gp: [N,k,chi] = [147,4,Mod(67,147)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("147.67");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(147, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [4,3,6,-17,6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − 4 x 2 − 5 x + 25 x^{4} - x^{3} - 4x^{2} - 5x + 25 x 4 − x 3 − 4 x 2 − 5 x + 2 5
x^4 - x^3 - 4*x^2 - 5*x + 25
:
β 1 \beta_{1} β 1 = = =
( ν 3 + 4 ν 2 − 4 ν − 25 ) / 20 ( \nu^{3} + 4\nu^{2} - 4\nu - 25 ) / 20 ( ν 3 + 4 ν 2 − 4 ν − 2 5 ) / 2 0
(v^3 + 4*v^2 - 4*v - 25) / 20
β 2 \beta_{2} β 2 = = =
( − ν 3 + ν 2 + 9 ν + 5 ) / 5 ( -\nu^{3} + \nu^{2} + 9\nu + 5 ) / 5 ( − ν 3 + ν 2 + 9 ν + 5 ) / 5
(-v^3 + v^2 + 9*v + 5) / 5
β 3 \beta_{3} β 3 = = =
( 3 ν 3 + 2 ν 2 + 8 ν − 25 ) / 10 ( 3\nu^{3} + 2\nu^{2} + 8\nu - 25 ) / 10 ( 3 ν 3 + 2 ν 2 + 8 ν − 2 5 ) / 1 0
(3*v^3 + 2*v^2 + 8*v - 25) / 10
ν \nu ν = = =
( β 3 + β 2 − 2 β 1 − 1 ) / 3 ( \beta_{3} + \beta_{2} - 2\beta _1 - 1 ) / 3 ( β 3 + β 2 − 2 β 1 − 1 ) / 3
(b3 + b2 - 2*b1 - 1) / 3
ν 2 \nu^{2} ν 2 = = =
( − β 3 + 2 β 2 + 14 β 1 + 13 ) / 3 ( -\beta_{3} + 2\beta_{2} + 14\beta _1 + 13 ) / 3 ( − β 3 + 2 β 2 + 1 4 β 1 + 1 3 ) / 3
(-b3 + 2*b2 + 14*b1 + 13) / 3
ν 3 \nu^{3} ν 3 = = =
( 8 β 3 − 4 β 2 − 4 β 1 + 19 ) / 3 ( 8\beta_{3} - 4\beta_{2} - 4\beta _1 + 19 ) / 3 ( 8 β 3 − 4 β 2 − 4 β 1 + 1 9 ) / 3
(8*b3 - 4*b2 - 4*b1 + 19) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 147 Z ) × \left(\mathbb{Z}/147\mathbb{Z}\right)^\times ( Z / 1 4 7 Z ) × .
n n n
50 50 5 0
52 52 5 2
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 − β 1 -1 - \beta_{1} − 1 − β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 147 , [ χ ] ) S_{4}^{\mathrm{new}}(147, [\chi]) S 4 n e w ( 1 4 7 , [ χ ] ) :
T 2 4 − 3 T 2 3 + 21 T 2 2 + 36 T 2 + 144 T_{2}^{4} - 3T_{2}^{3} + 21T_{2}^{2} + 36T_{2} + 144 T 2 4 − 3 T 2 3 + 2 1 T 2 2 + 3 6 T 2 + 1 4 4
T2^4 - 3*T2^3 + 21*T2^2 + 36*T2 + 144
T 5 4 − 6 T 5 3 + 84 T 5 2 + 288 T 5 + 2304 T_{5}^{4} - 6T_{5}^{3} + 84T_{5}^{2} + 288T_{5} + 2304 T 5 4 − 6 T 5 3 + 8 4 T 5 2 + 2 8 8 T 5 + 2 3 0 4
T5^4 - 6*T5^3 + 84*T5^2 + 288*T5 + 2304
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 − 3 T 3 + ⋯ + 144 T^{4} - 3 T^{3} + \cdots + 144 T 4 − 3 T 3 + ⋯ + 1 4 4
T^4 - 3*T^3 + 21*T^2 + 36*T + 144
3 3 3
( T 2 − 3 T + 9 ) 2 (T^{2} - 3 T + 9)^{2} ( T 2 − 3 T + 9 ) 2
(T^2 - 3*T + 9)^2
5 5 5
T 4 − 6 T 3 + ⋯ + 2304 T^{4} - 6 T^{3} + \cdots + 2304 T 4 − 6 T 3 + ⋯ + 2 3 0 4
T^4 - 6*T^3 + 84*T^2 + 288*T + 2304
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
T 4 − 6 T 3 + ⋯ + 2005056 T^{4} - 6 T^{3} + \cdots + 2005056 T 4 − 6 T 3 + ⋯ + 2 0 0 5 0 5 6
T^4 - 6*T^3 + 1452*T^2 + 8496*T + 2005056
13 13 1 3
( T 2 + 16 T − 1988 ) 2 (T^{2} + 16 T - 1988)^{2} ( T 2 + 1 6 T − 1 9 8 8 ) 2
