Properties

Label 80.2
Level 80
Weight 2
Dimension 86
Nonzero newspaces 7
Newform subspaces 13
Sturm bound 768
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 7 \)
Newform subspaces: \( 13 \)
Sturm bound: \(768\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(80))\).

Total New Old
Modular forms 248 112 136
Cusp forms 137 86 51
Eisenstein series 111 26 85

Trace form

\( 86 q - 4 q^{2} - 2 q^{3} - 8 q^{4} - 8 q^{5} - 24 q^{6} - 6 q^{7} - 16 q^{8} - 4 q^{9} - 8 q^{10} - 16 q^{11} - 10 q^{13} - 22 q^{15} - 18 q^{17} - 12 q^{18} - 28 q^{19} - 12 q^{20} - 44 q^{21} - 8 q^{22}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(80))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
80.2.a \(\chi_{80}(1, \cdot)\) 80.2.a.a 1 1
80.2.a.b 1
80.2.c \(\chi_{80}(49, \cdot)\) 80.2.c.a 2 1
80.2.d \(\chi_{80}(41, \cdot)\) None 0 1
80.2.f \(\chi_{80}(9, \cdot)\) None 0 1
80.2.j \(\chi_{80}(43, \cdot)\) 80.2.j.a 2 2
80.2.j.b 18
80.2.l \(\chi_{80}(21, \cdot)\) 80.2.l.a 16 2
80.2.n \(\chi_{80}(47, \cdot)\) 80.2.n.a 2 2
80.2.n.b 4
80.2.o \(\chi_{80}(7, \cdot)\) None 0 2
80.2.q \(\chi_{80}(29, \cdot)\) 80.2.q.a 2 2
80.2.q.b 2
80.2.q.c 16
80.2.s \(\chi_{80}(3, \cdot)\) 80.2.s.a 2 2
80.2.s.b 18

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)