Properties

Label 147.4.e.m.79.2
Level $147$
Weight $4$
Character 147.79
Analytic conductor $8.673$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,4,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.67328077084\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.2
Root \(2.13746 - 0.656712i\) of defining polynomial
Character \(\chi\) \(=\) 147.79
Dual form 147.4.e.m.67.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.63746 - 4.56821i) q^{2} +(1.50000 + 2.59808i) q^{3} +(-9.91238 - 17.1687i) q^{4} +(5.27492 - 9.13642i) q^{5} +15.8248 q^{6} -62.3746 q^{8} +(-4.50000 + 7.79423i) q^{9} +O(q^{10})\) \(q+(2.63746 - 4.56821i) q^{2} +(1.50000 + 2.59808i) q^{3} +(-9.91238 - 17.1687i) q^{4} +(5.27492 - 9.13642i) q^{5} +15.8248 q^{6} -62.3746 q^{8} +(-4.50000 + 7.79423i) q^{9} +(-27.8248 - 48.1939i) q^{10} +(-17.3746 - 30.0937i) q^{11} +(29.7371 - 51.5062i) q^{12} +37.2990 q^{13} +31.6495 q^{15} +(-85.2114 + 147.590i) q^{16} +(-5.27492 - 9.13642i) q^{17} +(23.7371 + 41.1139i) q^{18} +(-29.2990 + 50.7474i) q^{19} -209.148 q^{20} -183.299 q^{22} +(62.6736 - 108.554i) q^{23} +(-93.5619 - 162.054i) q^{24} +(6.85050 + 11.8654i) q^{25} +(98.3746 - 170.390i) q^{26} -27.0000 q^{27} -35.4020 q^{29} +(83.4743 - 144.582i) q^{30} +(145.897 + 252.701i) q^{31} +(199.985 + 346.384i) q^{32} +(52.1238 - 90.2810i) q^{33} -55.6495 q^{34} +178.423 q^{36} +(129.949 - 225.077i) q^{37} +(154.550 + 267.688i) q^{38} +(55.9485 + 96.9057i) q^{39} +(-329.021 + 569.881i) q^{40} +338.248 q^{41} +6.80397 q^{43} +(-344.447 + 596.599i) q^{44} +(47.4743 + 82.2278i) q^{45} +(-330.598 - 572.613i) q^{46} +(125.347 - 217.108i) q^{47} -511.268 q^{48} +72.2716 q^{50} +(15.8248 - 27.4093i) q^{51} +(-369.722 - 640.377i) q^{52} +(268.450 + 464.969i) q^{53} +(-71.2114 + 123.342i) q^{54} -366.598 q^{55} -175.794 q^{57} +(-93.3713 + 161.724i) q^{58} +(-17.9452 - 31.0820i) q^{59} +(-313.722 - 543.382i) q^{60} +(28.8970 - 50.0511i) q^{61} +1539.19 q^{62} +746.423 q^{64} +(196.749 - 340.780i) q^{65} +(-274.949 - 476.225i) q^{66} +(-240.846 - 417.157i) q^{67} +(-104.574 + 181.127i) q^{68} +376.042 q^{69} +363.752 q^{71} +(280.686 - 486.162i) q^{72} +(290.650 + 503.420i) q^{73} +(-685.468 - 1187.26i) q^{74} +(-20.5515 + 35.5962i) q^{75} +1161.69 q^{76} +590.248 q^{78} +(346.846 - 600.754i) q^{79} +(898.966 + 1557.05i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(892.114 - 1545.19i) q^{82} -1334.39 q^{83} -111.299 q^{85} +(17.9452 - 31.0820i) q^{86} +(-53.1030 - 91.9771i) q^{87} +(1083.73 + 1877.08i) q^{88} +(-176.519 + 305.740i) q^{89} +500.846 q^{90} -2484.98 q^{92} +(-437.691 + 758.103i) q^{93} +(-661.196 - 1145.23i) q^{94} +(309.100 + 535.376i) q^{95} +(-599.954 + 1039.15i) q^{96} -1445.88 q^{97} +312.743 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} + 6 q^{3} - 17 q^{4} + 6 q^{5} + 18 q^{6} - 174 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 3 q^{2} + 6 q^{3} - 17 q^{4} + 6 q^{5} + 18 q^{6} - 174 q^{8} - 18 q^{9} - 66 q^{10} + 6 q^{11} + 51 q^{12} - 32 q^{13} + 36 q^{15} - 137 q^{16} - 6 q^{17} + 27 q^{18} + 64 q^{19} - 444 q^{20} - 552 q^{22} - 6 q^{23} - 261 q^{24} + 118 q^{25} + 318 q^{26} - 108 q^{27} - 504 q^{29} + 198 q^{30} + 40 q^{31} + 279 q^{32} - 18 q^{33} - 132 q^{34} + 306 q^{36} + 248 q^{37} + 588 q^{38} - 48 q^{39} - 546 q^{40} + 900 q^{41} + 752 q^{43} - 804 q^{44} + 54 q^{45} - 960 q^{46} - 12 q^{47} - 822 q^{48} - 330 q^{50} + 18 q^{51} - 890 q^{52} + 1104 q^{53} - 81 q^{54} - 1104 q^{55} + 384 q^{57} + 306 q^{58} + 804 q^{59} - 666 q^{60} - 428 q^{61} + 4224 q^{62} + 2578 q^{64} + 636 q^{65} - 828 q^{66} - 148 q^{67} - 222 q^{68} - 36 q^{69} + 1908 q^{71} + 783 q^{72} + 1072 q^{73} - 1398 q^{74} - 354 q^{75} + 3016 q^{76} + 1908 q^{78} + 572 q^{79} + 1950 q^{80} - 162 q^{81} + 1530 q^{82} - 3888 q^{83} - 264 q^{85} - 804 q^{86} - 756 q^{87} + 1164 q^{88} + 366 q^{89} + 1188 q^{90} - 5712 q^{92} - 120 q^{93} - 1920 q^{94} + 1176 q^{95} - 837 q^{96} - 1616 q^{97} - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.63746 4.56821i 0.932482 1.61511i 0.153420 0.988161i \(-0.450971\pi\)
0.779063 0.626946i \(-0.215695\pi\)
\(3\) 1.50000 + 2.59808i 0.288675 + 0.500000i
\(4\) −9.91238 17.1687i −1.23905 2.14609i
\(5\) 5.27492 9.13642i 0.471803 0.817187i −0.527677 0.849445i \(-0.676937\pi\)
0.999480 + 0.0322587i \(0.0102700\pi\)
\(6\) 15.8248 1.07674
\(7\) 0 0
\(8\) −62.3746 −2.75659
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) −27.8248 48.1939i −0.879896 1.52402i
\(11\) −17.3746 30.0937i −0.476240 0.824871i 0.523390 0.852093i \(-0.324667\pi\)
−0.999629 + 0.0272223i \(0.991334\pi\)
\(12\) 29.7371 51.5062i 0.715364 1.23905i
\(13\) 37.2990 0.795760 0.397880 0.917437i \(-0.369746\pi\)
0.397880 + 0.917437i \(0.369746\pi\)
\(14\) 0 0
\(15\) 31.6495 0.544791
\(16\) −85.2114 + 147.590i −1.33143 + 2.30610i
\(17\) −5.27492 9.13642i −0.0752562 0.130348i 0.825941 0.563756i \(-0.190644\pi\)
−0.901198 + 0.433408i \(0.857311\pi\)
\(18\) 23.7371 + 41.1139i 0.310827 + 0.538369i
\(19\) −29.2990 + 50.7474i −0.353771 + 0.612750i −0.986907 0.161291i \(-0.948434\pi\)
0.633136 + 0.774041i \(0.281768\pi\)
\(20\) −209.148 −2.33834
\(21\) 0 0
\(22\) −183.299 −1.77634
\(23\) 62.6736 108.554i 0.568189 0.984132i −0.428556 0.903515i \(-0.640978\pi\)
