Properties

Label 147.4
Level 147
Weight 4
Dimension 1644
Nonzero newspaces 8
Newform subspaces 41
Sturm bound 6272
Trace bound 1

Downloads

Learn more

Defining parameters

Level: N N = 147=372 147 = 3 \cdot 7^{2}
Weight: k k = 4 4
Nonzero newspaces: 8 8
Newform subspaces: 41 41
Sturm bound: 62726272
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ1(147))M_{4}(\Gamma_1(147)).

Total New Old
Modular forms 2472 1740 732
Cusp forms 2232 1644 588
Eisenstein series 240 96 144

Trace form

1644q27q330q4+48q5+51q6+12q7108q899q9138q10+171q12+126q13+312q14+357q15+210q16+24q17561q181158q19+7128q99+O(q100) 1644 q - 27 q^{3} - 30 q^{4} + 48 q^{5} + 51 q^{6} + 12 q^{7} - 108 q^{8} - 99 q^{9} - 138 q^{10} + 171 q^{12} + 126 q^{13} + 312 q^{14} + 357 q^{15} + 210 q^{16} + 24 q^{17} - 561 q^{18} - 1158 q^{19}+ \cdots - 7128 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ1(147))S_{4}^{\mathrm{new}}(\Gamma_1(147))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
147.4.a χ147(1,)\chi_{147}(1, \cdot) 147.4.a.a 1 1
147.4.a.b 1
147.4.a.c 1
147.4.a.d 1
147.4.a.e 1
147.4.a.f 1
147.4.a.g 1
147.4.a.h 1
147.4.a.i 2
147.4.a.j 2
147.4.a.k 2
147.4.a.l 3
147.4.a.m 3
147.4.c χ147(146,)\chi_{147}(146, \cdot) 147.4.c.a 12 1
147.4.c.b 24
147.4.e χ147(67,)\chi_{147}(67, \cdot) 147.4.e.a 2 2
147.4.e.b 2
147.4.e.c 2
147.4.e.d 2
147.4.e.e 2
147.4.e.f 2
147.4.e.g 2
147.4.e.h 2
147.4.e.i 2
147.4.e.j 4
147.4.e.k 4
147.4.e.l 4
147.4.e.m 4
147.4.e.n 6
147.4.g χ147(68,)\chi_{147}(68, \cdot) 147.4.g.a 2 2
147.4.g.b 2
147.4.g.c 8
147.4.g.d 12
147.4.g.e 48
147.4.i χ147(22,)\chi_{147}(22, \cdot) 147.4.i.a 84 6
147.4.i.b 84
147.4.k χ147(20,)\chi_{147}(20, \cdot) 147.4.k.a 12 6
147.4.k.b 312
147.4.m χ147(4,)\chi_{147}(4, \cdot) 147.4.m.a 156 12
147.4.m.b 180
147.4.o χ147(5,)\chi_{147}(5, \cdot) 147.4.o.a 648 12

Decomposition of S4old(Γ1(147))S_{4}^{\mathrm{old}}(\Gamma_1(147)) into lower level spaces

S4old(Γ1(147)) S_{4}^{\mathrm{old}}(\Gamma_1(147)) \cong S4new(Γ1(1))S_{4}^{\mathrm{new}}(\Gamma_1(1))6^{\oplus 6}\oplusS4new(Γ1(3))S_{4}^{\mathrm{new}}(\Gamma_1(3))3^{\oplus 3}\oplusS4new(Γ1(7))S_{4}^{\mathrm{new}}(\Gamma_1(7))4^{\oplus 4}\oplusS4new(Γ1(21))S_{4}^{\mathrm{new}}(\Gamma_1(21))2^{\oplus 2}\oplusS4new(Γ1(49))S_{4}^{\mathrm{new}}(\Gamma_1(49))2^{\oplus 2}