Properties

Label 147.4.e.m.79.1
Level $147$
Weight $4$
Character 147.79
Analytic conductor $8.673$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [147,4,Mod(67,147)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(147, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("147.67");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 147.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.67328077084\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(-1.63746 + 1.52274i\) of defining polynomial
Character \(\chi\) \(=\) 147.79
Dual form 147.4.e.m.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13746 + 1.97014i) q^{2} +(1.50000 + 2.59808i) q^{3} +(1.41238 + 2.44631i) q^{4} +(-2.27492 + 3.94027i) q^{5} -6.82475 q^{6} -24.6254 q^{8} +(-4.50000 + 7.79423i) q^{9} +O(q^{10})\) \(q+(-1.13746 + 1.97014i) q^{2} +(1.50000 + 2.59808i) q^{3} +(1.41238 + 2.44631i) q^{4} +(-2.27492 + 3.94027i) q^{5} -6.82475 q^{6} -24.6254 q^{8} +(-4.50000 + 7.79423i) q^{9} +(-5.17525 - 8.96379i) q^{10} +(20.3746 + 35.2898i) q^{11} +(-4.23713 + 7.33892i) q^{12} -53.2990 q^{13} -13.6495 q^{15} +(16.7114 - 28.9450i) q^{16} +(2.27492 + 3.94027i) q^{17} +(-10.2371 - 17.7312i) q^{18} +(61.2990 - 106.173i) q^{19} -12.8522 q^{20} -92.7010 q^{22} +(-65.6736 + 113.750i) q^{23} +(-36.9381 - 63.9787i) q^{24} +(52.1495 + 90.3256i) q^{25} +(60.6254 - 105.006i) q^{26} -27.0000 q^{27} -216.598 q^{29} +(15.5257 - 26.8914i) q^{30} +(-125.897 - 218.060i) q^{31} +(-60.4846 - 104.762i) q^{32} +(-61.1238 + 105.869i) q^{33} -10.3505 q^{34} -25.4228 q^{36} +(-5.94851 + 10.3031i) q^{37} +(139.450 + 241.535i) q^{38} +(-79.9485 - 138.475i) q^{39} +(56.0208 - 97.0308i) q^{40} +111.752 q^{41} +369.196 q^{43} +(-57.5531 + 99.6850i) q^{44} +(-20.4743 - 35.4624i) q^{45} +(-149.402 - 258.772i) q^{46} +(-131.347 + 227.500i) q^{47} +100.268 q^{48} -237.272 q^{50} +(-6.82475 + 11.8208i) q^{51} +(-75.2782 - 130.386i) q^{52} +(283.550 + 491.123i) q^{53} +(30.7114 - 53.1937i) q^{54} -185.402 q^{55} +367.794 q^{57} +(246.371 - 426.728i) q^{58} +(419.945 + 727.366i) q^{59} +(-19.2782 - 33.3909i) q^{60} +(-242.897 + 420.710i) q^{61} +572.811 q^{62} +542.577 q^{64} +(121.251 - 210.013i) q^{65} +(-139.051 - 240.844i) q^{66} +(166.846 + 288.985i) q^{67} +(-6.42608 + 11.1303i) q^{68} -394.042 q^{69} +590.248 q^{71} +(110.814 - 191.936i) q^{72} +(245.350 + 424.960i) q^{73} +(-13.5324 - 23.4387i) q^{74} +(-156.449 + 270.977i) q^{75} +346.309 q^{76} +363.752 q^{78} +(-60.8455 + 105.388i) q^{79} +(76.0340 + 131.695i) q^{80} +(-40.5000 - 70.1481i) q^{81} +(-127.114 + 220.168i) q^{82} -609.608 q^{83} -20.7010 q^{85} +(-419.945 + 727.366i) q^{86} +(-324.897 - 562.738i) q^{87} +(-501.733 - 869.026i) q^{88} +(359.519 - 622.705i) q^{89} +93.1545 q^{90} -371.023 q^{92} +(377.691 - 654.180i) q^{93} +(-298.804 - 517.544i) q^{94} +(278.900 + 483.070i) q^{95} +(181.454 - 314.287i) q^{96} +637.877 q^{97} -366.743 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} + 6 q^{3} - 17 q^{4} + 6 q^{5} + 18 q^{6} - 174 q^{8} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 3 q^{2} + 6 q^{3} - 17 q^{4} + 6 q^{5} + 18 q^{6} - 174 q^{8} - 18 q^{9} - 66 q^{10} + 6 q^{11} + 51 q^{12} - 32 q^{13} + 36 q^{15} - 137 q^{16} - 6 q^{17} + 27 q^{18} + 64 q^{19} - 444 q^{20} - 552 q^{22} - 6 q^{23} - 261 q^{24} + 118 q^{25} + 318 q^{26} - 108 q^{27} - 504 q^{29} + 198 q^{30} + 40 q^{31} + 279 q^{32} - 18 q^{33} - 132 q^{34} + 306 q^{36} + 248 q^{37} + 588 q^{38} - 48 q^{39} - 546 q^{40} + 900 q^{41} + 752 q^{43} - 804 q^{44} + 54 q^{45} - 960 q^{46} - 12 q^{47} - 822 q^{48} - 330 q^{50} + 18 q^{51} - 890 q^{52} + 1104 q^{53} - 81 q^{54} - 1104 q^{55} + 384 q^{57} + 306 q^{58} + 804 q^{59} - 666 q^{60} - 428 q^{61} + 4224 q^{62} + 2578 q^{64} + 636 q^{65} - 828 q^{66} - 148 q^{67} - 222 q^{68} - 36 q^{69} + 1908 q^{71} + 783 q^{72} + 1072 q^{73} - 1398 q^{74} - 354 q^{75} + 3016 q^{76} + 1908 q^{78} + 572 q^{79} + 1950 q^{80} - 162 q^{81} + 1530 q^{82} - 3888 q^{83} - 264 q^{85} - 804 q^{86} - 756 q^{87} + 1164 q^{88} + 366 q^{89} + 1188 q^{90} - 5712 q^{92} - 120 q^{93} - 1920 q^{94} + 1176 q^{95} - 837 q^{96} - 1616 q^{97} - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/147\mathbb{Z}\right)^\times\).

