Properties

Label 336.4.a.m
Level 336336
Weight 44
Character orbit 336.a
Self dual yes
Analytic conductor 19.82519.825
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(1,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 11
Dimension: 22
Coefficient field: Q(57)\Q(\sqrt{57})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x14 x^{2} - x - 14 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 21)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=57\beta = \sqrt{57}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q3q3+(β+3)q57q7+9q9+(5β+3)q11+(6β+8)q13+(3β9)q15+(β3)q17+(12β32)q19+21q21+(17β3)q23++(45β+27)q99+O(q100) q - 3 q^{3} + (\beta + 3) q^{5} - 7 q^{7} + 9 q^{9} + ( - 5 \beta + 3) q^{11} + ( - 6 \beta + 8) q^{13} + ( - 3 \beta - 9) q^{15} + ( - \beta - 3) q^{17} + (12 \beta - 32) q^{19} + 21 q^{21} + (17 \beta - 3) q^{23}+ \cdots + ( - 45 \beta + 27) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q6q3+6q514q7+18q9+6q11+16q1318q156q1764q19+42q216q23118q2554q27252q2940q3118q3342q35248q37++54q99+O(q100) 2 q - 6 q^{3} + 6 q^{5} - 14 q^{7} + 18 q^{9} + 6 q^{11} + 16 q^{13} - 18 q^{15} - 6 q^{17} - 64 q^{19} + 42 q^{21} - 6 q^{23} - 118 q^{25} - 54 q^{27} - 252 q^{29} - 40 q^{31} - 18 q^{33} - 42 q^{35} - 248 q^{37}+ \cdots + 54 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−3.27492
4.27492
0 −3.00000 0 −4.54983 0 −7.00000 0 9.00000 0
1.2 0 −3.00000 0 10.5498 0 −7.00000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.a.m 2
3.b odd 2 1 1008.4.a.ba 2
4.b odd 2 1 21.4.a.c 2
7.b odd 2 1 2352.4.a.bz 2
8.b even 2 1 1344.4.a.bo 2
8.d odd 2 1 1344.4.a.bg 2
12.b even 2 1 63.4.a.e 2
20.d odd 2 1 525.4.a.n 2
20.e even 4 2 525.4.d.g 4
28.d even 2 1 147.4.a.i 2
28.f even 6 2 147.4.e.m 4
28.g odd 6 2 147.4.e.l 4
60.h even 2 1 1575.4.a.p 2
84.h odd 2 1 441.4.a.r 2
84.j odd 6 2 441.4.e.p 4
84.n even 6 2 441.4.e.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.c 2 4.b odd 2 1
63.4.a.e 2 12.b even 2 1
147.4.a.i 2 28.d even 2 1
147.4.e.l 4 28.g odd 6 2
147.4.e.m 4 28.f even 6 2
336.4.a.m 2 1.a even 1 1 trivial
441.4.a.r 2 84.h odd 2 1
441.4.e.p 4 84.j odd 6 2
441.4.e.q 4 84.n even 6 2
525.4.a.n 2 20.d odd 2 1
525.4.d.g 4 20.e even 4 2
1008.4.a.ba 2 3.b odd 2 1
1344.4.a.bg 2 8.d odd 2 1
1344.4.a.bo 2 8.b even 2 1
1575.4.a.p 2 60.h even 2 1
2352.4.a.bz 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(336))S_{4}^{\mathrm{new}}(\Gamma_0(336)):

T526T548 T_{5}^{2} - 6T_{5} - 48 Copy content Toggle raw display
T1126T111416 T_{11}^{2} - 6T_{11} - 1416 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
55 T26T48 T^{2} - 6T - 48 Copy content Toggle raw display
77 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
1111 T26T1416 T^{2} - 6T - 1416 Copy content Toggle raw display
1313 T216T1988 T^{2} - 16T - 1988 Copy content Toggle raw display
1717 T2+6T48 T^{2} + 6T - 48 Copy content Toggle raw display
1919 T2+64T7184 T^{2} + 64T - 7184 Copy content Toggle raw display
2323 T2+6T16464 T^{2} + 6T - 16464 Copy content Toggle raw display
2929 T2+252T+7668 T^{2} + 252T + 7668 Copy content Toggle raw display
3131 T2+40T73472 T^{2} + 40T - 73472 Copy content Toggle raw display
3737 T2+248T3092 T^{2} + 248T - 3092 Copy content Toggle raw display
4141 T2+450T+37800 T^{2} + 450T + 37800 Copy content Toggle raw display
4343 T2+376T+2512 T^{2} + 376T + 2512 Copy content Toggle raw display
4747 T212T65856 T^{2} - 12T - 65856 Copy content Toggle raw display
5353 T2+1104T+304476 T^{2} + 1104 T + 304476 Copy content Toggle raw display
5959 T2+804T30144 T^{2} + 804T - 30144 Copy content Toggle raw display
6161 T2+428T28076 T^{2} + 428T - 28076 Copy content Toggle raw display
6767 T2+148T160736 T^{2} + 148T - 160736 Copy content Toggle raw display
7171 T2+954T+214704 T^{2} + 954T + 214704 Copy content Toggle raw display
7373 T21072T+285244 T^{2} - 1072 T + 285244 Copy content Toggle raw display
7979 T2572T84416 T^{2} - 572T - 84416 Copy content Toggle raw display
8383 T2+1944T+813456 T^{2} + 1944 T + 813456 Copy content Toggle raw display
8989 T2366T253848 T^{2} - 366T - 253848 Copy content Toggle raw display
9797 T2808T922292 T^{2} - 808T - 922292 Copy content Toggle raw display
show more
show less