bh.c 2
520.2.bh.d 4
520.2.bh.e 12
520.2.bh.f 20
520.2.bj \(\chi_{520}(213, \cdot)\) 520.2.bj.a 160 2
520.2.bm \(\chi_{520}(291, \cdot)\) 520.2.bm.a 112 2
520.2.bn \(\chi_{520}(239, \cdot)\) None 0 2
520.2.bp \(\chi_{520}(69, \cdot)\) 520.2.bp.a 160 2
520.2.bu \(\chi_{520}(121, \cdot)\) 520.2.bu.a 12 2
520.2.bu.b 16
520.2.bv \(\chi_{520}(29, \cdot)\) 520.2.bv.a 160 2
520.2.by \(\chi_{520}(61, \cdot)\) 520.2.by.a 4 2
520.2.by.b 4
520.2.by.c 104
520.2.bz \(\chi_{520}(49, \cdot)\) 520.2.bz.a 20 2
520.2.bz.b 20
520.2.ca \(\chi_{520}(101, \cdot)\) 520.2.ca.a 56 2
520.2.ca.b 56
520.2.cb \(\chi_{520}(9, \cdot)\) 520.2.cb.a 44 2
520.2.cf \(\chi_{520}(119, \cdot)\) None 0 4
520.2.cg \(\chi_{520}(11, \cdot)\) 520.2.cg.a 224 4
520.2.cj \(\chi_{520}(37, \cdot)\) 520.2.cj.a 320 4
520.2.cl \(\chi_{520}(137, \cdot)\) 520.2.cl.a 4 4
520.2.cl.b 40
520.2.cl.c 40
520.2.cm \(\chi_{520}(3, \cdot)\) 520.2.cm.a 320 4
520.2.cn \(\chi_{520}(23, \cdot)\) None 0 4
520.2.cs \(\chi_{520}(43, \cdot)\) 520.2.cs.a 320 4
520.2.ct \(\chi_{520}(87, \cdot)\) None 0 4
520.2.cu \(\chi_{520}(197, \cdot)\) 520.2.cu.a 320 4
520.2.cw \(\chi_{520}(33, \cdot)\) 520.2.cw.a 4 4
520.2.cw.b 40
520.2.cw.c 40
520.2.cz \(\chi_{520}(19, \cdot)\) 520.2.cz.a 8 4
520.2.cz.b 8
520.2.cz.c 304
520.2.da \(\chi_{520}(71, \cdot)\) None 0 4

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(520))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(520)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(130))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(260))\)\(^{\oplus 2}\)