0.996745 0.0806171i \(-0.0256891\pi\)
\(24\) −93.5619 162.054i −0.795760 1.37830i
\(25\) 6.85050 + 11.8654i 0.0548040 + 0.0949233i
\(26\) 98.3746 170.390i 0.742032 1.28524i
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −35.4020 −0.226689 −0.113345 0.993556i \(-0.536156\pi\)
−0.113345 + 0.993556i \(0.536156\pi\)
\(30\) 83.4743 144.582i 0.508008 0.879896i
\(31\) 145.897 + 252.701i 0.845286 + 1.46408i 0.885372 + 0.464883i \(0.153904\pi\)
−0.0400859 + 0.999196i \(0.512763\pi\)
\(32\) 199.985 + 346.384i 1.10477 + 1.91352i
\(33\) 52.1238 90.2810i 0.274957 0.476240i
\(34\) −55.6495 −0.280700
\(35\) 0 0
\(36\) 178.423 0.826031
\(37\) 129.949 225.077i 0.577389 1.00007i −0.418388 0.908268i \(-0.637405\pi\)
0.995778 0.0917993i \(-0.0292618\pi\)
\(38\) 154.550 + 267.688i 0.659771 + 1.14276i
\(39\) 55.9485 + 96.9057i 0.229716 + 0.397880i
\(40\) −329.021 + 569.881i −1.30057 + 2.25265i
\(41\) 338.248 1.28842 0.644212 0.764847i \(-0.277185\pi\)
0.644212 + 0.764847i \(0.277185\pi\)
\(42\) 0 0
\(43\) 6.80397 0.0241301 0.0120651 0.999927i \(-0.496159\pi\)
0.0120651 + 0.999927i \(0.496159\pi\)
\(44\) −344.447 + 596.599i −1.18017 + 2.04411i
\(45\) 47.4743 + 82.2278i 0.157268 + 0.272396i
\(46\) −330.598 572.613i −1.05965 1.83537i
\(47\) 125.347 217.108i 0.389016 0.673796i −0.603301 0.797513i \(-0.706148\pi\)
0.992317 + 0.123717i \(0.0394816\pi\)
\(48\) −511.268 −1.53740
\(49\) 0 0
\(50\) 72.2716 0.204415
\(51\) 15.8248 27.4093i 0.0434492 0.0752562i
\(52\) −369.722 640.377i −0.985984 1.70777i
\(53\) 268.450 + 464.969i 0.695745 + 1.20507i 0.969929 + 0.243388i \(0.0782588\pi\)
−0.274184 + 0.961677i \(0.588408\pi\)
\(54\) −71.2114 + 123.342i −0.179456 + 0.310827i
\(55\) −366.598 −0.898765
\(56\) 0 0
\(57\) −175.794 −0.408500
\(58\) −93.3713 + 161.724i −0.211384 + 0.366127i
\(59\) −17.9452 31.0820i −0.0395977 0.0685853i 0.845547 0.533900i \(-0.179274\pi\)
−0.885145 + 0.465315i \(0.845941\pi\)
\(60\) −313.722 543.382i −0.675022 1.16917i
\(61\) 28.8970 50.0511i 0.0606538 0.105056i −0.834104 0.551607i \(-0.814015\pi\)
0.894758 + 0.446552i \(0.147348\pi\)
\(62\) 1539.19 3.15286
\(63\) 0 0
\(64\) 746.423 1.45786
\(65\) 196.749 340.780i 0.375442 0.650285i
\(66\) −274.949 476.225i −0.512785 0.888170i
\(67\) −240.846 417.157i −0.439164 0.760654i 0.558462 0.829530i \(-0.311392\pi\)
−0.997625 + 0.0688767i \(0.978059\pi\)
\(68\) −104.574 + 181.127i −0.186492 + 0.323013i
\(69\) 376.042 0.656088
\(70\) 0 0
\(71\) 363.752 0.608021 0.304010 0.952669i \(-0.401674\pi\)
0.304010 + 0.952669i \(0.401674\pi\)
\(72\) 280.686 486.162i 0.459432 0.795760i
\(73\) 290.650 + 503.420i 0.465999 + 0.807135i 0.999246 0.0388253i \(-0.0123616\pi\)
−0.533247 + 0.845960i \(0.679028\pi\)
\(74\) −685.468 1187.26i −1.07681 1.86509i
\(75\) −20.5515 + 35.5962i −0.0316411 + 0.0548040i
\(76\) 1161.69 1.75336
\(77\) 0 0
\(78\) 590.248 0.856825
\(79\) 346.846 600.754i 0.493964 0.855571i −0.506012 0.862527i \(-0.668881\pi\)
0.999976 + 0.00695559i \(0.00221405\pi\)
\(80\) 898.966 + 1557.05i 1.25634 + 2.17605i
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 892.114 1545.19i 1.20143 2.08094i
\(83\) −1334.39 −1.76468 −0.882341 0.470611i \(-0.844033\pi\)
−0.882341 + 0.470611i \(0.844033\pi\)
\(84\) 0 0
\(85\) −111.299 −0.142024
\(86\) 17.9452 31.0820i 0.0225009 0.0389728i
\(87\) −53.1030 91.9771i −0.0654395 0.113345i
\(88\) 1083.73 + 1877.08i 1.31280 + 2.27383i
\(89\) −176.519 + 305.740i −0.210236 + 0.364139i −0.951788 0.306756i \(-0.900757\pi\)
0.741552 + 0.670895i \(0.234090\pi\)
\(90\) 500.846 0.586597
\(91\) 0 0
\(92\) −2484.98 −2.81605
\(93\) −437.691 + 758.103i −0.488026 + 0.845286i
\(94\) −661.196 1145.23i −0.725502 1.25661i
\(95\) 309.100 + 535.376i 0.333821 + 0.578194i
\(96\) −599.954 + 1039.15i −0.637839 + 1.10477i
\(97\) −1445.88 −1.51347 −0.756735 0.653722i \(-0.773207\pi\)
−0.756735 + 0.653722i \(0.773207\pi\)
\(98\) 0 0
\(99\) 312.743 0.317493
\(100\) 135.809 235.229i 0.135809 0.235229i
\(101\) 237.426 + 411.234i 0.233909 + 0.405142i 0.958955 0.283558i \(-0.0915150\pi\)
−0.725046 + 0.688700i \(0.758182\pi\)
\(102\) −83.4743 144.582i −0.0810312 0.140350i
\(103\) −999.794 + 1731.69i −0.956433 + 1.65659i −0.225380 + 0.974271i \(0.572362\pi\)
−0.731053 + 0.682320i \(0.760971\pi\)
\(104\) −2326.51 −2.19359
\(105\) 0 0
\(106\) 2832.10 2.59508
\(107\) −583.368 + 1010.42i −0.527068 + 0.912909i 0.472434 + 0.881366i \(0.343375\pi\)
−0.999502 + 0.0315431i \(0.989958\pi\)
\(108\) 267.634 + 463.556i 0.238455 + 0.413016i
\(109\) 668.588 + 1158.03i 0.587515 + 1.01761i 0.994557 + 0.104196i \(0.0332270\pi\)
−0.407042 + 0.913410i \(0.633440\pi\)
\(110\) −966.887 + 1674.70i −0.838082 + 1.45160i
\(111\) 779.691 0.666712
\(112\) 0 0
\(113\) 906.578 0.754723 0.377361 0.926066i \(-0.376831\pi\)
0.377361 + 0.926066i \(0.376831\pi\)
\(114\) −463.650 + 803.064i −0.380919 + 0.659771i
\(115\) −661.196 1145.23i −0.536146 0.928633i
\(116\) 350.918 + 607.807i 0.280878 + 0.486496i
\(117\) −167.846 + 290.717i −0.132627 + 0.229716i
\(118\) −189.319 −0.147697
\(119\) 0 0
\(120\) −1974.12 −1.50177
\(121\) 61.7475 106.950i 0.0463918 0.0803530i
\(122\) −152.429 264.015i −0.113117 0.195925i
\(123\) 507.371 + 878.793i 0.371936 + 0.644212i
