Properties

Label 525.4
Level 525
Weight 4
Dimension 18874
Nonzero newspaces 24
Sturm bound 76800
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(76800\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(525))\).

Total New Old
Modular forms 29472 19286 10186
Cusp forms 28128 18874 9254
Eisenstein series 1344 412 932

Trace form

\( 18874 q + 16 q^{2} - 37 q^{3} - 134 q^{4} + 12 q^{5} - 60 q^{6} - 146 q^{7} - 90 q^{8} - 49 q^{9} - 248 q^{10} - 224 q^{11} + 320 q^{12} + 540 q^{13} + 216 q^{14} + 272 q^{15} + 18 q^{16} - 1132 q^{17}+ \cdots - 14694 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(525))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
525.4.a \(\chi_{525}(1, \cdot)\) 525.4.a.a 1 1
525.4.a.b 1
525.4.a.c 1
525.4.a.d 1
525.4.a.e 1
525.4.a.f 1
525.4.a.g 1
525.4.a.h 1
525.4.a.i 2
525.4.a.j 2
525.4.a.k 2
525.4.a.l 2
525.4.a.m 2
525.4.a.n 2
525.4.a.o 2
525.4.a.p 2
525.4.a.q 3
525.4.a.r 3
525.4.a.s 4
525.4.a.t 4
525.4.a.u 4
525.4.a.v 4
525.4.a.w 5
525.4.a.x 5
525.4.b \(\chi_{525}(251, \cdot)\) n/a 146 1
525.4.d \(\chi_{525}(274, \cdot)\) 525.4.d.a 2 1
525.4.d.b 2
525.4.d.c 2
525.4.d.d 2
525.4.d.e 2
525.4.d.f 2
525.4.d.g 4
525.4.d.h 4
525.4.d.i 4
525.4.d.j 4
525.4.d.k 4
525.4.d.l 4
525.4.d.m 4
525.4.d.n 8
525.4.d.o 8
525.4.g \(\chi_{525}(524, \cdot)\) n/a 140 1
525.4.i \(\chi_{525}(151, \cdot)\) n/a 152 2
525.4.j \(\chi_{525}(218, \cdot)\) n/a 216 2
525.4.m \(\chi_{525}(118, \cdot)\) n/a 144 2
525.4.n \(\chi_{525}(106, \cdot)\) n/a 368 4
525.4.q \(\chi_{525}(299, \cdot)\) n/a 280 2
525.4.r \(\chi_{525}(424, \cdot)\) n/a 144 2
525.4.t \(\chi_{525}(26, \cdot)\) n/a 292 2
525.4.w \(\chi_{525}(104, \cdot)\) n/a 944 4
525.4.z \(\chi_{525}(64, \cdot)\) n/a 352 4
525.4.bb \(\chi_{525}(41, \cdot)\) n/a 944 4
525.4.bc \(\chi_{525}(82, \cdot)\) n/a 288 4
525.4.bf \(\chi_{525}(32, \cdot)\) n/a 560 4
525.4.bg \(\chi_{525}(16, \cdot)\) n/a 960 8
525.4.bh \(\chi_{525}(13, \cdot)\) n/a 960 8
525.4.bk \(\chi_{525}(8, \cdot)\) n/a 1440 8
525.4.bm \(\chi_{525}(131, \cdot)\) n/a 1888 8
525.4.bo \(\chi_{525}(4, \cdot)\) n/a 960 8
525.4.bp \(\chi_{525}(59, \cdot)\) n/a 1888 8
525.4.bs \(\chi_{525}(2, \cdot)\) n/a 3776 16
525.4.bv \(\chi_{525}(52, \cdot)\) n/a 1920 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(525))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(525)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(105))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(175))\)\(^{\oplus 2}\)