gp: [N,k,chi] = [525,4,Mod(274,525)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(525, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("525.274");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,-34,0,-18,0,0,-36,0,-12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 29 x 2 + 196 x^{4} + 29x^{2} + 196 x 4 + 2 9 x 2 + 1 9 6
x^4 + 29*x^2 + 196
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 3 + 15 ν ) / 14 ( \nu^{3} + 15\nu ) / 14 ( ν 3 + 1 5 ν ) / 1 4
(v^3 + 15*v) / 14
β 3 \beta_{3} β 3 = = =
ν 2 + 15 \nu^{2} + 15 ν 2 + 1 5
v^2 + 15
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 − 15 \beta_{3} - 15 β 3 − 1 5
b3 - 15
ν 3 \nu^{3} ν 3 = = =
14 β 2 − 15 β 1 14\beta_{2} - 15\beta_1 1 4 β 2 − 1 5 β 1
14*b2 - 15*b1
Character values
We give the values of χ \chi χ on generators for ( Z / 525 Z ) × \left(\mathbb{Z}/525\mathbb{Z}\right)^\times ( Z / 5 2 5 Z ) × .
n n n
127 127 1 2 7
176 176 1 7 6
451 451 4 5 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 525 , [ χ ] ) S_{4}^{\mathrm{new}}(525, [\chi]) S 4 n e w ( 5 2 5 , [ χ ] ) :
T 2 4 + 33 T 2 2 + 144 T_{2}^{4} + 33T_{2}^{2} + 144 T 2 4 + 3 3 T 2 2 + 1 4 4
T2^4 + 33*T2^2 + 144
T 11 2 + 6 T 11 − 1416 T_{11}^{2} + 6T_{11} - 1416 T 1 1 2 + 6 T 1 1 − 1 4 1 6
T11^2 + 6*T11 - 1416
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 33 T 2 + 144 T^{4} + 33T^{2} + 144 T 4 + 3 3 T 2 + 1 4 4
T^4 + 33*T^2 + 144
3 3 3
( T 2 + 9 ) 2 (T^{2} + 9)^{2} ( T 2 + 9 ) 2
(T^2 + 9)^2
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
( T 2 + 49 ) 2 (T^{2} + 49)^{2} ( T 2 + 4 9 ) 2
(T^2 + 49)^2
11 11 1 1
( T 2 + 6 T − 1416 ) 2 (T^{2} + 6 T - 1416)^{2} ( T 2 + 6 T − 1 4 1 6 ) 2
(T^2 + 6*T - 1416)^2
13 13 1 3
T 4 + 4232 T 2 + 3952144 T^{4} + 4232 T^{2} + 3952144 T 4 + 4 2 3 2 T 2 + 3 9 5 2 1 4 4
T^4 + 4232*T^2 + 3952144
17 17 1 7
T 4 + 132 T 2 + 2304 T^{4} + 132T^{2} + 2304 T 4 + 1 3 2 T 2 + 2 3 0 4
T^4 + 132*T^2 + 2304
19 19 1 9
( T 2 + 64 T − 7184 ) 2 (T^{2} + 64 T - 7184)^{2} ( T 2 + 6 4 T − 7 1 8 4 ) 2
(T^2 + 64*T - 7184)^2
23 23 2 3
T 4 + 32964 T 2 + 271063296 T^{4} + 32964 T^{2} + 271063296 T 4 + 3 2 9 6 4 T 2 + 2 7 1 0 6 3 2 9 6
T^4 + 32964*T^2 + 271063296
29 29 2 9
( T 2 − 252 T + 7668 ) 2 (T^{2} - 252 T + 7668)^{2} ( T 2 − 2 5 2 T + 7 6 6 8 ) 2
(T^2 - 252*T + 7668)^2
31 31 3 1
( T 2 − 40 T − 73472 ) 2 (T^{2} - 40 T - 73472)^{2} ( T 2 − 4 0 T − 7 3 4 7 2 ) 2
(T^2 - 40*T - 73472)^2
37 37 3 7
T 4 + 67688 T 2 + 9560464 T^{4} + 67688 T^{2} + 9560464 T 4 + 6 7 6 8 8 T 2 + 9 5 6 0 4 6 4
T^4 + 67688*T^2 + 9560464
41 41 4 1
( T 2 + 450 T + 37800 ) 2 (T^{2} + 450 T + 37800)^{2} ( T 2 + 4 5 0 T + 3 7 8 0 0 ) 2
(T^2 + 450*T + 37800)^2
43 43 4 3
T 4 + 136352 T 2 + 6310144 T^{4} + 136352 T^{2} + 6310144 T 4 + 1 3 6 3 5 2 T 2 + 6 3 1 0 1 4 4
T^4 + 136352*T^2 + 6310144
47 47 4 7
T 4 + ⋯ + 4337012736 T^{4} + \cdots + 4337012736 T 4 + ⋯ + 4 3 3 7 0 1 2 7 3 6
T^4 + 131856*T^2 + 4337012736
53 53 5 3
T 4 + ⋯ + 92705634576 T^{4} + \cdots + 92705634576 T 4 + ⋯ + 9 2 7 0 5 6 3 4 5 7 6
T^4 + 609864*T^2 + 92705634576
59 59 5 9
( T 2 + 804 T − 30144 ) 2 (T^{2} + 804 T - 30144)^{2} ( T 2 + 8 0 4 T − 3 0 1 4 4 ) 2
(T^2 + 804*T - 30144)^2
61 61 6 1
( T 2 + 428 T − 28076 ) 2 (T^{2} + 428 T - 28076)^{2} ( T 2 + 4 2 8 T − 2 8 0 7 6 ) 2
(T^2 + 428*T - 28076)^2
67 67 6 7
T 4 + ⋯ + 25836061696 T^{4} + \cdots + 25836061696 T 4 + ⋯ + 2 5 8 3 6 0 6 1 6 9 6
T^4 + 343376*T^2 + 25836061696
71 71 7 1
( T 2 − 954 T + 214704 ) 2 (T^{2} - 954 T + 214704)^{2} ( T 2 − 9 5 4 T + 2 1 4 7 0 4 ) 2
(T^2 - 954*T + 214704)^2
73 73 7 3
T 4 + ⋯ + 81364139536 T^{4} + \cdots + 81364139536 T 4 + ⋯ + 8 1 3 6 4 1 3 9 5 3 6
T^4 + 578696*T^2 + 81364139536
79 79 7 9
( T 2 − 572 T − 84416 ) 2 (T^{2} - 572 T - 84416)^{2} ( T 2 − 5 7 2 T − 8 4 4 1 6 ) 2
(T^2 - 572*T - 84416)^2
83 83 8 3
T 4 + ⋯ + 661710663936 T^{4} + \cdots + 661710663936 T 4 + ⋯ + 6 6 1 7 1 0 6 6 3 9 3 6
T^4 + 2152224*T^2 + 661710663936
89 89 8 9
( T 2 + 366 T − 253848 ) 2 (T^{2} + 366 T - 253848)^{2} ( T 2 + 3 6 6 T − 2 5 3 8 4 8 ) 2
(T^2 + 366*T - 253848)^2
97 97 9 7
T 4 + ⋯ + 850622533264 T^{4} + \cdots + 850622533264 T 4 + ⋯ + 8 5 0 6 2 2 5 3 3 2 6 4
T^4 + 2497448*T^2 + 850622533264
show more
show less