\(124\) 2892.37 5009.74i 2.09470 3.62813i
\(125\) 1463.27 1.04703
\(126\) 0 0
\(127\) −1714.89 −1.19820 −0.599101 0.800674i \(-0.704475\pi\)
−0.599101 + 0.800674i \(0.704475\pi\)
\(128\) 368.782 638.749i 0.254656 0.441078i
\(129\) 10.2060 + 17.6772i 0.00696577 + 0.0120651i
\(130\) −1037.84 1797.58i −0.700186 1.21276i
\(131\) 235.306 407.561i 0.156937 0.271823i −0.776826 0.629716i \(-0.783171\pi\)
0.933763 + 0.357893i \(0.116505\pi\)
\(132\) −2066.68 −1.36274
\(133\) 0 0
\(134\) −2540.88 −1.63805
\(135\) −142.423 + 246.683i −0.0907985 + 0.157268i
\(136\) 329.021 + 569.881i 0.207451 + 0.359315i
\(137\) 221.955 + 384.438i 0.138415 + 0.239742i 0.926897 0.375316i \(-0.122466\pi\)
−0.788482 + 0.615058i \(0.789132\pi\)
\(138\) 991.794 1717.84i 0.611791 1.05965i
\(139\) −1669.98 −1.01904 −0.509518 0.860460i \(-0.670176\pi\)
−0.509518 + 0.860460i \(0.670176\pi\)
\(140\) 0 0
\(141\) 752.083 0.449197
\(142\) 959.382 1661.70i 0.566969 0.982019i
\(143\) −648.055 1122.46i −0.378972 0.656400i
\(144\) −766.902 1328.31i −0.443809 0.768700i
\(145\) −186.743 + 323.448i −0.106953 + 0.185247i
\(146\) 3066.30 1.73814
\(147\) 0 0
\(148\) −5152.39 −2.86165
\(149\) −371.935 + 644.211i −0.204497 + 0.354200i −0.949973 0.312334i \(-0.898889\pi\)
0.745475 + 0.666534i \(0.232223\pi\)
\(150\) 108.407 + 187.767i 0.0590095 + 0.102207i
\(151\) −303.382 525.473i −0.163503 0.283195i 0.772620 0.634869i \(-0.218946\pi\)
−0.936123 + 0.351674i \(0.885613\pi\)
\(152\) 1827.51 3165.35i 0.975203 1.68910i
\(153\) 94.9485 0.0501708
\(154\) 0 0
\(155\) 3078.38 1.59523
\(156\) 1109.17 1921.13i 0.569258 0.985984i
\(157\) 1557.39 + 2697.48i 0.791678 + 1.37123i 0.924927 + 0.380144i \(0.124125\pi\)
−0.133250 + 0.991083i \(0.542541\pi\)
\(158\) −1829.58 3168.93i −0.921226 1.59561i
\(159\) −805.350 + 1394.91i −0.401688 + 0.695745i
\(160\) 4219.61 2.08493
\(161\) 0 0
\(162\) −427.268 −0.207218
\(163\) −1206.54 + 2089.78i −0.579774 + 1.00420i 0.415730 + 0.909488i \(0.363526\pi\)
−0.995505 + 0.0947109i \(0.969807\pi\)
\(164\) −3352.84 5807.28i −1.59642 2.76508i
\(165\) −549.897 952.450i −0.259451 0.449382i
\(166\) −3519.40 + 6095.79i −1.64553 + 2.85015i
\(167\) 610.475 0.282874 0.141437 0.989947i \(-0.454828\pi\)
0.141437 + 0.989947i \(0.454828\pi\)
\(168\) 0 0
\(169\) −805.784 −0.366766
\(170\) −293.547 + 508.437i −0.132435 + 0.229385i
\(171\) −263.691 456.726i −0.117924 0.204250i
\(172\) −67.4435 116.816i −0.0298984 0.0517855i
\(173\) 1896.90 3285.54i 0.833636 1.44390i −0.0615006 0.998107i \(-0.519589\pi\)
0.895136 0.445792i \(-0.147078\pi\)
\(174\) −560.228 −0.244085
\(175\) 0 0
\(176\) 5922.05 2.53631
\(177\) 53.8356 93.2460i 0.0228618 0.0395977i
\(178\) 931.124 + 1612.75i 0.392082 + 0.679107i
\(179\) 1402.34 + 2428.92i 0.585562 + 1.01422i 0.994805 + 0.101798i \(0.0324596\pi\)
−0.409243 + 0.912426i \(0.634207\pi\)
\(180\) 941.165 1630.15i 0.389724 0.675022i
\(181\) −3106.04 −1.27553 −0.637763 0.770232i \(-0.720140\pi\)
−0.637763 + 0.770232i \(0.720140\pi\)
\(182\) 0 0
\(183\) 173.382 0.0700370
\(184\) −3909.24 + 6771.00i −1.56627 + 2.71285i
\(185\) −1370.94 2374.53i −0.544828 0.943670i
\(186\) 2308.78 + 3998.93i 0.910152 + 1.57643i
\(187\) −183.299 + 317.483i −0.0716800 + 0.124153i
\(188\) −4969.95 −1.92804
\(189\) 0 0
\(190\) 3260.95 1.24513
\(191\) −130.976 + 226.857i −0.0496182 + 0.0859413i −0.889768 0.456413i \(-0.849134\pi\)
0.840150 + 0.542355i \(0.182467\pi\)
\(192\) 1119.63 + 1939.26i 0.420847 + 0.728928i
\(193\) −2025.54 3508.33i −0.755447 1.30847i −0.945152 0.326632i \(-0.894086\pi\)
0.189704 0.981841i \(-0.439247\pi\)
\(194\) −3813.44 + 6605.07i −1.41128 + 2.44442i
\(195\) 1180.50 0.433523
\(196\) 0 0
\(197\) −2874.83 −1.03971 −0.519855 0.854254i \(-0.674014\pi\)
−0.519855 + 0.854254i \(0.674014\pi\)
\(198\) 824.846 1428.67i 0.296057 0.512785i
\(199\) −1533.49 2656.07i −0.546261 0.946151i −0.998526 0.0542680i \(-0.982717\pi\)
0.452266 0.891883i \(-0.350616\pi\)
\(200\) −427.297 740.100i −0.151072 0.261665i
\(201\) 722.537 1251.47i 0.253551 0.439164i
\(202\) 2504.81 0.872463
\(203\) 0 0
\(204\) −627.444 −0.215342
\(205\) 1784.23 3090.37i 0.607882 1.05288i
\(206\) 5273.83 + 9134.54i 1.78371 + 3.08948i
\(207\) 564.062 + 976.985i 0.189396 + 0.328044i
\(208\) −3178.30 + 5504.98i −1.05950 + 1.83510i
\(209\) 2036.23 0.673919
\(210\) 0 0
\(211\) 595.422 0.194268 0.0971340 0.995271i \(-0.469032\pi\)
0.0971340 + 0.995271i \(0.469032\pi\)
\(212\) 5321.96 9217.90i 1.72412 2.98626i
\(213\) 545.629 + 945.057i 0.175520 + 0.304010i
\(214\) 3077.22 + 5329.90i 0.982964 + 1.70254i
\(215\) 35.8904 62.1640i 0.0113847 0.0197188i
\(216\) 1684.11 0.530507
\(217\) 0 0
\(218\) 7053.49 2.19139
\(219\) −871.949 + 1510.26i −0.269045 + 0.465999i
\(220\) 3633.86 + 6294.03i 1.11361 + 1.92883i
\(221\) −196.749 340.780i −0.0598859 0.103725i
\(222\) 2056.40 3561.79i 0.621697 1.07681i
\(223\) 3779.79 1.13504 0.567520 0.823360i \(-0.307903\pi\)
0.567520 + 0.823360i \(0.307903\pi\)
\(224\) 0 0
\(225\) −123.309 −0.0365360
\(226\) 2391.06 4141.44i 0.703766 1.21896i
\(227\) 913.809 + 1582.76i 0.267188 + 0.462783i 0.968135 0.250431i \(-0.0805722\pi\)
−0.700947 + 0.713214i \(0.747239\pi\)
\(228\) 1742.54 + 3018.16i 0.506150 + 0.876678i