\(n\) \(50\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13746 + 1.97014i −0.402152 + 0.696548i −0.993985 0.109512i \(-0.965071\pi\)
0.591833 + 0.806061i \(0.298404\pi\)
\(3\) 1.50000 + 2.59808i 0.288675 + 0.500000i
\(4\) 1.41238 + 2.44631i 0.176547 + 0.305788i
\(5\) −2.27492 + 3.94027i −0.203475 + 0.352429i −0.949646 0.313326i \(-0.898557\pi\)
0.746171 + 0.665754i \(0.231890\pi\)
\(6\) −6.82475 −0.464366
\(7\) 0 0
\(8\) −24.6254 −1.08830
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) −5.17525 8.96379i −0.163656 0.283460i
\(11\) 20.3746 + 35.2898i 0.558470 + 0.967298i 0.997624 + 0.0688867i \(0.0219447\pi\)
−0.439155 + 0.898412i \(0.644722\pi\)
\(12\) −4.23713 + 7.33892i −0.101929 + 0.176547i
\(13\) −53.2990 −1.13711 −0.568557 0.822644i \(-0.692498\pi\)
−0.568557 + 0.822644i \(0.692498\pi\)
\(14\) 0 0
\(15\) −13.6495 −0.234952
\(16\) 16.7114 28.9450i 0.261115 0.452265i
\(17\) 2.27492 + 3.94027i 0.0324558 + 0.0562151i 0.881797 0.471629i \(-0.156334\pi\)
−0.849341 + 0.527844i \(0.823001\pi\)
\(18\) −10.2371 17.7312i −0.134051 0.232183i
\(19\) 61.2990 106.173i 0.740156 1.28199i −0.212269 0.977211i \(-0.568085\pi\)
0.952424 0.304776i \(-0.0985815\pi\)
\(20\) −12.8522 −0.143691
\(21\) 0 0
\(22\) −92.7010 −0.898360
\(23\) −65.6736 + 113.750i −0.595387 + 1.03124i 0.398106 + 0.917340i \(0.369668\pi\)
−0.993492 + 0.113900i \(0.963666\pi\)
\(24\) −36.9381 63.9787i −0.314165 0.544150i
\(25\) 52.1495 + 90.3256i 0.417196 + 0.722605i
\(26\) 60.6254 105.006i 0.457293 0.792055i
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −216.598 −1.38694 −0.693470 0.720486i \(-0.743919\pi\)
−0.693470 + 0.720486i \(0.743919\pi\)
\(30\) 15.5257 26.8914i 0.0944867 0.163656i
\(31\) −125.897 218.060i −0.729412 1.26338i −0.957132 0.289652i \(-0.906460\pi\)
0.227720 0.973727i \(-0.426873\pi\)
\(32\) −60.4846 104.762i −0.334134 0.578736i
\(33\) −61.1238 + 105.869i −0.322433 + 0.558470i
\(34\) −10.3505 −0.0522087
\(35\) 0 0
\(36\) −25.4228 −0.117698
\(37\) −5.94851 + 10.3031i −0.0264305 + 0.0457790i −0.878938 0.476936i \(-0.841747\pi\)
0.852508 + 0.522715i \(0.175081\pi\)
\(38\) 139.450 + 241.535i 0.595311 + 1.03111i
\(39\) −79.9485 138.475i −0.328257 0.568557i
\(40\) 56.0208 97.0308i 0.221442 0.383548i
\(41\) 111.752 0.425678 0.212839 0.977087i \(-0.431729\pi\)
0.212839 + 0.977087i \(0.431729\pi\)
\(42\) 0 0
\(43\) 369.196 1.30935 0.654673 0.755912i \(-0.272806\pi\)
0.654673 + 0.755912i \(0.272806\pi\)
\(44\) −57.5531 + 99.6850i −0.197192 + 0.341547i
\(45\) −20.4743 35.4624i −0.0678249 0.117476i
\(46\) −149.402 258.772i −0.478872 0.829431i
\(47\) −131.347 + 227.500i −0.407637 + 0.706049i −0.994624 0.103548i \(-0.966981\pi\)
0.586987 + 0.809596i \(0.300314\pi\)
\(48\) 100.268 0.301510
\(49\) 0 0
\(50\) −237.272 −0.671105
\(51\) −6.82475 + 11.8208i −0.0187384 + 0.0324558i
\(52\) −75.2782 130.386i −0.200754 0.347716i
\(53\) 283.550 + 491.123i 0.734879 + 1.27285i 0.954777 + 0.297324i \(0.0960942\pi\)
−0.219898 + 0.975523i \(0.570572\pi\)
\(54\) 30.7114 53.1937i 0.0773943 0.134051i
\(55\) −185.402 −0.454538
\(56\) 0 0
\(57\) 367.794 0.854658
\(58\) 246.371 426.728i 0.557761 0.966070i
\(59\) 419.945 + 727.366i 0.926648 + 1.60500i 0.788890 + 0.614535i \(0.210656\pi\)
0.137758 + 0.990466i \(0.456010\pi\)
\(60\) −19.2782 33.3909i −0.0414801 0.0718457i
\(61\) −242.897 + 420.710i −0.509832 + 0.883056i 0.490103 + 0.871665i \(0.336959\pi\)
−0.999935 + 0.0113909i \(0.996374\pi\)
\(62\) 572.811 1.17334
\(63\) 0 0
\(64\) 542.577 1.05972
\(65\) 121.251 210.013i 0.231374 0.400752i
\(66\) −139.051 240.844i −0.259334 0.449180i
\(67\) 166.846 + 288.985i 0.304230 + 0.526942i 0.977090 0.212828i \(-0.0682675\pi\)
−0.672859 + 0.739770i \(0.734934\pi\)
\(68\) −6.42608 + 11.1303i −0.0114599 + 0.0198492i
\(69\) −394.042 −0.687493
\(70\) 0 0
\(71\) 590.248 0.986613 0.493306 0.869856i \(-0.335788\pi\)
0.493306 + 0.869856i \(0.335788\pi\)
\(72\) 110.814 191.936i 0.181383 0.314165i
\(73\) 245.350 + 424.960i 0.393371 + 0.681339i 0.992892 0.119020i \(-0.0379754\pi\)
−0.599521 + 0.800359i \(0.704642\pi\)
\(74\) −13.5324 23.4387i −0.0212582 0.0368203i
\(75\) −156.449 + 270.977i −0.240868 + 0.417196i
\(76\) 346.309 0.522689
\(77\) 0 0
\(78\) 363.752 0.528037
\(79\) −60.8455 + 105.388i −0.0866539 + 0.150089i −0.906095 0.423075i \(-0.860951\pi\)
0.819441 + 0.573164i \(0.194284\pi\)
\(80\) 76.0340 + 131.695i 0.106261 + 0.184049i
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) −127.114 + 220.168i −0.171187 + 0.296505i
\(83\) −609.608 −0.806183 −0.403091 0.915160i \(-0.632064\pi\)
−0.403091 + 0.915160i \(0.632064\pi\)
\(84\) 0 0
\(85\) −20.7010 −0.0264157
\(86\) −419.945 + 727.366i −0.526556 + 0.912023i
\(87\) −324.897 562.738i −0.400375 0.693470i
\(88\) −501.733 869.026i −0.607783 1.05271i
\(89\) 359.519 622.705i 0.428190 0.741648i −0.568522 0.822668i \(-0.692485\pi\)
0.996712 + 0.0810204i \(0.0258179\pi\)
\(90\) 93.1545 0.109104
\(91\) 0 0
\(92\) −371.023 −0.420455
\(93\) 377.691 654.180i 0.421126 0.729412i
\(94\) −298.804 517.544i −0.327865 0.567878i
\(95\) 278.900 + 483.070i 0.301206 + 0.521704i
\(96\) 181.454 314.287i 0.192912 0.334134i
\(97\) 637.877 0.667697 0.333849 0.942627i \(-0.391653\pi\)
0.333849 + 0.942627i \(0.391653\pi\)
\(98\) 0 0
\(99\) −366.743 −0.372313
\(100\) −147.309 + 255.147i −0.147309 + 0.255147i
\(101\) 335.574 + 581.231i 0.330603 + 0.572620i 0.982630 0.185575i \(-0.0594147\pi\)
−0.652028 + 0.758195i \(0.726081\pi\)
