Defining parameters
Level: | \( N \) | = | \( 52 = 2^{2} \cdot 13 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 5 \) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(52))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 114 | 61 | 53 |
Cusp forms | 55 | 37 | 18 |
Eisenstein series | 59 | 24 | 35 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(52))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(52)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 1}\)