\(229\) −425.125 + 736.338i −0.122677 + 0.212483i −0.920823 0.389982i \(-0.872481\pi\)
0.798146 + 0.602465i \(0.205815\pi\)
\(230\) −6975.51 −1.99979
\(231\) 0 0
\(232\) 2208.18 0.624890
\(233\) 3295.55 5708.06i 0.926604 1.60492i 0.137642 0.990482i \(-0.456048\pi\)
0.788962 0.614443i \(-0.210619\pi\)
\(234\) 885.371 + 1533.51i 0.247344 + 0.428413i
\(235\) −1322.39 2290.45i −0.367078 0.635798i
\(236\) −355.759 + 616.193i −0.0981269 + 0.169961i
\(237\) 2081.07 0.570381
\(238\) 0 0
\(239\) −182.556 −0.0494083 −0.0247042 0.999695i \(-0.507864\pi\)
−0.0247042 + 0.999695i \(0.507864\pi\)
\(240\) −2696.90 + 4671.16i −0.725350 + 1.25634i
\(241\) 761.949 + 1319.73i 0.203657 + 0.352745i 0.949704 0.313149i \(-0.101384\pi\)
−0.746047 + 0.665894i \(0.768050\pi\)
\(242\) −325.713 564.152i −0.0865191 0.149856i
\(243\) 121.500 210.444i 0.0320750 0.0555556i
\(244\) −1145.75 −0.300612
\(245\) 0 0
\(246\) 5352.68 1.38730
\(247\) −1092.82 + 1892.83i −0.281517 + 0.487602i
\(248\) −9100.27 15762.1i −2.33011 4.03587i
\(249\) −2001.59 3466.85i −0.509420 0.882341i
\(250\) 3859.32 6684.54i 0.976339 1.69107i
\(251\) −2357.73 −0.592903 −0.296451 0.955048i \(-0.595803\pi\)
−0.296451 + 0.955048i \(0.595803\pi\)
\(252\) 0 0
\(253\) −4355.71 −1.08238
\(254\) −4522.94 + 7833.97i −1.11730 + 1.93522i
\(255\) −166.949 289.163i −0.0409989 0.0710122i
\(256\) 1040.40 + 1802.02i 0.254003 + 0.439946i
\(257\) 1391.27 2409.76i 0.337686 0.584890i −0.646311 0.763074i \(-0.723689\pi\)
0.983997 + 0.178185i \(0.0570224\pi\)
\(258\) 107.671 0.0259818
\(259\) 0 0
\(260\) −7801.01 −1.86076
\(261\) 159.309 275.931i 0.0377815 0.0654395i
\(262\) −1241.22 2149.85i −0.292682 0.506940i
\(263\) −1021.89 1769.97i −0.239591 0.414984i 0.721006 0.692929i \(-0.243680\pi\)
−0.960597 + 0.277945i \(0.910347\pi\)
\(264\) −3251.20 + 5631.24i −0.757945 + 1.31280i
\(265\) 5664.21 1.31302
\(266\) 0 0
\(267\) −1059.11 −0.242759
\(268\) −4774.70 + 8270.03i −1.08829 + 1.88497i
\(269\) 1726.42 + 2990.24i 0.391307 + 0.677763i 0.992622 0.121248i \(-0.0386898\pi\)
−0.601315 + 0.799012i \(0.705356\pi\)
\(270\) 751.268 + 1301.23i 0.169336 + 0.293299i
\(271\) 1322.15 2290.02i 0.296364 0.513318i −0.678937 0.734196i \(-0.737559\pi\)
0.975301 + 0.220879i \(0.0708925\pi\)
\(272\) 1797.93 0.400793
\(273\) 0 0
\(274\) 2341.59 0.516280
\(275\) 238.049 412.313i 0.0521996 0.0904124i
\(276\) −3727.47 6456.16i −0.812924 1.40803i
\(277\) −1339.74 2320.50i −0.290604 0.503341i 0.683349 0.730092i \(-0.260523\pi\)
−0.973953 + 0.226751i \(0.927190\pi\)
\(278\) −4404.50 + 7628.82i −0.950232 + 1.64585i
\(279\) −2626.15 −0.563524
\(280\) 0 0
\(281\) −1019.69 −0.216476 −0.108238 0.994125i \(-0.534521\pi\)
−0.108238 + 0.994125i \(0.534521\pi\)
\(282\) 1983.59 3435.68i 0.418869 0.725502i
\(283\) 216.103 + 374.301i 0.0453922 + 0.0786216i 0.887829 0.460174i \(-0.152213\pi\)
−0.842437 + 0.538795i \(0.818880\pi\)
\(284\) −3605.65 6245.17i −0.753366 1.30487i
\(285\) −927.299 + 1606.13i −0.192731 + 0.333821i
\(286\) −6836.87 −1.41354
\(287\) 0 0
\(288\) −3599.72 −0.736513
\(289\) 2400.85 4158.40i 0.488673 0.846406i
\(290\) 985.051 + 1706.16i 0.199463 + 0.345480i
\(291\) −2168.82 3756.50i −0.436901 0.756735i
\(292\) 5762.05 9980.17i 1.15479 2.00016i
\(293\) 2245.92 0.447809 0.223904 0.974611i \(-0.428120\pi\)
0.223904 + 0.974611i \(0.428120\pi\)
\(294\) 0 0
\(295\) −378.638 −0.0747293
\(296\) −8105.48 + 14039.1i −1.59163 + 2.75678i
\(297\) 469.114 + 812.529i 0.0916523 + 0.158747i
\(298\) 1961.93 + 3398.16i 0.381381 + 0.660571i
\(299\) 2337.66 4048.95i 0.452142 0.783133i
\(300\) 814.856 0.156819
\(301\) 0 0
\(302\) −3200.63 −0.609853
\(303\) −712.278 + 1233.70i −0.135047 + 0.233909i
\(304\) −4993.22 8648.51i −0.942042 1.63166i
\(305\) −304.859 528.031i −0.0572333 0.0991310i
\(306\) 250.423 433.745i 0.0467834 0.0810312i
\(307\) 3197.08 0.594354 0.297177 0.954822i \(-0.403955\pi\)
0.297177 + 0.954822i \(0.403955\pi\)
\(308\) 0 0
\(309\) −5998.76 −1.10439
\(310\) 8119.10 14062.7i 1.48753 2.57647i
\(311\) −1677.80 2906.04i −0.305915 0.529860i 0.671550 0.740959i \(-0.265629\pi\)
−0.977465 + 0.211100i \(0.932296\pi\)
\(312\) −3489.77 6044.45i −0.633234 1.09679i
\(313\) −1128.20 + 1954.09i −0.203736 + 0.352881i −0.949729 0.313072i \(-0.898642\pi\)
0.745993 + 0.665954i \(0.231975\pi\)
\(314\) 16430.2 2.95290
\(315\) 0 0
\(316\) −13752.3 −2.44818
\(317\) 3069.59 5316.69i 0.543866 0.942004i −0.454811 0.890588i \(-0.650293\pi\)
0.998677 0.0514158i \(-0.0163734\pi\)
\(318\) 4248.16 + 7358.02i 0.749135 + 1.29754i
\(319\) 615.095 + 1065.38i 0.107958 + 0.186989i
\(320\) 3937.32 6819.64i 0.687821 1.19134i
\(321\) −3500.21 −0.608606
\(322\) 0 0
\(323\) 618.199 0.106494
\(324\) −802.902 + 1390.67i −0.137672 + 0.238455i
\(325\) 255.517 + 442.568i 0.0436108 + 0.0755362i
\(326\) 6364.38 + 11023.4i 1.08126 + 1.87280i
\(327\) −2005.76 + 3474.09i −0.339202 + 0.587515i
\(328\) −21098.0 −3.55166
\(329\) 0 0
\(330\) −5801.32 −0.967734
\(331\) −3514.91 + 6088.00i −0.583676 + 1.01096i 0.411363 + 0.911472i \(0.365053\pi\)
−0.995039 + 0.0994849i \(0.968280\pi\)
\(332\) 13227.0 + 22909.8i 2.18652 + 3.78717i
\(333\) 1169.54 + 2025.70i 0.192463 + 0.333356i
\(334\) 1610.10 2788.78i 0.263775 0.456872i
\(335\) −5081.76 −0.828795
\(336\) 0 0
\(337\) 10328.4 1.66951 0.834757 0.550619i \(-0.185608\pi\)