\(102\) −15.5257 26.8914i −0.0150714 0.0261043i
\(103\) −456.206 + 790.172i −0.436420 + 0.755902i −0.997410 0.0719202i \(-0.977087\pi\)
0.560990 + 0.827823i \(0.310421\pi\)
\(104\) 1312.51 1.23752
\(105\) 0 0
\(106\) −1290.10 −1.18213
\(107\) 58.3680 101.096i 0.0527350 0.0913397i −0.838453 0.544974i \(-0.816539\pi\)
0.891188 + 0.453634i \(0.149873\pi\)
\(108\) −38.1341 66.0503i −0.0339765 0.0588490i
\(109\) −418.588 725.016i −0.367830 0.637100i 0.621396 0.783497i \(-0.286566\pi\)
−0.989226 + 0.146396i \(0.953232\pi\)
\(110\) 210.887 365.267i 0.182794 0.316608i
\(111\) −35.6911 −0.0305193
\(112\) 0 0
\(113\) −1086.58 −0.904572 −0.452286 0.891873i \(-0.649391\pi\)
−0.452286 + 0.891873i \(0.649391\pi\)
\(114\) −418.350 + 724.604i −0.343703 + 0.595311i
\(115\) −298.804 517.544i −0.242292 0.419663i
\(116\) −305.918 529.865i −0.244860 0.424110i
\(117\) 239.846 415.425i 0.189519 0.328257i
\(118\) −1910.68 −1.49061
\(119\) 0 0
\(120\) 336.125 0.255699
\(121\) −164.748 + 285.351i −0.123777 + 0.214388i
\(122\) −552.571 957.080i −0.410061 0.710246i
\(123\) 167.629 + 290.341i 0.122883 + 0.212839i
\(124\) 355.628 615.965i 0.257551 0.446091i
\(125\) −1043.27 −0.746505
\(126\) 0 0
\(127\) −537.113 −0.375284 −0.187642 0.982237i \(-0.560084\pi\)
−0.187642 + 0.982237i \(0.560084\pi\)
\(128\) −133.282 + 230.851i −0.0920357 + 0.159411i
\(129\) 553.794 + 959.199i 0.377976 + 0.654673i
\(130\) 275.836 + 477.761i 0.186095 + 0.322326i
\(131\) 748.694 1296.78i 0.499341 0.864885i −0.500658 0.865645i \(-0.666909\pi\)
1.00000 0.000760253i \(0.000241996\pi\)
\(132\) −345.319 −0.227698
\(133\) 0 0
\(134\) −759.120 −0.489388
\(135\) 61.4228 106.387i 0.0391587 0.0678249i
\(136\) −56.0208 97.0308i −0.0353216 0.0611789i
\(137\) 690.045 + 1195.19i 0.430325 + 0.745345i 0.996901 0.0786647i \(-0.0250657\pi\)
−0.566576 + 0.824009i \(0.691732\pi\)
\(138\) 448.206 776.315i 0.276477 0.478872i
\(139\) 141.980 0.0866374 0.0433187 0.999061i \(-0.486207\pi\)
0.0433187 + 0.999061i \(0.486207\pi\)
\(140\) 0 0
\(141\) −788.083 −0.470699
\(142\) −671.382 + 1162.87i −0.396769 + 0.687223i
\(143\) −1085.95 1880.91i −0.635044 1.09993i
\(144\) 150.402 + 260.505i 0.0870385 + 0.150755i
\(145\) 492.743 853.455i 0.282207 0.488797i
\(146\) −1116.30 −0.632781
\(147\) 0 0
\(148\) −33.6061 −0.0186649
\(149\) 971.935 1683.44i 0.534390 0.925590i −0.464803 0.885414i \(-0.653875\pi\)
0.999193 0.0401757i \(-0.0127918\pi\)
\(150\) −355.907 616.450i −0.193731 0.335553i
\(151\) 1327.38 + 2299.09i 0.715370 + 1.23906i 0.962817 + 0.270155i \(0.0870750\pi\)
−0.247447 + 0.968901i \(0.579592\pi\)
\(152\) −1509.51 + 2614.55i −0.805511 + 1.39519i
\(153\) −40.9485 −0.0216372
\(154\) 0 0
\(155\) 1145.62 0.593668
\(156\) 225.835 391.157i 0.115905 0.200754i
\(157\) 832.608 + 1442.12i 0.423244 + 0.733081i 0.996255 0.0864675i \(-0.0275579\pi\)
−0.573010 + 0.819548i \(0.694225\pi\)
\(158\) −138.419 239.748i −0.0696961 0.120717i
\(159\) −850.650 + 1473.37i −0.424282 + 0.734879i
\(160\) 550.390 0.271951
\(161\) 0 0
\(162\) 184.268 0.0893672
\(163\) 16.5366 28.6422i 0.00794629 0.0137634i −0.862025 0.506866i \(-0.830804\pi\)
0.869971 + 0.493103i \(0.164137\pi\)
\(164\) 157.837 + 273.381i 0.0751522 + 0.130167i
\(165\) −278.103 481.688i −0.131214 0.227269i
\(166\) 693.404 1201.01i 0.324208 0.561545i
\(167\) −1654.48 −0.766630 −0.383315 0.923618i \(-0.625218\pi\)
−0.383315 + 0.923618i \(0.625218\pi\)
\(168\) 0 0
\(169\) 643.784 0.293029
\(170\) 23.5465 40.7838i 0.0106232 0.0183998i
\(171\) 551.691 + 955.557i 0.246719 + 0.427329i
\(172\) 521.444 + 903.167i 0.231161 + 0.400383i
\(173\) 32.0954 55.5909i 0.0141050 0.0244306i −0.858887 0.512166i \(-0.828843\pi\)
0.872992 + 0.487735i \(0.162177\pi\)
\(174\) 1478.23 0.644047
\(175\) 0 0
\(176\) 1361.95 0.583300
\(177\) −1259.84 + 2182.10i −0.535000 + 0.926648i
\(178\) 817.876 + 1416.60i 0.344396 + 0.596511i
\(179\) −1957.34 3390.21i −0.817309 1.41562i −0.907658 0.419711i \(-0.862132\pi\)
0.0903489 0.995910i \(-0.471202\pi\)
\(180\) 57.8347 100.173i 0.0239486 0.0414801i
\(181\) 2058.04 0.845156 0.422578 0.906327i \(-0.361125\pi\)
0.422578 + 0.906327i \(0.361125\pi\)
\(182\) 0 0
\(183\) −1457.38 −0.588704
\(184\) 1617.24 2801.14i 0.647959 1.12230i
\(185\) −27.0647 46.8775i −0.0107559 0.0186297i
\(186\) 859.216 + 1488.21i 0.338714 + 0.586670i
\(187\) −92.7010 + 160.563i −0.0362512 + 0.0627889i
\(188\) −742.046 −0.287869
\(189\) 0 0
\(190\) −1268.95 −0.484523
\(191\) −214.024 + 370.701i −0.0810798 + 0.140434i −0.903714 0.428137i \(-0.859170\pi\)
0.822634 + 0.568571i \(0.192504\pi\)
\(192\) 813.866 + 1409.66i 0.305915 + 0.529861i
\(193\) −802.463 1389.91i −0.299288 0.518382i 0.676685 0.736272i \(-0.263416\pi\)
−0.975973 + 0.217890i \(0.930082\pi\)
\(194\) −725.559 + 1256.70i −0.268516 + 0.465083i
\(195\) 727.505 0.267168
\(196\) 0 0
\(197\) 3738.83 1.35218 0.676092 0.736817i \(-0.263672\pi\)
0.676092 + 0.736817i \(0.263672\pi\)
\(198\) 417.154 722.533i 0.149727 0.259334i
\(199\) −174.515 302.269i −0.0621660 0.107675i 0.833267 0.552870i \(-0.186467\pi\)
−0.895433 + 0.445196i \(0.853134\pi\)
\(200\) −1284.20 2224.31i −0.454034 0.786411i
\(201\) −500.537 + 866.955i −0.175647 + 0.304230i
\(202\) −1526.81 −0.531810
\(203\) 0 0
\(204\) −38.5565 −0.0132328
\(205\) −254.228 + 440.335i −0.0866148 + 0.150021i
\(206\) −1037.83 1797.58i −0.351015 0.607976i
\(207\) −591.062 1023.75i −0.198462 0.343747i
\(208\) −890.700 + 1542.74i −0.296918 + 0.514277i
\(209\) 4995.77 1.65342