(T^2 + 16*T - 1988)^2
17 17 1 7
T 4 + 6 T 3 + ⋯ + 2304 T^{4} + 6 T^{3} + \cdots + 2304 T 4 + 6 T 3 + ⋯ + 2 3 0 4
T^4 + 6*T^3 + 84*T^2 - 288*T + 2304
19 19 1 9
T 4 − 64 T 3 + ⋯ + 51609856 T^{4} - 64 T^{3} + \cdots + 51609856 T 4 − 6 4 T 3 + ⋯ + 5 1 6 0 9 8 5 6
T^4 - 64*T^3 + 11280*T^2 + 459776*T + 51609856
23 23 2 3
T 4 + 6 T 3 + ⋯ + 271063296 T^{4} + 6 T^{3} + \cdots + 271063296 T 4 + 6 T 3 + ⋯ + 2 7 1 0 6 3 2 9 6
T^4 + 6*T^3 + 16500*T^2 - 98784*T + 271063296
29 29 2 9
( T 2 + 252 T + 7668 ) 2 (T^{2} + 252 T + 7668)^{2} ( T 2 + 2 5 2 T + 7 6 6 8 ) 2
(T^2 + 252*T + 7668)^2
31 31 3 1
T 4 + ⋯ + 5398134784 T^{4} + \cdots + 5398134784 T 4 + ⋯ + 5 3 9 8 1 3 4 7 8 4
T^4 - 40*T^3 + 75072*T^2 + 2938880*T + 5398134784
37 37 3 7
T 4 − 248 T 3 + ⋯ + 9560464 T^{4} - 248 T^{3} + \cdots + 9560464 T 4 − 2 4 8 T 3 + ⋯ + 9 5 6 0 4 6 4
T^4 - 248*T^3 + 64596*T^2 + 766816*T + 9560464
41 41 4 1
( T 2 − 450 T + 37800 ) 2 (T^{2} - 450 T + 37800)^{2} ( T 2 − 4 5 0 T + 3 7 8 0 0 ) 2
(T^2 - 450*T + 37800)^2
43 43 4 3
( T 2 − 376 T + 2512 ) 2 (T^{2} - 376 T + 2512)^{2} ( T 2 − 3 7 6 T + 2 5 1 2 ) 2
(T^2 - 376*T + 2512)^2
47 47 4 7
T 4 + ⋯ + 4337012736 T^{4} + \cdots + 4337012736 T 4 + ⋯ + 4 3 3 7 0 1 2 7 3 6
T^4 + 12*T^3 + 66000*T^2 - 790272*T + 4337012736
53 53 5 3
T 4 + ⋯ + 92705634576 T^{4} + \cdots + 92705634576 T 4 + ⋯ + 9 2 7 0 5 6 3 4 5 7 6
T^4 - 1104*T^3 + 914340*T^2 - 336141504*T + 92705634576
59 59 5 9
T 4 − 804 T 3 + ⋯ + 908660736 T^{4} - 804 T^{3} + \cdots + 908660736 T 4 − 8 0 4 T 3 + ⋯ + 9 0 8 6 6 0 7 3 6
T^4 - 804*T^3 + 676560*T^2 + 24235776*T + 908660736
61 61 6 1
T 4 + 428 T 3 + ⋯ + 788261776 T^{4} + 428 T^{3} + \cdots + 788261776 T 4 + 4 2 8 T 3 + ⋯ + 7 8 8 2 6 1 7 7 6
T^4 + 428*T^3 + 211260*T^2 - 12016528*T + 788261776
67 67 6 7
T 4 + ⋯ + 25836061696 T^{4} + \cdots + 25836061696 T 4 + ⋯ + 2 5 8 3 6 0 6 1 6 9 6
T^4 + 148*T^3 + 182640*T^2 - 23788928*T + 25836061696
71 71 7 1
( T 2 − 954 T + 214704 ) 2 (T^{2} - 954 T + 214704)^{2} ( T 2 − 9 5 4 T + 2 1 4 7 0 4 ) 2
(T^2 - 954*T + 214704)^2
73 73 7 3
T 4 + ⋯ + 81364139536 T^{4} + \cdots + 81364139536 T 4 + ⋯ + 8 1 3 6 4 1 3 9 5 3 6
T^4 - 1072*T^3 + 863940*T^2 - 305781568*T + 81364139536
79 79 7 9
T 4 + ⋯ + 7126061056 T^{4} + \cdots + 7126061056 T 4 + ⋯ + 7 1 2 6 0 6 1 0 5 6
T^4 - 572*T^3 + 411600*T^2 + 48285952*T + 7126061056
83 83 8 3
( T 2 + 1944 T + 813456 ) 2 (T^{2} + 1944 T + 813456)^{2} ( T 2 + 1 9 4 4 T + 8 1 3 4 5 6 ) 2
(T^2 + 1944*T + 813456)^2
89 89 8 9
T 4 + ⋯ + 64438807104 T^{4} + \cdots + 64438807104 T 4 + ⋯ + 6 4 4 3 8 8 0 7 1 0 4
T^4 - 366*T^3 + 387804*T^2 + 92908368*T + 64438807104
97 97 9 7
( T 2 + 808 T − 922292 ) 2 (T^{2} + 808 T - 922292)^{2} ( T 2 + 8 0 8 T − 9 2 2 2 9 2 ) 2
(T^2 + 808*T - 922292)^2
show more
show less