0.834757 + 0.550619i \(0.185608\pi\)
\(338\) −2125.22 + 3680.99i −0.342003 + 0.592366i
\(339\) 1359.87 + 2355.36i 0.217870 + 0.377361i
\(340\) 1103.24 + 1910.86i 0.175975 + 0.304797i
\(341\) 5069.80 8781.15i 0.805118 1.39450i
\(342\) −2781.90 −0.439847
\(343\) 0 0
\(344\) −424.395 −0.0665170
\(345\) 1983.59 3435.68i 0.309544 0.536146i
\(346\) −10006.0 17330.9i −1.55470 2.69282i
\(347\) −983.768 1703.94i −0.152194 0.263608i 0.779840 0.625980i \(-0.215301\pi\)
−0.932034 + 0.362371i \(0.881967\pi\)
\(348\) −1052.75 + 1823.42i −0.162165 + 0.280878i
\(349\) 4365.46 0.669564 0.334782 0.942296i \(-0.391337\pi\)
0.334782 + 0.942296i \(0.391337\pi\)
\(350\) 0 0
\(351\) −1007.07 −0.153144
\(352\) 6949.30 12036.5i 1.05227 1.82258i
\(353\) −3035.79 5258.15i −0.457731 0.792813i 0.541110 0.840952i \(-0.318004\pi\)
−0.998841 + 0.0481389i \(0.984671\pi\)
\(354\) −283.978 491.865i −0.0426364 0.0738484i
\(355\) 1918.76 3323.40i 0.286866 0.496866i
\(356\) 6998.90 1.04197
\(357\) 0 0
\(358\) 14794.4 2.18411
\(359\) −4819.02 + 8346.79i −0.708463 + 1.22709i 0.256965 + 0.966421i \(0.417278\pi\)
−0.965427 + 0.260673i \(0.916056\pi\)
\(360\) −2961.19 5128.93i −0.433523 0.750884i
\(361\) 1712.64 + 2966.37i 0.249692 + 0.432479i
\(362\) −8192.06 + 14189.1i −1.18941 + 2.06011i
\(363\) 370.485 0.0535687
\(364\) 0 0
\(365\) 6132.61 0.879439
\(366\) 457.288 792.046i 0.0653083 0.113117i
\(367\) 261.362 + 452.693i 0.0371744 + 0.0643879i 0.884014 0.467460i \(-0.154831\pi\)
−0.846840 + 0.531848i \(0.821498\pi\)
\(368\) 10681.0 + 18500.0i 1.51301 + 2.62060i
\(369\) −1522.11 + 2636.38i −0.214737 + 0.371936i
\(370\) −14463.1 −2.03217
\(371\) 0 0
\(372\) 17354.2 2.41875
\(373\) −1614.92 + 2797.12i −0.224175 + 0.388283i −0.956072 0.293133i \(-0.905302\pi\)
0.731896 + 0.681416i \(0.238636\pi\)
\(374\) 966.887 + 1674.70i 0.133681 + 0.231542i
\(375\) 2194.91 + 3801.69i 0.302252 + 0.523516i
\(376\) −7818.48 + 13542.0i −1.07236 + 1.85738i
\(377\) −1320.46 −0.180390
\(378\) 0 0
\(379\) 6639.71 0.899892 0.449946 0.893056i \(-0.351443\pi\)
0.449946 + 0.893056i \(0.351443\pi\)
\(380\) 6127.82 10613.7i 0.827239 1.43282i
\(381\) −2572.33 4455.41i −0.345891 0.599101i
\(382\) 690.887 + 1196.65i 0.0925363 + 0.160278i
\(383\) −7112.22 + 12318.7i −0.948871 + 1.64349i −0.201063 + 0.979578i \(0.564439\pi\)
−0.747809 + 0.663914i \(0.768894\pi\)
\(384\) 2212.69 0.294052
\(385\) 0 0
\(386\) −21369.1 −2.81777
\(387\) −30.6179 + 53.0317i −0.00402169 + 0.00696577i
\(388\) 14332.1 + 24823.9i 1.87526 + 3.24805i
\(389\) −1460.91 2530.37i −0.190414 0.329807i 0.754973 0.655755i \(-0.227650\pi\)
−0.945388 + 0.325948i \(0.894316\pi\)
\(390\) 3113.51 5392.75i 0.404253 0.700186i
\(391\) −1322.39 −0.171039
\(392\) 0 0
\(393\) 1411.83 0.181215
\(394\) −7582.24 + 13132.8i −0.969512 + 1.67924i
\(395\) −3659.16 6337.86i −0.466108 0.807322i
\(396\) −3100.02 5369.40i −0.393389 0.681369i
\(397\) 405.970 703.161i 0.0513226 0.0888933i −0.839223 0.543788i \(-0.816990\pi\)
0.890545 + 0.454894i \(0.150323\pi\)
\(398\) −16178.0 −2.03751
\(399\) 0 0
\(400\) −2334.96 −0.291870
\(401\) −1169.32 + 2025.32i −0.145618 + 0.252218i −0.929603 0.368561i \(-0.879850\pi\)
0.783985 + 0.620780i \(0.213184\pi\)
\(402\) −3811.32 6601.40i −0.472864 0.819025i
\(403\) 5441.81 + 9425.50i 0.672645 + 1.16506i
\(404\) 4706.91 8152.61i 0.579648 1.00398i
\(405\) −854.537 −0.104845
\(406\) 0 0
\(407\) −9031.21 −1.09990
\(408\) −987.062 + 1709.64i −0.119772 + 0.207451i
\(409\) −1363.79 2362.15i −0.164877 0.285576i 0.771734 0.635945i \(-0.219390\pi\)
−0.936612 + 0.350369i \(0.886056\pi\)
\(410\) −9411.65 16301.5i −1.13368 1.96359i
\(411\) −665.865 + 1153.31i −0.0799142 + 0.138415i
\(412\) 39641.3 4.74026
\(413\) 0 0
\(414\) 5950.76 0.706435
\(415\) −7038.81 + 12191.6i −0.832582 + 1.44207i
\(416\) 7459.23 + 12919.8i 0.879132 + 1.52270i
\(417\) −2504.97 4338.74i −0.294170 0.509518i
\(418\) 5370.48 9301.94i 0.628418 1.08845i
\(419\) −13306.3 −1.55144 −0.775721 0.631076i \(-0.782614\pi\)
−0.775721 + 0.631076i \(0.782614\pi\)
\(420\) 0 0
\(421\) −11007.5 −1.27428 −0.637138 0.770750i \(-0.719882\pi\)
−0.637138 + 0.770750i \(0.719882\pi\)
\(422\) 1570.40 2720.01i 0.181151 0.313763i
\(423\) 1128.12 + 1953.97i 0.129672 + 0.224599i
\(424\) −16744.5 29002.3i −1.91789 3.32187i
\(425\) 72.2716 125.178i 0.00824868 0.0142871i
\(426\) 5756.29 0.654679
\(427\) 0 0
\(428\) 23130.2 2.61225
\(429\) 1944.16 3367.39i 0.218800 0.378972i
\(430\) −189.319 327.910i −0.0212320 0.0367749i
\(431\) 3262.81 + 5651.36i 0.364650 + 0.631592i 0.988720 0.149776i \(-0.0478553\pi\)
−0.624070 + 0.781368i \(0.714522\pi\)
\(432\) 2300.71 3984.94i 0.256233 0.443809i
\(433\) 11716.3 1.30034 0.650171 0.759788i \(-0.274697\pi\)
0.650171 + 0.759788i \(0.274697\pi\)
\(434\) 0 0
\(435\) −1120.46 −0.123498
\(436\) 13254.6 22957.6i 1.45592 2.52172i
\(437\) 3672.55 + 6361.04i 0.402018 + 0.696315i
\(438\) 4599.46 + 7966.49i 0.501759 + 0.869072i
\(439\) −7305.69 + 12653.8i −0.794264 + 1.37571i 0.129042 + 0.991639i \(0.458810\pi\)
−0.923306 + 0.384066i \(0.874524\pi\)
\(440\) 22866.4 2.47753
\(441\) 0 0
\(442\) −2075.67 −0.223370
\(443\) 7619.89 13198.0i 0.817228 1.41548i −0.0904888 0.995897i \(-0.528843\pi\)