\(210\) 0 0
\(211\) 2588.58 0.844574 0.422287 0.906462i \(-0.361227\pi\)
0.422287 + 0.906462i \(0.361227\pi\)
\(212\) −800.958 + 1387.30i −0.259481 + 0.449435i
\(213\) 885.371 + 1533.51i 0.284811 + 0.493306i
\(214\) 132.782 + 229.986i 0.0424150 + 0.0734649i
\(215\) −839.890 + 1454.73i −0.266419 + 0.461451i
\(216\) 664.886 0.209443
\(217\) 0 0
\(218\) 1904.51 0.591695
\(219\) −736.051 + 1274.88i −0.227113 + 0.393371i
\(220\) −261.857 453.550i −0.0802473 0.138992i
\(221\) −121.251 210.013i −0.0369059 0.0639230i
\(222\) 40.5971 70.3162i 0.0122734 0.0212582i
\(223\) 3236.21 0.971804 0.485902 0.874013i \(-0.338491\pi\)
0.485902 + 0.874013i \(0.338491\pi\)
\(224\) 0 0
\(225\) −938.691 −0.278131
\(226\) 1235.94 2140.71i 0.363776 0.630078i
\(227\) −2815.81 4877.12i −0.823312 1.42602i −0.903203 0.429215i \(-0.858790\pi\)
0.0798906 0.996804i \(-0.474543\pi\)
\(228\) 519.463 + 899.737i 0.150887 + 0.261344i
\(229\) 1885.12 3265.13i 0.543985 0.942210i −0.454685 0.890652i \(-0.650248\pi\)
0.998670 0.0515573i \(-0.0164185\pi\)
\(230\) 1359.51 0.389754
\(231\) 0 0
\(232\) 5333.82 1.50941
\(233\) 3280.45 5681.91i 0.922358 1.59757i 0.126602 0.991954i \(-0.459593\pi\)
0.795756 0.605618i \(-0.207074\pi\)
\(234\) 545.629 + 945.057i 0.152431 + 0.264018i
\(235\) −597.608 1035.09i −0.165888 0.287326i
\(236\) −1186.24 + 2054.63i −0.327194 + 0.566716i
\(237\) −365.073 −0.100059
\(238\) 0 0
\(239\) −771.444 −0.208789 −0.104394 0.994536i \(-0.533290\pi\)
−0.104394 + 0.994536i \(0.533290\pi\)
\(240\) −228.102 + 395.084i −0.0613497 + 0.106261i
\(241\) 626.051 + 1084.35i 0.167334 + 0.289831i 0.937482 0.348035i \(-0.113151\pi\)
−0.770148 + 0.637866i \(0.779817\pi\)
\(242\) −374.787 649.150i −0.0995546 0.172434i
\(243\) 121.500 210.444i 0.0320750 0.0555556i
\(244\) −1372.25 −0.360037
\(245\) 0 0
\(246\) −762.683 −0.197670
\(247\) −3267.18 + 5658.92i −0.841641 + 1.45777i
\(248\) 3100.27 + 5369.82i 0.793819 + 1.37493i
\(249\) −914.412 1583.81i −0.232725 0.403091i
\(250\) 1186.68 2055.39i 0.300209 0.519977i
\(251\) −5166.27 −1.29917 −0.649586 0.760288i \(-0.725058\pi\)
−0.649586 + 0.760288i \(0.725058\pi\)
\(252\) 0 0
\(253\) −5352.29 −1.33002
\(254\) 610.944 1058.19i 0.150921 0.261403i
\(255\) −31.0515 53.7828i −0.00762557 0.0132079i
\(256\) 1867.10 + 3233.92i 0.455836 + 0.789531i
\(257\) 1383.73 2396.68i 0.335854 0.581716i −0.647795 0.761815i \(-0.724309\pi\)
0.983648 + 0.180099i \(0.0576419\pi\)
\(258\) −2519.67 −0.608015
\(259\) 0 0
\(260\) 685.007 0.163394
\(261\) 974.691 1688.21i 0.231157 0.400375i
\(262\) 1703.22 + 2950.06i 0.401623 + 0.695631i
\(263\) 2050.89 + 3552.25i 0.480849 + 0.832855i 0.999759 0.0219739i \(-0.00699507\pi\)
−0.518909 + 0.854829i \(0.673662\pi\)
\(264\) 1505.20 2607.08i 0.350903 0.607783i
\(265\) −2580.21 −0.598117
\(266\) 0 0
\(267\) 2157.11 0.494432
\(268\) −471.297 + 816.311i −0.107422 + 0.186060i
\(269\) −3475.42 6019.60i −0.787732 1.36439i −0.927353 0.374187i \(-0.877922\pi\)
0.139621 0.990205i \(-0.455412\pi\)
\(270\) 139.732 + 242.022i 0.0314956 + 0.0545519i
\(271\) −3570.15 + 6183.67i −0.800262 + 1.38609i 0.119182 + 0.992872i \(0.461973\pi\)
−0.919444 + 0.393222i \(0.871361\pi\)
\(272\) 152.068 0.0338988
\(273\) 0 0
\(274\) −3139.59 −0.692225
\(275\) −2125.05 + 3680.69i −0.465983 + 0.807106i
\(276\) −556.535 963.946i −0.121375 0.210227i
\(277\) −660.257 1143.60i −0.143217 0.248059i 0.785490 0.618875i \(-0.212411\pi\)
−0.928706 + 0.370816i \(0.879078\pi\)
\(278\) −161.497 + 279.720i −0.0348414 + 0.0603471i
\(279\) 2266.15 0.486275
\(280\) 0 0
\(281\) −204.309 −0.0433738 −0.0216869 0.999765i \(-0.506904\pi\)
−0.0216869 + 0.999765i \(0.506904\pi\)
\(282\) 896.412 1552.63i 0.189293 0.327865i
\(283\) 487.897 + 845.062i 0.102482 + 0.177504i 0.912707 0.408615i \(-0.133988\pi\)
−0.810225 + 0.586120i \(0.800655\pi\)
\(284\) 833.651 + 1443.93i 0.174183 + 0.301695i
\(285\) −836.701 + 1449.21i −0.173901 + 0.301206i
\(286\) 4940.87 1.02154
\(287\) 0 0
\(288\) 1088.72 0.222756
\(289\) 2446.15 4236.86i 0.497893 0.862376i
\(290\) 1120.95 + 1941.54i 0.226981 + 0.393142i
\(291\) 956.816 + 1657.25i 0.192748 + 0.333849i
\(292\) −693.054 + 1200.41i −0.138897 + 0.240577i
\(293\) −607.919 −0.121212 −0.0606058 0.998162i \(-0.519303\pi\)
−0.0606058 + 0.998162i \(0.519303\pi\)
\(294\) 0 0
\(295\) −3821.36 −0.754198
\(296\) 146.485 253.719i 0.0287643 0.0498213i
\(297\) −550.114 952.825i −0.107478 0.186157i
\(298\) 2211.07 + 3829.69i 0.429812 + 0.744456i
\(299\) 3500.34 6062.76i 0.677023 1.17264i
\(300\) −883.856 −0.170098
\(301\) 0 0
\(302\) −6039.37 −1.15075
\(303\) −1006.72 + 1743.69i −0.190873 + 0.330603i
\(304\) −2048.78 3548.60i −0.386532 0.669493i
\(305\) −1105.14 1914.16i −0.207476 0.359359i
\(306\) 46.5772 80.6741i 0.00870145 0.0150714i
\(307\) −8037.08 −1.49414 −0.747069 0.664747i \(-0.768539\pi\)
−0.747069 + 0.664747i \(0.768539\pi\)
\(308\) 0 0
\(309\) −2737.24 −0.503935
\(310\) −1303.10 + 2257.03i −0.238745 + 0.413518i
\(311\) 2655.80 + 4599.98i 0.484234 + 0.838718i 0.999836 0.0181104i \(-0.00576505\pi\)
−0.515602 + 0.856828i \(0.672432\pi\)
\(312\) 1968.77 + 3410.00i 0.357242 + 0.618761i
\(313\) −765.804 + 1326.41i −0.138293 + 0.239531i −0.926851 0.375430i \(-0.877495\pi\)
0.788557 + 0.614961i \(0.210828\pi\)
\(314\) −3788.23 −0.680835
\(315\) 0 0
\(316\) −343.747 −0.0611939
\(317\) −2109.59 + 3653.92i −0.373775 + 0.647397i −0.990143 0.140061i \(-0.955270\pi\)
0.616368 + 0.787458i \(0.288603\pi\)
\(318\) −1935.16 3351.79i −0.341252 0.591066i
