Defining parameters
Level: | \( N \) | \(=\) | \( 525 = 3 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 525.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(320\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(525, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 252 | 56 | 196 |
Cusp forms | 228 | 56 | 172 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(525, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(525, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(525, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 2}\)