0.907717 0.419583i \(-0.137824\pi\)
\(444\) −7728.59 13386.3i −0.826087 1.43082i
\(445\) 1862.25 + 3225.51i 0.198380 + 0.343604i
\(446\) 9969.05 17266.9i 1.05840 1.83321i
\(447\) −2231.61 −0.236133
\(448\) 0 0
\(449\) 10678.8 1.12241 0.561206 0.827676i \(-0.310338\pi\)
0.561206 + 0.827676i \(0.310338\pi\)
\(450\) −325.222 + 563.301i −0.0340692 + 0.0590095i
\(451\) −5876.91 10179.1i −0.613598 1.06278i
\(452\) −8986.34 15564.8i −0.935137 1.61971i
\(453\) 910.146 1576.42i 0.0943982 0.163503i
\(454\) 9640.53 0.996592
\(455\) 0 0
\(456\) 10965.1 1.12607
\(457\) −2114.12 + 3661.76i −0.216399 + 0.374814i −0.953704 0.300746i \(-0.902764\pi\)
0.737306 + 0.675559i \(0.236098\pi\)
\(458\) 2242.50 + 3884.12i 0.228788 + 0.396273i
\(459\) 142.423 + 246.683i 0.0144831 + 0.0250854i
\(460\) −13108.0 + 22703.8i −1.32862 + 2.30124i
\(461\) −910.121 −0.0919492 −0.0459746 0.998943i \(-0.514639\pi\)
−0.0459746 + 0.998943i \(0.514639\pi\)
\(462\) 0 0
\(463\) 4456.16 0.447290 0.223645 0.974671i \(-0.428204\pi\)
0.223645 + 0.974671i \(0.428204\pi\)
\(464\) 3016.65 5224.99i 0.301820 0.522768i
\(465\) 4617.57 + 7997.86i 0.460505 + 0.797617i
\(466\) −17383.8 30109.5i −1.72808 2.99313i
\(467\) −2214.71 + 3835.99i −0.219453 + 0.380104i −0.954641 0.297759i \(-0.903761\pi\)
0.735188 + 0.677864i \(0.237094\pi\)
\(468\) 6654.99 0.657323
\(469\) 0 0
\(470\) −13951.0 −1.36918
\(471\) −4672.18 + 8092.45i −0.457075 + 0.791678i
\(472\) 1119.32 + 1938.73i 0.109155 + 0.189062i
\(473\) −118.216 204.757i −0.0114917 0.0199043i
\(474\) 5488.74 9506.78i 0.531870 0.921226i
\(475\) −802.851 −0.0775523
\(476\) 0 0
\(477\) −4832.10 −0.463830
\(478\) −481.485 + 833.957i −0.0460724 + 0.0797998i
\(479\) 1376.43 + 2384.04i 0.131296 + 0.227411i 0.924176 0.381966i \(-0.124753\pi\)
−0.792881 + 0.609377i \(0.791420\pi\)
\(480\) 6329.41 + 10962.9i 0.601869 + 1.04247i
\(481\) 4846.95 8395.16i 0.459463 0.795814i
\(482\) 8038.43 0.759628
\(483\) 0 0
\(484\) −2448.26 −0.229927
\(485\) −7626.88 + 13210.1i −0.714060 + 1.23679i
\(486\) −640.902 1110.08i −0.0598188 0.103609i
\(487\) 335.299 + 580.755i 0.0311989 + 0.0540380i 0.881203 0.472738i \(-0.156734\pi\)
−0.850004 + 0.526776i \(0.823401\pi\)
\(488\) −1802.44 + 3121.92i −0.167198 + 0.289595i
\(489\) −7239.22 −0.669466
\(490\) 0 0
\(491\) −8244.70 −0.757797 −0.378898 0.925438i \(-0.623697\pi\)
−0.378898 + 0.925438i \(0.623697\pi\)
\(492\) 10058.5 17421.8i 0.921692 1.59642i
\(493\) 186.743 + 323.448i 0.0170598 + 0.0295484i
\(494\) 5764.56 + 9984.50i 0.525019 + 0.909360i
\(495\) 1649.69 2857.35i 0.149794 0.259451i
\(496\) −49728.3 −4.50175
\(497\) 0 0
\(498\) −21116.4 −1.90010
\(499\) −4082.46 + 7071.02i −0.366244 + 0.634353i −0.988975 0.148083i \(-0.952690\pi\)
0.622731 + 0.782436i \(0.286023\pi\)
\(500\) −14504.5 25122.5i −1.29732 2.24703i
\(501\) 915.713 + 1586.06i 0.0816587 + 0.141437i
\(502\) −6218.42 + 10770.6i −0.552872 + 0.957602i
\(503\) −8175.59 −0.724715 −0.362357 0.932039i \(-0.618028\pi\)
−0.362357 + 0.932039i \(0.618028\pi\)
\(504\) 0 0
\(505\) 5009.61 0.441435
\(506\) −11488.0 + 19897.8i −1.00930 + 1.74815i
\(507\) −1208.68 2093.49i −0.105876 0.183383i
\(508\) 16998.6 + 29442.4i 1.48463 + 2.57145i
\(509\) −439.224 + 760.758i −0.0382480 + 0.0662475i −0.884516 0.466510i \(-0.845511\pi\)
0.846268 + 0.532758i \(0.178844\pi\)
\(510\) −1761.28 −0.152923
\(511\) 0 0
\(512\) 16876.5 1.45673
\(513\) 791.073 1370.18i 0.0680833 0.117924i
\(514\) −7338.86 12711.3i −0.629773 1.09080i
\(515\) 10547.7 + 18269.1i 0.902496 + 1.56317i
\(516\) 202.331 350.447i 0.0172618 0.0298984i
\(517\) −8711.42 −0.741060
\(518\) 0 0
\(519\) 11381.4 0.962600
\(520\) −12272.1 + 21256.0i −1.03494 + 1.79257i
\(521\) 5856.30 + 10143.4i 0.492455 + 0.852957i 0.999962 0.00869048i \(-0.00276630\pi\)
−0.507507 + 0.861647i \(0.669433\pi\)
\(522\) −840.341 1455.51i −0.0704612 0.122042i
\(523\) −3670.91 + 6358.20i −0.306917 + 0.531596i −0.977686 0.210070i \(-0.932631\pi\)
0.670769 + 0.741666i \(0.265964\pi\)
\(524\) −9329.75 −0.777809
\(525\) 0 0
\(526\) −10780.8 −0.893659
\(527\) 1539.19 2665.95i 0.127226 0.220362i
\(528\) 8883.07 + 15385.9i 0.732171 + 1.26816i
\(529\) −1772.46 3069.99i −0.145678 0.252321i
\(530\) 14939.1 25875.3i 1.22437 2.12066i
\(531\) 323.014 0.0263985
\(532\) 0 0
\(533\) 12616.3 1.02528
\(534\) −2793.37 + 4838.26i −0.226369 + 0.392082i
\(535\) 6154.44 + 10659.8i 0.497345 + 0.861426i
\(536\) 15022.6 + 26020.0i 1.21060 + 2.09681i
\(537\) −4207.01 + 7286.76i −0.338075 + 0.585562i
\(538\) 18213.4 1.45955
\(539\) 0 0
\(540\) 5646.99 0.450015
\(541\) 7934.36 13742.7i 0.630545 1.09214i −0.356895 0.934144i \(-0.616165\pi\)
0.987440 0.157992i \(-0.0505020\pi\)
\(542\) −6974.21 12079.7i −0.552709 0.957319i
\(543\) −4659.07 8069.74i −0.368213 0.637763i
\(544\) 2109.80 3654.29i 0.166282 0.288008i
\(545\) 14107.0 1.10877
\(546\) 0 0
\(547\) 2315.26 0.180975 0.0904875 0.995898i \(-0.471157\pi\)
0.0904875 + 0.995898i \(0.471157\pi\)
\(548\) 4400.21 7621.38i 0.343006 0.594104i
\(549\) 260.073 + 450.460i 0.0202179 + 0.0350185i
\(550\) −1255.69 2174.92i −0.0973505 0.168616i
\(551\) 1037.24 1796.56i 0.0801961 0.138904i
\(552\) −23455.4 −1.80857
\(553\) 0 0
\(554\) −14134.1 −1.08393
\(555\) 4112.81 7123.59i 0.314557 0.544828i