\(319\) −4413.09 7643.70i −0.774564 1.34158i
\(320\) −1234.32 + 2137.90i −0.215627 + 0.373476i
\(321\) 350.208 0.0608931
\(322\) 0 0
\(323\) 557.801 0.0960893
\(324\) 114.402 198.151i 0.0196163 0.0339765i
\(325\) −2779.52 4814.26i −0.474400 0.821684i
\(326\) 37.6194 + 65.1587i 0.00639124 + 0.0110700i
\(327\) 1255.76 2175.05i 0.212367 0.367830i
\(328\) −2751.95 −0.463265
\(329\) 0 0
\(330\) 1265.32 0.211072
\(331\) −4149.09 + 7186.44i −0.688987 + 1.19336i 0.283179 + 0.959067i \(0.408611\pi\)
−0.972166 + 0.234294i \(0.924722\pi\)
\(332\) −860.996 1491.29i −0.142329 0.246521i
\(333\) −53.5366 92.7281i −0.00881017 0.0152597i
\(334\) 1881.90 3259.54i 0.308302 0.533994i
\(335\) −1518.24 −0.247613
\(336\) 0 0
\(337\) −4348.44 −0.702892 −0.351446 0.936208i \(-0.614310\pi\)
−0.351446 + 0.936208i \(0.614310\pi\)
\(338\) −732.278 + 1268.34i −0.117842 + 0.204109i
\(339\) −1629.87 2823.01i −0.261128 0.452286i
\(340\) −29.2376 50.6410i −0.00466362 0.00807763i
\(341\) 5130.20 8885.77i 0.814709 1.41112i
\(342\) −2510.10 −0.396874
\(343\) 0 0
\(344\) −9091.60 −1.42496
\(345\) 896.412 1552.63i 0.139888 0.242292i
\(346\) 73.0145 + 126.465i 0.0113447 + 0.0196497i
\(347\) 4172.77 + 7227.45i 0.645550 + 1.11813i 0.984174 + 0.177204i \(0.0567053\pi\)
−0.338624 + 0.940922i \(0.609961\pi\)
\(348\) 917.753 1589.60i 0.141370 0.244860i
\(349\) 9982.54 1.53110 0.765549 0.643378i \(-0.222468\pi\)
0.765549 + 0.643378i \(0.222468\pi\)
\(350\) 0 0
\(351\) 1439.07 0.218838
\(352\) 2464.70 4268.98i 0.373207 0.646414i
\(353\) 4400.79 + 7622.40i 0.663543 + 1.14929i 0.979678 + 0.200576i \(0.0642813\pi\)
−0.316135 + 0.948714i \(0.602385\pi\)
\(354\) −2866.02 4964.10i −0.430303 0.745307i
\(355\) −1342.76 + 2325.74i −0.200751 + 0.347711i
\(356\) 2031.10 0.302383
\(357\) 0 0
\(358\) 8905.56 1.31473
\(359\) 262.019 453.831i 0.0385205 0.0667194i −0.846122 0.532989i \(-0.821069\pi\)
0.884643 + 0.466269i \(0.154402\pi\)
\(360\) 504.187 + 873.278i 0.0738139 + 0.127849i
\(361\) −4085.64 7076.53i −0.595661 1.03171i
\(362\) −2340.94 + 4054.63i −0.339881 + 0.588692i
\(363\) −988.485 −0.142926
\(364\) 0 0
\(365\) −2232.61 −0.320165
\(366\) 1657.71 2871.24i 0.236749 0.410061i
\(367\) −3181.36 5510.28i −0.452495 0.783745i 0.546045 0.837756i \(-0.316133\pi\)
−0.998540 + 0.0540110i \(0.982799\pi\)
\(368\) 2194.99 + 3801.84i 0.310929 + 0.538545i
\(369\) −502.886 + 871.024i −0.0709464 + 0.122883i
\(370\) 123.140 0.0173020
\(371\) 0 0
\(372\) 2133.77 0.297394
\(373\) 5632.92 9756.50i 0.781935 1.35435i −0.148879 0.988855i \(-0.547566\pi\)
0.930813 0.365495i \(-0.119100\pi\)
\(374\) −210.887 365.267i −0.0291570 0.0505014i
\(375\) −1564.91 2710.50i −0.215497 0.373253i
\(376\) 3234.48 5602.28i 0.443632 0.768393i
\(377\) 11544.5 1.57711
\(378\) 0 0
\(379\) −1151.71 −0.156094 −0.0780470 0.996950i \(-0.524868\pi\)
−0.0780470 + 0.996950i \(0.524868\pi\)
\(380\) −787.824 + 1364.55i −0.106354 + 0.184211i
\(381\) −805.669 1395.46i −0.108335 0.187642i
\(382\) −486.887 843.313i −0.0652129 0.112952i
\(383\) −75.7772 + 131.250i −0.0101097 + 0.0175106i −0.871036 0.491219i \(-0.836551\pi\)
0.860926 + 0.508730i \(0.169885\pi\)
\(384\) −799.692 −0.106274
\(385\) 0 0
\(386\) 3651.08 0.481437
\(387\) −1661.38 + 2877.60i −0.218224 + 0.377976i
\(388\) 900.922 + 1560.44i 0.117880 + 0.204174i
\(389\) −2397.09 4151.88i −0.312435 0.541154i 0.666454 0.745546i \(-0.267811\pi\)
−0.978889 + 0.204393i \(0.934478\pi\)
\(390\) −827.507 + 1433.28i −0.107442 + 0.186095i
\(391\) −597.608 −0.0772950
\(392\) 0 0
\(393\) 4492.17 0.576590
\(394\) −4252.76 + 7366.00i −0.543784 + 0.941862i
\(395\) −276.837 479.496i −0.0352638 0.0610786i
\(396\) −517.978 897.165i −0.0657308 0.113849i
\(397\) −2311.97 + 4004.45i −0.292278 + 0.506241i −0.974348 0.225046i \(-0.927747\pi\)
0.682070 + 0.731287i \(0.261080\pi\)
\(398\) 794.014 0.100001
\(399\) 0 0
\(400\) 3485.96 0.435745
\(401\) 1805.32 3126.90i 0.224821 0.389402i −0.731445 0.681901i \(-0.761154\pi\)
0.956266 + 0.292499i \(0.0944869\pi\)
\(402\) −1138.68 1972.25i −0.141274 0.244694i
\(403\) 6710.19 + 11622.4i 0.829425 + 1.43661i
\(404\) −947.913 + 1641.83i −0.116734 + 0.202189i
\(405\) 368.537 0.0452166
\(406\) 0 0
\(407\) −484.794 −0.0590426
\(408\) 168.062 291.093i 0.0203930 0.0353216i
\(409\) 4479.79 + 7759.22i 0.541592 + 0.938065i 0.998813 + 0.0487118i \(0.0155116\pi\)
−0.457221 + 0.889353i \(0.651155\pi\)
\(410\) −578.347 1001.73i −0.0696647 0.120663i
\(411\) −2070.13 + 3585.58i −0.248448 + 0.430325i
\(412\) −2577.34 −0.308195
\(413\) 0 0
\(414\) 2689.24 0.319248
\(415\) 1386.81 2402.02i 0.164038 0.284122i
\(416\) 3223.77 + 5583.74i 0.379948 + 0.658089i
\(417\) 212.970 + 368.875i 0.0250101 + 0.0433187i
\(418\) −5682.48 + 9842.34i −0.664926 + 1.15169i
\(419\) 7078.28 0.825290 0.412645 0.910892i \(-0.364605\pi\)
0.412645 + 0.910892i \(0.364605\pi\)
\(420\) 0 0
\(421\) 11551.5 1.33725 0.668626 0.743599i \(-0.266883\pi\)
0.668626 + 0.743599i \(0.266883\pi\)
\(422\) −2944.40 + 5099.85i −0.339647 + 0.588286i
\(423\) −1182.12 2047.50i −0.135879 0.235350i
\(424\) −6982.53 12094.1i −0.799768 1.38524i
\(425\) −237.272 + 410.966i −0.0270809 + 0.0469054i
\(426\) −4028.29 −0.458149
\(427\) 0 0
\(428\) 329.750 0.0372408
\(429\) 3257.84 5642.74i 0.366643 0.635044i
\(430\) −1910.68 3309.40i −0.214282 0.371147i
\(431\) 2032.19 + 3519.85i 0.227116 + 0.393377i 0.956952 0.290245i \(-0.0937370\pi\)
−0.729836 + 0.683622i \(0.760404\pi\)
