Properties

Label 525.4.d.g
Level 525525
Weight 44
Character orbit 525.d
Analytic conductor 30.97630.976
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [525,4,Mod(274,525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("525.274"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 525=3527 525 = 3 \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 525.d (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-34,0,-18,0,0,-36,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 30.976002753030.9760027530
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,57)\Q(i, \sqrt{57})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+29x2+196 x^{4} + 29x^{2} + 196 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+β1)q23β2q3+(3β310)q4+(3β36)q6+7β2q7+(41β25β1)q89q9+(10β3+2)q11++(90β318)q99+O(q100) q + ( - \beta_{2} + \beta_1) q^{2} - 3 \beta_{2} q^{3} + (3 \beta_{3} - 10) q^{4} + (3 \beta_{3} - 6) q^{6} + 7 \beta_{2} q^{7} + (41 \beta_{2} - 5 \beta_1) q^{8} - 9 q^{9} + ( - 10 \beta_{3} + 2) q^{11}+ \cdots + (90 \beta_{3} - 18) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q34q418q636q912q11+42q14+274q16128q19+84q21+522q24+636q26+504q29+80q31132q34+306q3696q39900q411608q44++108q99+O(q100) 4 q - 34 q^{4} - 18 q^{6} - 36 q^{9} - 12 q^{11} + 42 q^{14} + 274 q^{16} - 128 q^{19} + 84 q^{21} + 522 q^{24} + 636 q^{26} + 504 q^{29} + 80 q^{31} - 132 q^{34} + 306 q^{36} - 96 q^{39} - 900 q^{41} - 1608 q^{44}+ \cdots + 108 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+29x2+196 x^{4} + 29x^{2} + 196 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+15ν)/14 ( \nu^{3} + 15\nu ) / 14 Copy content Toggle raw display
β3\beta_{3}== ν2+15 \nu^{2} + 15 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β315 \beta_{3} - 15 Copy content Toggle raw display
ν3\nu^{3}== 14β215β1 14\beta_{2} - 15\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/525Z)×\left(\mathbb{Z}/525\mathbb{Z}\right)^\times.

nn 127127 176176 451451
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
274.1
4.27492i
3.27492i
3.27492i
4.27492i
5.27492i 3.00000i −19.8248 0 −15.8248 7.00000i 62.3746i −9.00000 0
274.2 2.27492i 3.00000i 2.82475 0 6.82475 7.00000i 24.6254i −9.00000 0
274.3 2.27492i 3.00000i 2.82475 0 6.82475 7.00000i 24.6254i −9.00000 0
274.4 5.27492i 3.00000i −19.8248 0 −15.8248 7.00000i 62.3746i −9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.4.d.g 4
5.b even 2 1 inner 525.4.d.g 4
5.c odd 4 1 21.4.a.c 2
5.c odd 4 1 525.4.a.n 2
15.e even 4 1 63.4.a.e 2
15.e even 4 1 1575.4.a.p 2
20.e even 4 1 336.4.a.m 2
35.f even 4 1 147.4.a.i 2
35.k even 12 2 147.4.e.m 4
35.l odd 12 2 147.4.e.l 4
40.i odd 4 1 1344.4.a.bg 2
40.k even 4 1 1344.4.a.bo 2
60.l odd 4 1 1008.4.a.ba 2
105.k odd 4 1 441.4.a.r 2
105.w odd 12 2 441.4.e.p 4
105.x even 12 2 441.4.e.q 4
140.j odd 4 1 2352.4.a.bz 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.4.a.c 2 5.c odd 4 1
63.4.a.e 2 15.e even 4 1
147.4.a.i 2 35.f even 4 1
147.4.e.l 4 35.l odd 12 2
147.4.e.m 4 35.k even 12 2
336.4.a.m 2 20.e even 4 1
441.4.a.r 2 105.k odd 4 1
441.4.e.p 4 105.w odd 12 2
441.4.e.q 4 105.x even 12 2
525.4.a.n 2 5.c odd 4 1
525.4.d.g 4 1.a even 1 1 trivial
525.4.d.g 4 5.b even 2 1 inner
1008.4.a.ba 2 60.l odd 4 1
1344.4.a.bg 2 40.i odd 4 1
1344.4.a.bo 2 40.k even 4 1
1575.4.a.p 2 15.e even 4 1
2352.4.a.bz 2 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(525,[χ])S_{4}^{\mathrm{new}}(525, [\chi]):

T24+33T22+144 T_{2}^{4} + 33T_{2}^{2} + 144 Copy content Toggle raw display
T112+6T111416 T_{11}^{2} + 6T_{11} - 1416 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+33T2+144 T^{4} + 33T^{2} + 144 Copy content Toggle raw display
33 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+49)2 (T^{2} + 49)^{2} Copy content Toggle raw display
1111 (T2+6T1416)2 (T^{2} + 6 T - 1416)^{2} Copy content Toggle raw display
1313 T4+4232T2+3952144 T^{4} + 4232 T^{2} + 3952144 Copy content Toggle raw display
1717 T4+132T2+2304 T^{4} + 132T^{2} + 2304 Copy content Toggle raw display
1919 (T2+64T7184)2 (T^{2} + 64 T - 7184)^{2} Copy content Toggle raw display
2323 T4+32964T2+271063296 T^{4} + 32964 T^{2} + 271063296 Copy content Toggle raw display
2929 (T2252T+7668)2 (T^{2} - 252 T + 7668)^{2} Copy content Toggle raw display
3131 (T240T73472)2 (T^{2} - 40 T - 73472)^{2} Copy content Toggle raw display
3737 T4+67688T2+9560464 T^{4} + 67688 T^{2} + 9560464 Copy content Toggle raw display
4141 (T2+450T+37800)2 (T^{2} + 450 T + 37800)^{2} Copy content Toggle raw display
4343 T4+136352T2+6310144 T^{4} + 136352 T^{2} + 6310144 Copy content Toggle raw display
4747 T4++4337012736 T^{4} + \cdots + 4337012736 Copy content Toggle raw display
5353 T4++92705634576 T^{4} + \cdots + 92705634576 Copy content Toggle raw display
5959 (T2+804T30144)2 (T^{2} + 804 T - 30144)^{2} Copy content Toggle raw display
6161 (T2+428T28076)2 (T^{2} + 428 T - 28076)^{2} Copy content Toggle raw display
6767 T4++25836061696 T^{4} + \cdots + 25836061696 Copy content Toggle raw display
7171 (T2954T+214704)2 (T^{2} - 954 T + 214704)^{2} Copy content Toggle raw display
7373 T4++81364139536 T^{4} + \cdots + 81364139536 Copy content Toggle raw display
7979 (T2572T84416)2 (T^{2} - 572 T - 84416)^{2} Copy content Toggle raw display
8383 T4++661710663936 T^{4} + \cdots + 661710663936 Copy content Toggle raw display
8989 (T2+366T253848)2 (T^{2} + 366 T - 253848)^{2} Copy content Toggle raw display
9797 T4++850622533264 T^{4} + \cdots + 850622533264 Copy content Toggle raw display
show more
show less