Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(520))\).
|
Total |
New |
Old |
Modular forms
| 8640 |
4240 |
4400 |
Cusp forms
| 7489 |
3976 |
3513 |
Eisenstein series
| 1151 |
264 |
887 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(520))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
520.2.a |
\(\chi_{520}(1, \cdot)\) |
520.2.a.a |
1 |
1 |
520.2.a.b |
1 |
520.2.a.c |
2 |
520.2.a.d |
2 |
520.2.a.e |
2 |
520.2.a.f |
2 |
520.2.a.g |
2 |
520.2.d |
\(\chi_{520}(209, \cdot)\) |
520.2.d.a |
2 |
1 |
520.2.d.b |
6 |
520.2.d.c |
10 |
520.2.e |
\(\chi_{520}(181, \cdot)\) |
520.2.e.a |
28 |
1 |
520.2.e.b |
28 |
520.2.f |
\(\chi_{520}(129, \cdot)\) |
520.2.f.a |
10 |
1 |
520.2.f.b |
10 |
520.2.g |
\(\chi_{520}(261, \cdot)\) |
520.2.g.a |
24 |
1 |
520.2.g.b |
24 |
520.2.j |
\(\chi_{520}(469, \cdot)\) |
520.2.j.a |
36 |
1 |
520.2.j.b |
36 |
520.2.k |
\(\chi_{520}(441, \cdot)\) |
520.2.k.a |
6 |
1 |
520.2.k.b |
8 |
520.2.p |
\(\chi_{520}(389, \cdot)\) |
520.2.p.a |
8 |
1 |
520.2.p.b |
72 |
520.2.q |
\(\chi_{520}(81, \cdot)\) |
520.2.q.a |
2 |
2 |
520.2.q.b |
2 |
520.2.q.c |
2 |
520.2.q.d |
2 |
520.2.q.e |
2 |
520.2.q.f |
4 |
520.2.q.g |
6 |
520.2.q.h |
8 |
520.2.s |
\(\chi_{520}(31, \cdot)\) |
None |
0 |
2 |
520.2.t |
\(\chi_{520}(99, \cdot)\) |
520.2.t.a |
4 |
2 |
520.2.t.b |
4 |
520.2.t.c |
152 |
520.2.w |
\(\chi_{520}(57, \cdot)\) |
520.2.w.a |
2 |
2 |
520.2.w.b |
2 |
520.2.w.c |
2 |
520.2.w.d |
4 |
520.2.w.e |
12 |
520.2.w.f |
20 |
520.2.y |
\(\chi_{520}(317, \cdot)\) |
520.2.y.a |
160 |
2 |
520.2.bb |
\(\chi_{520}(183, \cdot)\) |
None |
0 |
2 |
520.2.bc |
\(\chi_{520}(363, \cdot)\) |
520.2.bc.a |
12 |
2 |
520.2.bc.b |
12 |
520.2.bc.c |
136 |
520.2.bd |
\(\chi_{520}(103, \cdot)\) |
None |
0 |
2 |
520.2.be |
\(\chi_{520}(27, \cdot)\) |
520.2.be.a |
144 |
2 |
520.2.bh |
\(\chi_{520}(177, \cdot)\) |
520.2.bh.a |
2 |
2 |
520.2.bh.b |
2 |
520.2.bh.c |
2 |
520.2.bh.d |
4 |
520.2.bh.e |
12 |
520.2.bh.f |
20 |
520.2.bj |
\(\chi_{520}(213, \cdot)\) |
520.2.bj.a |
160 |
2 |
520.2.bm |
\(\chi_{520}(291, \cdot)\) |
520.2.bm.a |
112 |
2 |
520.2.bn |
\(\chi_{520}(239, \cdot)\) |
None |
0 |
2 |
520.2.bp |
\(\chi_{520}(69, \cdot)\) |
520.2.bp.a |
160 |
2 |
520.2.bu |
\(\chi_{520}(121, \cdot)\) |
520.2.bu.a |
12 |
2 |
520.2.bu.b |
16 |
520.2.bv |
\(\chi_{520}(29, \cdot)\) |
520.2.bv.a |
160 |
2 |
520.2.by |
\(\chi_{520}(61, \cdot)\) |
520.2.by.a |
4 |
2 |
520.2.by.b |
4 |
520.2.by.c |
104 |
520.2.bz |
\(\chi_{520}(49, \cdot)\) |
520.2.bz.a |
20 |
2 |
520.2.bz.b |
20 |
520.2.ca |
\(\chi_{520}(101, \cdot)\) |
520.2.ca.a |
56 |
2 |
520.2.ca.b |
56 |
520.2.cb |
\(\chi_{520}(9, \cdot)\) |
520.2.cb.a |
44 |
2 |
520.2.cf |
\(\chi_{520}(119, \cdot)\) |
None |
0 |
4 |
520.2.cg |
\(\chi_{520}(11, \cdot)\) |
520.2.cg.a |
224 |
4 |
520.2.cj |
\(\chi_{520}(37, \cdot)\) |
520.2.cj.a |
320 |
4 |
520.2.cl |
\(\chi_{520}(137, \cdot)\) |
520.2.cl.a |
4 |
4 |
520.2.cl.b |
40 |
520.2.cl.c |
40 |
520.2.cm |
\(\chi_{520}(3, \cdot)\) |
520.2.cm.a |
320 |
4 |
520.2.cn |
\(\chi_{520}(23, \cdot)\) |
None |
0 |
4 |
520.2.cs |
\(\chi_{520}(43, \cdot)\) |
520.2.cs.a |
320 |
4 |
520.2.ct |
\(\chi_{520}(87, \cdot)\) |
None |
0 |
4 |
520.2.cu |
\(\chi_{520}(197, \cdot)\) |
520.2.cu.a |
320 |
4 |
520.2.cw |
\(\chi_{520}(33, \cdot)\) |
520.2.cw.a |
4 |
4 |
520.2.cw.b |
40 |
520.2.cw.c |
40 |
520.2.cz |
\(\chi_{520}(19, \cdot)\) |
520.2.cz.a |
8 |
4 |
520.2.cz.b |
8 |
520.2.cz.c |
304 |
520.2.da |
\(\chi_{520}(71, \cdot)\) |
None |
0 |
4 |