\(432\) −451.207 + 781.514i −0.0502517 + 0.0870385i
\(433\) −17456.3 −1.93740 −0.968701 0.248229i \(-0.920151\pi\)
−0.968701 + 0.248229i \(0.920151\pi\)
\(434\) 0 0
\(435\) 2956.46 0.325865
\(436\) 1182.41 2047.99i 0.129879 0.224956i
\(437\) 8051.45 + 13945.5i 0.881357 + 1.52656i
\(438\) −1674.46 2900.24i −0.182668 0.316390i
\(439\) 2297.69 3979.72i 0.249802 0.432669i −0.713669 0.700483i \(-0.752968\pi\)
0.963471 + 0.267814i \(0.0863012\pi\)
\(440\) 4565.60 0.494674
\(441\) 0 0
\(442\) 551.671 0.0593672
\(443\) 153.107 265.189i 0.0164206 0.0284413i −0.857698 0.514153i \(-0.828106\pi\)
0.874119 + 0.485712i \(0.161440\pi\)
\(444\) −50.4092 87.3113i −0.00538810 0.00933245i
\(445\) 1635.75 + 2833.21i 0.174252 + 0.301813i
\(446\) −3681.05 + 6375.77i −0.390813 + 0.676909i
\(447\) 5831.61 0.617060
\(448\) 0 0
\(449\) 9229.22 0.970053 0.485026 0.874500i \(-0.338810\pi\)
0.485026 + 0.874500i \(0.338810\pi\)
\(450\) 1067.72 1849.35i 0.111851 0.193731i
\(451\) 2276.91 + 3943.72i 0.237728 + 0.411758i
\(452\) −1534.66 2658.10i −0.159700 0.276608i
\(453\) −3982.15 + 6897.28i −0.413019 + 0.715370i
\(454\) 12811.5 1.32439
\(455\) 0 0
\(456\) −9057.08 −0.930124
\(457\) 5496.12 9519.55i 0.562577 0.974411i −0.434694 0.900578i \(-0.643143\pi\)
0.997271 0.0738330i \(-0.0235232\pi\)
\(458\) 4288.50 + 7427.90i 0.437530 + 0.757824i
\(459\) −61.4228 106.387i −0.00624612 0.0108186i
\(460\) 844.047 1461.93i 0.0855519 0.148180i
\(461\) −7387.88 −0.746394 −0.373197 0.927752i \(-0.621739\pi\)
−0.373197 + 0.927752i \(0.621739\pi\)
\(462\) 0 0
\(463\) 10163.8 1.02020 0.510101 0.860114i \(-0.329608\pi\)
0.510101 + 0.860114i \(0.329608\pi\)
\(464\) −3619.65 + 6269.42i −0.362151 + 0.627264i
\(465\) 1718.43 + 2976.41i 0.171377 + 0.296834i
\(466\) 7462.75 + 12925.9i 0.741857 + 1.28493i
\(467\) −7907.29 + 13695.8i −0.783524 + 1.35710i 0.146353 + 0.989232i \(0.453246\pi\)
−0.929877 + 0.367871i \(0.880087\pi\)
\(468\) 1355.01 0.133836
\(469\) 0 0
\(470\) 2719.02 0.266849
\(471\) −2497.82 + 4326.36i −0.244360 + 0.423244i
\(472\) −10341.3 17911.7i −1.00847 1.74672i
\(473\) 7522.22 + 13028.9i 0.731230 + 1.26653i
\(474\) 415.256 719.244i 0.0402391 0.0696961i
\(475\) 12786.9 1.23516
\(476\) 0 0
\(477\) −5103.90 −0.489919
\(478\) 877.485 1519.85i 0.0839649 0.145432i
\(479\) −722.427 1251.28i −0.0689113 0.119358i 0.829511 0.558490i \(-0.188619\pi\)
−0.898422 + 0.439132i \(0.855286\pi\)
\(480\) 825.585 + 1429.96i 0.0785055 + 0.135976i
\(481\) 317.050 549.146i 0.0300545 0.0520559i
\(482\) −2848.43 −0.269175
\(483\) 0 0
\(484\) −930.742 −0.0874100
\(485\) −1451.12 + 2513.41i −0.135860 + 0.235316i
\(486\) 276.402 + 478.743i 0.0257981 + 0.0446836i
\(487\) 244.701 + 423.835i 0.0227689 + 0.0394369i 0.877185 0.480152i \(-0.159418\pi\)
−0.854416 + 0.519589i \(0.826085\pi\)
\(488\) 5981.44 10360.2i 0.554851 0.961029i
\(489\) 99.2195 0.00917559
\(490\) 0 0
\(491\) −3941.30 −0.362257 −0.181129 0.983459i \(-0.557975\pi\)
−0.181129 + 0.983459i \(0.557975\pi\)
\(492\) −473.510 + 820.143i −0.0433891 + 0.0751522i
\(493\) −492.743 853.455i −0.0450142 0.0779669i
\(494\) −7432.56 12873.6i −0.676936 1.17249i
\(495\) 834.309 1445.07i 0.0757564 0.131214i
\(496\) −8415.65 −0.761843
\(497\) 0 0
\(498\) 4160.42 0.374363
\(499\) −5.54470 + 9.60371i −0.000497425 + 0.000861565i −0.866274 0.499569i \(-0.833492\pi\)
0.865777 + 0.500431i \(0.166825\pi\)
\(500\) −1473.49 2552.16i −0.131793 0.228273i
\(501\) −2481.71 4298.45i −0.221307 0.383315i
\(502\) 5876.42 10178.3i 0.522465 0.904936i
\(503\) −7088.41 −0.628343 −0.314172 0.949366i \(-0.601727\pi\)
−0.314172 + 0.949366i \(0.601727\pi\)
\(504\) 0 0
\(505\) −3053.61 −0.269077
\(506\) 6088.01 10544.7i 0.534871 0.926424i
\(507\) 965.676 + 1672.60i 0.0845901 + 0.146514i
\(508\) −758.605 1313.94i −0.0662553 0.114757i
\(509\) 8794.22 15232.0i 0.765810 1.32642i −0.174008 0.984744i \(-0.555672\pi\)
0.939817 0.341677i \(-0.110995\pi\)
\(510\) 141.279 0.0122666
\(511\) 0 0
\(512\) −10627.5 −0.917333
\(513\) −1655.07 + 2866.67i −0.142443 + 0.246719i
\(514\) 3147.86 + 5452.25i 0.270129 + 0.467877i
\(515\) −2075.66 3595.15i −0.177601 0.307614i
\(516\) −1564.33 + 2709.50i −0.133461 + 0.231161i
\(517\) −10704.6 −0.910613
\(518\) 0 0
\(519\) 192.573 0.0162871
\(520\) −2985.85 + 5171.65i −0.251804 + 0.436138i
\(521\) −5823.30 10086.2i −0.489680 0.848151i 0.510249 0.860026i \(-0.329553\pi\)
−0.999929 + 0.0118758i \(0.996220\pi\)
\(522\) 2217.34 + 3840.55i 0.185920 + 0.322023i
\(523\) 4482.91 7764.63i 0.374807 0.649185i −0.615491 0.788144i \(-0.711042\pi\)
0.990298 + 0.138959i \(0.0443757\pi\)
\(524\) 4229.75 0.352629
\(525\) 0 0
\(526\) −9331.22 −0.773499
\(527\) 572.811 992.137i 0.0473473 0.0820079i
\(528\) 2042.93 + 3538.45i 0.168384 + 0.291650i
\(529\) −2542.54 4403.81i −0.208970 0.361947i
\(530\) 2934.88 5083.36i 0.240534 0.416617i
\(531\) −7559.01 −0.617765
\(532\) 0 0
\(533\) −5956.30 −0.484045
\(534\) −2453.63 + 4249.81i −0.198837 + 0.344396i
\(535\) 265.565 + 459.971i 0.0214605 + 0.0371706i
\(536\) −4108.64 7116.37i −0.331094 0.573471i
\(537\) 5872.01 10170.6i 0.471874 0.817309i
\(538\) 15812.6 1.26715
\(539\) 0 0
\(540\) 347.008 0.0276534
\(541\) 97.6359 169.110i 0.00775914 0.0134392i −0.862120 0.506705i \(-0.830863\pi\)
0.869879 + 0.493265i \(0.164197\pi\)
\(542\) −8121.79 14067.3i −0.643654 1.11484i
\(543\) 3087.07 + 5346.95i 0.243975 + 0.422578i
\(544\) 275.195 476.652i 0.0216891 0.0375667i
\(545\) 3809.01 0.299376
\(546\) 0 0