\(556\) 16553.5 + 28671.5i 1.26263 + 2.18694i
\(557\) 2409.52 + 4173.42i 0.183294 + 0.317475i 0.943000 0.332792i \(-0.107991\pi\)
−0.759706 + 0.650266i \(0.774657\pi\)
\(558\) −6926.35 + 11996.8i −0.525476 + 0.910152i
\(559\) 253.781 0.0192018
\(560\) 0 0
\(561\) −1099.79 −0.0827689
\(562\) −2689.39 + 4658.17i −0.201860 + 0.349631i
\(563\) 1270.43 + 2200.45i 0.0951017 + 0.164721i 0.909651 0.415373i \(-0.136349\pi\)
−0.814549 + 0.580094i \(0.803016\pi\)
\(564\) −7454.93 12912.3i −0.556577 0.964019i
\(565\) 4782.12 8282.88i 0.356081 0.616750i
\(566\) 2279.85 0.169310
\(567\) 0 0
\(568\) −22688.9 −1.67607
\(569\) 12110.0 20975.1i 0.892227 1.54538i 0.0550275 0.998485i \(-0.482475\pi\)
0.837200 0.546898i \(-0.184191\pi\)
\(570\) 4891.43 + 8472.20i 0.359437 + 0.622564i
\(571\) 5886.04 + 10194.9i 0.431389 + 0.747188i 0.996993 0.0774891i \(-0.0246903\pi\)
−0.565604 + 0.824677i \(0.691357\pi\)
\(572\) −12847.5 + 22252.6i −0.939129 + 1.62662i
\(573\) −785.855 −0.0572942
\(574\) 0 0
\(575\) 1717.38 0.124556
\(576\) −3358.90 + 5817.79i −0.242976 + 0.420847i
\(577\) 5292.13 + 9166.24i 0.381827 + 0.661344i 0.991324 0.131445i \(-0.0419616\pi\)
−0.609496 + 0.792789i \(0.708628\pi\)
\(578\) −12664.3 21935.2i −0.911358 1.57852i
\(579\) 6076.61 10525.0i 0.436158 0.755447i
\(580\) 7404.25 0.530077
\(581\) 0 0
\(582\) −22880.6 −1.62961
\(583\) 9328.42 16157.3i 0.662682 1.14780i
\(584\) −18129.1 31400.6i −1.28457 2.22494i
\(585\) 1770.74 + 3067.02i 0.125147 + 0.216762i
\(586\) 5923.52 10259.8i 0.417574 0.723259i
\(587\) 8712.63 0.612621 0.306311 0.951932i \(-0.400905\pi\)
0.306311 + 0.951932i \(0.400905\pi\)
\(588\) 0 0
\(589\) −17098.6 −1.19615
\(590\) −998.641 + 1729.70i −0.0696838 + 0.120696i
\(591\) −4312.24 7469.02i −0.300139 0.519855i
\(592\) 22146.2 + 38358.3i 1.53750 + 2.66304i
\(593\) −7681.43 + 13304.6i −0.531937 + 0.921341i 0.467368 + 0.884063i \(0.345202\pi\)
−0.999305 + 0.0372786i \(0.988131\pi\)
\(594\) 4949.07 0.341857
\(595\) 0 0
\(596\) 14747.0 1.01353
\(597\) 4600.46 7968.22i 0.315384 0.546261i
\(598\) −12331.0 21357.9i −0.843229 1.46052i
\(599\) −13001.9 22519.9i −0.886883 1.53613i −0.843540 0.537066i \(-0.819533\pi\)
−0.0433430 0.999060i \(-0.513801\pi\)
\(600\) 1281.89 2220.30i 0.0872216 0.151072i
\(601\) −20567.7 −1.39596 −0.697982 0.716115i \(-0.745918\pi\)
−0.697982 + 0.716115i \(0.745918\pi\)
\(602\) 0 0
\(603\) 4335.22 0.292776
\(604\) −6014.48 + 10417.4i −0.405175 + 0.701783i
\(605\) −651.426 1128.30i −0.0437756 0.0758216i
\(606\) 3757.21 + 6507.68i 0.251858 + 0.436231i
\(607\) 9821.04 17010.5i 0.656711 1.13746i −0.324751 0.945800i \(-0.605280\pi\)
0.981462 0.191657i \(-0.0613862\pi\)
\(608\) −23437.4 −1.56334
\(609\) 0 0
\(610\) −3216.21 −0.213476
\(611\) 4675.33 8097.90i 0.309564 0.536180i
\(612\) −941.165 1630.15i −0.0621640 0.107671i
\(613\) −4227.29 7321.89i −0.278530 0.482428i 0.692490 0.721428i \(-0.256514\pi\)
−0.971020 + 0.239000i \(0.923180\pi\)
\(614\) 8432.16 14604.9i 0.554225 0.959946i
\(615\) 10705.4 0.701922
\(616\) 0 0
\(617\) −24168.4 −1.57696 −0.788479 0.615061i \(-0.789131\pi\)
−0.788479 + 0.615061i \(0.789131\pi\)
\(618\) −15821.5 + 27403.6i −1.02983 + 1.78371i
\(619\) −1018.78 1764.58i −0.0661523 0.114579i 0.831052 0.556194i \(-0.187739\pi\)
−0.897205 + 0.441615i \(0.854406\pi\)
\(620\) −30514.0 52851.9i −1.97657 3.42352i
\(621\) −1692.19 + 2930.95i −0.109348 + 0.189396i
\(622\) −17700.5 −1.14104
\(623\) 0 0
\(624\) −19069.8 −1.22340
\(625\) 6862.33 11885.9i 0.439189 0.760698i
\(626\) 5951.14 + 10307.7i 0.379961 + 0.658111i
\(627\) 3054.35 + 5290.29i 0.194544 + 0.336960i
\(628\) 30874.9 53476.9i 1.96185 3.39803i
\(629\) −2741.87 −0.173808
\(630\) 0 0
\(631\) 12339.5 0.778489 0.389244 0.921135i \(-0.372736\pi\)
0.389244 + 0.921135i \(0.372736\pi\)
\(632\) −21634.3 + 37471.8i −1.36166 + 2.35846i
\(633\) 893.133 + 1546.95i 0.0560803 + 0.0971340i
\(634\) −16191.9 28045.1i −1.01429 1.75680i
\(635\) −9045.89 + 15667.9i −0.565315 + 0.979154i
\(636\) 31931.7 1.99084
\(637\) 0 0
\(638\) 6489.15 0.402677
\(639\) −1636.89 + 2835.17i −0.101337 + 0.175520i
\(640\) −3890.59 6738.70i −0.240295 0.416204i
\(641\) 5111.32 + 8853.06i 0.314953 + 0.545515i 0.979428 0.201796i \(-0.0646779\pi\)
−0.664474 + 0.747311i \(0.731345\pi\)
\(642\) −9231.65 + 15989.7i −0.567514 + 0.982964i
\(643\) 1211.75 0.0743187 0.0371594 0.999309i \(-0.488169\pi\)
0.0371594 + 0.999309i \(0.488169\pi\)
\(644\) 0 0
\(645\) 215.342 0.0131459
\(646\) 1630.48 2824.07i 0.0993037 0.171999i
\(647\) −1408.61 2439.78i −0.0855922 0.148250i 0.820051 0.572290i \(-0.193945\pi\)
−0.905643 + 0.424040i \(0.860612\pi\)
\(648\) 2526.17 + 4375.46i 0.153144 + 0.265253i
\(649\) −623.581 + 1080.07i −0.0377160 + 0.0653260i
\(650\) 2695.66 0.162665
\(651\) 0 0
\(652\) 47838.6 2.87347
\(653\) −10493.1 + 18174.6i −0.628831 + 1.08917i 0.358956 + 0.933355i \(0.383133\pi\)
−0.987787 + 0.155812i \(0.950201\pi\)
\(654\) 10580.2 + 18325.5i 0.632600 + 1.09569i
\(655\) −2482.44 4299.70i −0.148087 0.256494i
\(656\) −28822.5 + 49922.1i −1.71544 + 2.97124i
\(657\) −5231.69 −0.310666
\(658\) 0 0
\(659\) −2384.09 −0.140927 −0.0704635 0.997514i \(-0.522448\pi\)
−0.0704635 + 0.997514i \(0.522448\pi\)
\(660\) −10901.6 + 18882.1i −0.642944 + 1.11361i