\(547\) −1399.26 −0.109375 −0.0546874 0.998504i \(-0.517416\pi\)
−0.0546874 + 0.998504i \(0.517416\pi\)
\(548\) −1949.21 + 3376.12i −0.151945 + 0.263177i
\(549\) −2186.07 3786.39i −0.169944 0.294352i
\(550\) −4834.31 8373.27i −0.374792 0.649159i
\(551\) −13277.2 + 22996.9i −1.02655 + 1.77804i
\(552\) 9703.44 0.748199
\(553\) 0 0
\(554\) 3004.06 0.230380
\(555\) 81.1942 140.632i 0.00620991 0.0107559i
\(556\) 200.529 + 347.327i 0.0152956 + 0.0264927i
\(557\) −21.5233 37.2795i −0.00163730 0.00283588i 0.865206 0.501417i \(-0.167188\pi\)
−0.866843 + 0.498581i \(0.833855\pi\)
\(558\) −2577.65 + 4464.62i −0.195557 + 0.338714i
\(559\) −19677.8 −1.48888
\(560\) 0 0
\(561\) −556.206 −0.0418592
\(562\) 232.393 402.516i 0.0174429 0.0302120i
\(563\) −9616.43 16656.1i −0.719865 1.24684i −0.961053 0.276365i \(-0.910870\pi\)
0.241187 0.970479i \(-0.422463\pi\)
\(564\) −1113.07 1927.89i −0.0831005 0.143934i
\(565\) 2471.88 4281.41i 0.184058 0.318797i
\(566\) −2219.85 −0.164854
\(567\) 0 0
\(568\) −14535.1 −1.07373
\(569\) −2581.99 + 4472.14i −0.190233 + 0.329493i −0.945327 0.326123i \(-0.894258\pi\)
0.755094 + 0.655616i \(0.227591\pi\)
\(570\) −1903.43 3296.83i −0.139870 0.242261i
\(571\) 5115.96 + 8861.10i 0.374950 + 0.649432i 0.990319 0.138807i \(-0.0443267\pi\)
−0.615370 + 0.788238i \(0.710993\pi\)
\(572\) 3067.53 5313.11i 0.224230 0.388378i
\(573\) −1284.14 −0.0936229
\(574\) 0 0
\(575\) −13699.4 −0.993572
\(576\) −2441.60 + 4228.97i −0.176620 + 0.305915i
\(577\) 8281.87 + 14344.6i 0.597537 + 1.03496i 0.993184 + 0.116561i \(0.0371871\pi\)
−0.395647 + 0.918403i \(0.629480\pi\)
\(578\) 5564.79 + 9638.49i 0.400458 + 0.693613i
\(579\) 2407.39 4169.72i 0.172794 0.299288i
\(580\) 2783.75 0.199291
\(581\) 0 0
\(582\) −4353.35 −0.310055
\(583\) −11554.4 + 20012.8i −0.820815 + 1.42169i
\(584\) −6041.86 10464.8i −0.428106 0.741501i
\(585\) 1091.26 + 1890.11i 0.0771247 + 0.133584i
\(586\) 691.482 1197.68i 0.0487455 0.0844297i
\(587\) −16020.6 −1.12648 −0.563239 0.826294i \(-0.690445\pi\)
−0.563239 + 0.826294i \(0.690445\pi\)
\(588\) 0 0
\(589\) −30869.4 −2.15951
\(590\) 4346.64 7528.60i 0.303302 0.525335i
\(591\) 5608.24 + 9713.76i 0.390342 + 0.676092i
\(592\) 198.816 + 344.359i 0.0138028 + 0.0239072i
\(593\) −3385.57 + 5863.98i −0.234450 + 0.406079i −0.959113 0.283025i \(-0.908662\pi\)
0.724663 + 0.689104i \(0.241996\pi\)
\(594\) 2502.93 0.172889
\(595\) 0 0
\(596\) 5490.95 0.377379
\(597\) 523.545 906.806i 0.0358916 0.0621660i
\(598\) 7962.98 + 13792.3i 0.544532 + 0.943158i
\(599\) −5535.11 9587.09i −0.377560 0.653953i 0.613147 0.789969i \(-0.289903\pi\)
−0.990707 + 0.136016i \(0.956570\pi\)
\(600\) 3852.61 6672.92i 0.262137 0.454034i
\(601\) 24187.7 1.64166 0.820830 0.571173i \(-0.193511\pi\)
0.820830 + 0.571173i \(0.193511\pi\)
\(602\) 0 0
\(603\) −3003.22 −0.202820
\(604\) −3749.52 + 6494.37i −0.252593 + 0.437503i
\(605\) −749.574 1298.30i −0.0503711 0.0872453i
\(606\) −2290.21 3966.76i −0.153520 0.265905i
\(607\) −5037.04 + 8724.40i −0.336816 + 0.583382i −0.983832 0.179095i \(-0.942683\pi\)
0.647016 + 0.762476i \(0.276017\pi\)
\(608\) −14830.6 −0.989243
\(609\) 0 0
\(610\) 5028.21 0.333748
\(611\) 7000.67 12125.5i 0.463530 0.802858i
\(612\) −57.8347 100.173i −0.00381998 0.00661640i
\(613\) 5557.29 + 9625.51i 0.366161 + 0.634210i 0.988962 0.148171i \(-0.0473385\pi\)
−0.622800 + 0.782381i \(0.714005\pi\)
\(614\) 9141.84 15834.1i 0.600871 1.04074i
\(615\) −1525.37 −0.100014
\(616\) 0 0
\(617\) 20496.4 1.33737 0.668683 0.743548i \(-0.266858\pi\)
0.668683 + 0.743548i \(0.266858\pi\)
\(618\) 3113.49 5392.73i 0.202659 0.351015i
\(619\) −8357.22 14475.1i −0.542658 0.939910i −0.998750 0.0499782i \(-0.984085\pi\)
0.456093 0.889932i \(-0.349249\pi\)
\(620\) 1618.05 + 2802.54i 0.104810 + 0.181537i
\(621\) 1773.19 3071.25i 0.114582 0.198462i
\(622\) −12083.5 −0.778943
\(623\) 0 0
\(624\) −5344.20 −0.342851
\(625\) −4145.33 + 7179.92i −0.265301 + 0.459515i
\(626\) −1742.14 3017.48i −0.111230 0.192656i
\(627\) 7493.65 + 12979.4i 0.477301 + 0.826709i
\(628\) −2351.91 + 4073.63i −0.149445 + 0.258846i
\(629\) −54.1295 −0.00343129
\(630\) 0 0
\(631\) 9168.53 0.578437 0.289218 0.957263i \(-0.406605\pi\)
0.289218 + 0.957263i \(0.406605\pi\)
\(632\) 1498.35 2595.21i 0.0943054 0.163342i
\(633\) 3882.87 + 6725.32i 0.243807 + 0.422287i
\(634\) −4799.15 8312.37i −0.300629 0.520704i
\(635\) 1221.89 2116.37i 0.0763608 0.132261i
\(636\) −4805.75 −0.299623
\(637\) 0 0
\(638\) 20078.9 1.24597
\(639\) −2656.11 + 4600.52i −0.164435 + 0.284811i
\(640\) −606.411 1050.33i −0.0374539 0.0648721i
\(641\) 2136.68 + 3700.84i 0.131660 + 0.228041i 0.924316 0.381627i \(-0.124636\pi\)
−0.792657 + 0.609668i \(0.791303\pi\)
\(642\) −398.347 + 689.957i −0.0244883 + 0.0424150i
\(643\) −2955.75 −0.181281 −0.0906404 0.995884i \(-0.528891\pi\)
−0.0906404 + 0.995884i \(0.528891\pi\)
\(644\) 0 0
\(645\) −5039.34 −0.307634
\(646\) −634.475 + 1098.94i −0.0386426 + 0.0669309i
\(647\) 11350.6 + 19659.8i 0.689704 + 1.19460i 0.971934 + 0.235256i \(0.0755927\pi\)
−0.282229 + 0.959347i \(0.591074\pi\)
\(648\) 997.329 + 1727.42i 0.0604611 + 0.104722i
\(649\) −17112.4 + 29639.6i −1.03501 + 1.79269i
\(650\) 12646.3 0.763124
\(651\) 0 0
\(652\) 93.4235 0.00561158
\(653\) −768.907 + 1331.79i −0.0460791 + 0.0798113i −0.888145 0.459563i \(-0.848006\pi\)
0.842066 + 0.539375i \(0.181339\pi\)
\(654\) 2856.76 + 4948.05i 0.170808 + 0.295847i
\(655\) 3406.44 + 5900.12i 0.203207 + 0.351964i
\(656\) 1867.54 3234.67i 0.111151 0.192519i
\(657\) −4416.31 −0.262248
\(658\) 0 0
\(659\) 12338.1 0.729323 0.364661 0.931140i \(-0.381185\pi\)
0.364661 + 0.931140i \(0.381185\pi\)
\(660\) 785.572 1360.65i 0.0463308 0.0802473i
\(661\) 922.548 + 1597.90i 0.0542859 + 0.0940259i 0.891891 0.452250i \(-0.149378\pi\)
−0.837605 + 0.546276i \(0.816045\pi\)
\(662\) −9438.84 16348.6i −0.554156 0.959826i
\(663\) 363.752 630.038i 0.0213077 0.0369059i
\(664\) 15011.8 0.877369
\(665\) 0 0
\(666\) 243.583 0.0141721
\(667\) 14224.8 24638.0i 0.825765 1.43027i
\(668\) −2336.74 4047.35i −0.135346 0.234426i
\(669\) 4854.31 + 8407.91i 0.280536 + 0.485902i
\(670\) 1726.93 2991.14i 0.0995780 0.172474i
\(671\) −19795.7 −1.13890
\(672\) 0 0
\(673\) 23955.4 1.37208 0.686041 0.727563i \(-0.259347\pi\)
0.686041 + 0.727563i \(0.259347\pi\)
\(674\) 4946.17 8567.02i 0.282670 0.489598i
\(675\) −1408.04 2438.79i −0.0802894 0.139065i
\(676\) 909.265 + 1574.89i 0.0517333 + 0.0896048i
\(677\) −1839.13 + 3185.46i −0.104407 + 0.180838i −0.913496 0.406848i \(-0.866628\pi\)
0.809089 + 0.587686i \(0.199961\pi\)
\(678\) 7415.63 0.420052
\(679\) 0 0
\(680\) 509.771 0.0287482
\(681\) 8447.43 14631.4i 0.475339 0.823312i
\(682\) 11670.8 + 20214.4i 0.655275 + 1.13497i
\(683\) −2195.43 3802.60i −0.122996 0.213034i 0.797952 0.602721i \(-0.205917\pi\)
−0.920948 + 0.389686i \(0.872583\pi\)
\(684\) −1558.39 + 2699.21i −0.0871148 + 0.150887i
\(685\) −6279.18 −0.350241
\(686\) 0 0
\(687\) 11310.7 0.628140
\(688\) 6169.78 10686.4i 0.341890 0.592171i
\(689\) −15112.9 26176.4i −0.835641 1.44737i
\(690\) 2039.26 + 3532.11i 0.112512 + 0.194877i
\(691\) 5185.84 8982.13i 0.285497 0.494496i −0.687232 0.726438i \(-0.741175\pi\)
0.972730 + 0.231942i \(0.0745079\pi\)
\(692\) 181.323 0.00996081
\(693\) 0 0
\(694\) −18985.4 −1.03844
\(695\) −322.993 + 559.440i −0.0176285 + 0.0305335i
\(696\) 8000.72 + 13857.7i 0.435728 + 0.754703i
\(697\) 254.228 + 440.335i 0.0138157 + 0.0239295i
\(698\) −11354.7 + 19667.0i −0.615734 + 1.06648i
\(699\) 19682.7 1.06505
\(700\) 0 0
\(701\) 109.675 0.00590922 0.00295461 0.999996i \(-0.499060\pi\)
0.00295461 + 0.999996i \(0.499060\pi\)
\(702\) −1636.89 + 2835.17i −0.0880061 + 0.152431i
\(703\) 729.275 + 1263.14i 0.0391254 + 0.0677672i
\(704\) 11054.8 + 19147.5i 0.591822 + 1.02507i
\(705\) 1792.82 3105.26i 0.0957754 0.165888i
\(706\) −20022.9 −1.06738
\(707\) 0 0
\(708\) −7117.45 −0.377811
\(709\) −13459.4 + 23312.3i −0.712944 + 1.23486i 0.250803 + 0.968038i \(0.419306\pi\)
−0.963747 + 0.266818i \(0.914028\pi\)
\(710\) −3054.68 5290.86i −0.161465 0.279665i
\(711\) −547.610 948.488i −0.0288846 0.0500296i
\(712\) −8853.31 + 15334.4i −0.466000 + 0.807135i
\(713\) 33072.4 1.73713
\(714\) 0 0
\(715\) 9881.74 0.516862
\(716\) 5528.99 9576.50i 0.288587 0.499847i
\(717\) −1157.17 2004.27i −0.0602721 0.104394i
\(718\) 596.072 + 1032.43i 0.0309822 + 0.0536627i
\(719\) 7585.38 13138.3i 0.393445 0.681466i −0.599457 0.800407i \(-0.704617\pi\)
0.992901 + 0.118941i \(0.0379499\pi\)
\(720\) −1368.61 −0.0708405
\(721\) 0 0
\(722\) 18589.0 0.958185
\(723\) −1878.15 + 3253.06i −0.0966104 + 0.167334i
\(724\) 2906.73 + 5034.61i 0.149210 + 0.258439i
\(725\) −11295.5 19564.3i −0.578626 1.00221i
\(726\) 1124.36 1947.45i 0.0574779 0.0995546i
\(727\) 33286.9 1.69813 0.849066 0.528288i \(-0.177166\pi\)
0.849066 + 0.528288i \(0.177166\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 2539.50 4398.54i 0.128755 0.223010i
\(731\) 839.890 + 1454.73i 0.0424959 + 0.0736050i
\(732\) −2058.37 3565.20i −0.103934 0.180019i
\(733\) 10272.0 17791.7i 0.517607 0.896521i −0.482184 0.876070i \(-0.660156\pi\)
0.999791 0.0204512i \(-0.00651026\pi\)
\(734\) 14474.7 0.727888
\(735\) 0 0
\(736\) 15889.0 0.795755
\(737\) −6798.82 + 11775.9i −0.339807 + 0.588563i
\(738\) −1144.02 1981.51i −0.0570625 0.0988351i
\(739\) −17178.6 29754.2i −0.855109 1.48109i −0.876544 0.481321i \(-0.840157\pi\)
0.0214356 0.999770i \(-0.493176\pi\)
\(740\) 76.4512 132.417i 0.00379784 0.00657805i
\(741\) −19603.1 −0.971844
\(742\) 0 0
\(743\) 8166.99 0.403254 0.201627 0.979462i \(-0.435377\pi\)
0.201627 + 0.979462i \(0.435377\pi\)
\(744\) −9300.80 + 16109.5i −0.458312 + 0.793819i
\(745\) 4422.14 + 7659.38i 0.217470 + 0.376668i
\(746\) 12814.4 + 22195.2i 0.628914 + 1.08931i
\(747\) 2743.24 4751.42i 0.134364 0.232725i
\(748\) −523.715 −0.0256001
\(749\) 0 0
\(750\) 7120.08 0.346651
\(751\) −8540.05 + 14791.8i −0.414954 + 0.718722i −0.995424 0.0955601i \(-0.969536\pi\)
0.580469 + 0.814282i \(0.302869\pi\)
\(752\) 4389.99 + 7603.68i 0.212881 + 0.368720i
\(753\) −7749.40 13422.4i −0.375038 0.649586i
\(754\) −13131.3 + 22744.2i −0.634238 + 1.09853i
\(755\) −12078.7 −0.582239
\(756\) 0 0
\(757\) −16324.0 −0.783758 −0.391879 0.920017i \(-0.628175\pi\)
−0.391879 + 0.920017i \(0.628175\pi\)
\(758\) 1310.03 2269.03i 0.0627735 0.108727i
\(759\) −8028.43 13905.7i −0.383944 0.665011i
\(760\) −6868.04 11895.8i −0.327802 0.567770i
\(761\) −16183.1 + 28029.9i −0.770875 + 1.33520i 0.166208 + 0.986091i \(0.446848\pi\)
−0.937084 + 0.349105i \(0.886486\pi\)
\(762\) 3665.66 0.174269
\(763\) 0 0
\(764\) −1209.13 −0.0572576
\(765\) 93.1545 161.348i 0.00440262 0.00762557i
\(766\) −172.387 298.583i −0.00813131 0.0140838i
\(767\) −22382.7 38767.9i −1.05370 1.82507i
\(768\) −5601.31 + 9701.75i −0.263177 + 0.455836i
\(769\) 7948.44 0.372728 0.186364 0.982481i \(-0.440330\pi\)
0.186364 + 0.982481i \(0.440330\pi\)
\(770\) 0 0
\(771\) 8302.35 0.387810
\(772\) 2266.76 3926.14i