\(661\) −3788.55 6561.96i −0.222931 0.386128i 0.732766 0.680481i \(-0.238229\pi\)
−0.955697 + 0.294353i \(0.904896\pi\)
\(662\) 18540.8 + 32113.7i 1.08854 + 1.88540i
\(663\) 590.248 1022.34i 0.0345751 0.0598859i
\(664\) 83232.2 4.86451
\(665\) 0 0
\(666\) 12338.4 0.717874
\(667\) −2218.77 + 3843.02i −0.128802 + 0.223092i
\(668\) −6051.26 10481.1i −0.350494 0.607074i
\(669\) 5669.69 + 9820.19i 0.327658 + 0.567520i
\(670\) −13402.9 + 23214.6i −0.772837 + 1.33859i
\(671\) −2008.30 −0.115543
\(672\) 0 0
\(673\) 11724.6 0.671547 0.335774 0.941943i \(-0.391002\pi\)
0.335774 + 0.941943i \(0.391002\pi\)
\(674\) 27240.8 47182.5i 1.55679 2.69644i
\(675\) −184.963 320.366i −0.0105470 0.0182680i
\(676\) 7987.23 + 13834.3i 0.454440 + 0.787113i
\(677\) 16152.1 27976.3i 0.916952 1.58821i 0.112935 0.993602i \(-0.463975\pi\)
0.804018 0.594606i \(-0.202692\pi\)
\(678\) 14346.4 0.812639
\(679\) 0 0
\(680\) 6942.23 0.391503
\(681\) −2741.43 + 4748.29i −0.154261 + 0.267188i
\(682\) −26742.8 46319.9i −1.50152 2.60070i
\(683\) −16683.6 28896.8i −0.934669 1.61889i −0.775223 0.631687i \(-0.782363\pi\)
−0.159446 0.987207i \(-0.550971\pi\)
\(684\) −5227.61 + 9054.49i −0.292226 + 0.506150i
\(685\) 4683.18 0.261219
\(686\) 0 0
\(687\) −2550.75 −0.141655
\(688\) −579.776 + 1004.20i −0.0321275 + 0.0556465i
\(689\) 10012.9 + 17342.9i 0.553646 + 0.958943i
\(690\) −10463.3 18122.9i −0.577289 0.999894i
\(691\) −521.837 + 903.849i −0.0287288 + 0.0497598i −0.880032 0.474914i \(-0.842479\pi\)
0.851304 + 0.524674i \(0.175813\pi\)
\(692\) −75211.3 −4.13166
\(693\) 0 0
\(694\) −10378.6 −0.567674
\(695\) −8809.01 + 15257.6i −0.480784 + 0.832742i
\(696\) 3312.28 + 5737.03i 0.180390 + 0.312445i
\(697\) −1784.23 3090.37i −0.0969619 0.167943i
\(698\) 11513.7 19942.4i 0.624357 1.08142i
\(699\) 19773.3 1.06995
\(700\) 0 0
\(701\) −11305.7 −0.609143 −0.304572 0.952489i \(-0.598513\pi\)
−0.304572 + 0.952489i \(0.598513\pi\)
\(702\) −2656.11 + 4600.52i −0.142804 + 0.247344i
\(703\) 7614.72 + 13189.1i 0.408527 + 0.707590i
\(704\) −12968.8 22462.6i −0.694289 1.20254i
\(705\) 3967.18 6871.35i 0.211933 0.367078i
\(706\) −32027.1 −1.70730
\(707\) 0 0
\(708\) −2134.55 −0.113307
\(709\) 6653.38 11524.0i 0.352430 0.610427i −0.634245 0.773132i \(-0.718689\pi\)
0.986675 + 0.162706i \(0.0520221\pi\)
\(710\) −10121.3 17530.6i −0.534995 0.926639i
\(711\) 3121.61 + 5406.79i 0.164655 + 0.285190i
\(712\) 11010.3 19070.4i 0.579535 1.00378i
\(713\) 36575.6 1.92113
\(714\) 0 0
\(715\) −13673.7 −0.715201
\(716\) 27801.0 48152.8i 1.45108 2.51334i
\(717\) −273.835 474.296i −0.0142630 0.0247042i
\(718\) 25419.9 + 44028.6i 1.32126 + 2.28849i
\(719\) 5350.62 9267.55i 0.277531 0.480697i −0.693240 0.720707i \(-0.743817\pi\)
0.970770 + 0.240010i \(0.0771506\pi\)
\(720\) −16181.4 −0.837562
\(721\) 0 0
\(722\) 18068.0 0.931333
\(723\) −2285.85 + 3959.20i −0.117582 + 0.203657i
\(724\) 30788.3 + 53326.8i 1.58044 + 2.73740i
\(725\) −242.521 420.059i −0.0124235 0.0215181i
\(726\) 977.139 1692.45i 0.0499518 0.0865191i
\(727\) 2121.14 0.108210 0.0541051 0.998535i \(-0.482769\pi\)
0.0541051 + 0.998535i \(0.482769\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 16174.5 28015.1i 0.820062 1.42039i
\(731\) −35.8904 62.1640i −0.00181594 0.00314531i
\(732\) −1718.63 2976.75i −0.0867792 0.150306i
\(733\) −10792.0 + 18692.3i −0.543809 + 0.941906i 0.454871 + 0.890557i \(0.349685\pi\)
−0.998681 + 0.0513484i \(0.983648\pi\)
\(734\) 2757.33 0.138658
\(735\) 0 0
\(736\) 50135.0 2.51087
\(737\) −8369.18 + 14495.8i −0.418294 + 0.724507i
\(738\) 8029.02 + 13906.7i 0.400478 + 0.693648i
\(739\) 4972.61 + 8612.81i 0.247524 + 0.428724i 0.962838 0.270079i \(-0.0870497\pi\)
−0.715314 + 0.698803i \(0.753716\pi\)
\(740\) −27178.5 + 47074.5i −1.35013 + 2.33850i
\(741\) −6556.94 −0.325068
\(742\) 0 0
\(743\) 2867.01 0.141562 0.0707808 0.997492i \(-0.477451\pi\)
0.0707808 + 0.997492i \(0.477451\pi\)
\(744\) 27300.8 47286.4i 1.34529 2.33011i
\(745\) 3923.86 + 6796.32i 0.192965 + 0.334225i
\(746\) 8518.57 + 14754.6i 0.418079 + 0.724134i
\(747\) 6004.76 10400.6i 0.294114 0.509420i
\(748\) 7267.71 0.355259
\(749\) 0 0
\(750\) 23155.9 1.12738
\(751\) 5412.05 9373.94i 0.262967 0.455473i −0.704062 0.710139i \(-0.748632\pi\)
0.967029 + 0.254666i \(0.0819655\pi\)
\(752\) 21362.0 + 37000.1i 1.03589 + 1.79422i
\(753\) −3536.60 6125.56i −0.171156 0.296451i
\(754\) −3482.66 + 6032.14i −0.168211 + 0.291349i
\(755\) −6401.26 −0.308564
\(756\) 0 0
\(757\) −14512.0 −0.696761 −0.348381 0.937353i \(-0.613268\pi\)
−0.348381 + 0.937353i \(0.613268\pi\)
\(758\) 17512.0 30331.6i 0.839134 1.45342i
\(759\) −6533.57 11316.5i −0.312455 0.541188i
\(760\) −19280.0 33393.9i −0.920208 1.59385i
\(761\) −16537.9 + 28644.5i −0.787778 + 1.36447i 0.139547 + 0.990215i \(0.455435\pi\)
−0.927325 + 0.374256i \(0.877898\pi\)
\(762\) −27137.7 −1.29015
\(763\) 0 0
\(764\) 5193.13 0.245917
\(765\) 500.846 867.490i 0.0236707 0.0409989i
\(766\) 37516.4 + 64980.3i 1.76961 + 3.06506i
\(767\) −669.338 1159.33i −0.0315103 0.0545774i
\(768\) −3121.19 + 5406.06i −0.146649 + 0.254003i
\(769\) −6728.44 −0.315518 −0.157759 0.987478i \(-0.550427\pi\)
−0.157759 + 0.987478i \(0.550427\pi\)
\(770\) 0 0
\(771\) 8347.65 0.389926
\(772\) −40155.8 + 69551.8i −1.87207 + 3.24252i