Properties

Label 336.4
Level 336
Weight 4
Dimension 3680
Nonzero newspaces 16
Sturm bound 24576
Trace bound 8

Downloads

Learn more

Defining parameters

Level: N N = 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k = 4 4
Nonzero newspaces: 16 16
Sturm bound: 2457624576
Trace bound: 88

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ1(336))M_{4}(\Gamma_1(336)).

Total New Old
Modular forms 9552 3772 5780
Cusp forms 8880 3680 5200
Eisenstein series 672 92 580

Trace form

3680q+q3+24q44q568q642q7168q8117q9280q10+120q11+196q12+4q13+348q14318q15+584q16+52q1744q18+458q19+9682q99+O(q100) 3680 q + q^{3} + 24 q^{4} - 4 q^{5} - 68 q^{6} - 42 q^{7} - 168 q^{8} - 117 q^{9} - 280 q^{10} + 120 q^{11} + 196 q^{12} + 4 q^{13} + 348 q^{14} - 318 q^{15} + 584 q^{16} + 52 q^{17} - 44 q^{18} + 458 q^{19}+ \cdots - 9682 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ1(336))S_{4}^{\mathrm{new}}(\Gamma_1(336))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
336.4.a χ336(1,)\chi_{336}(1, \cdot) 336.4.a.a 1 1
336.4.a.b 1
336.4.a.c 1
336.4.a.d 1
336.4.a.e 1
336.4.a.f 1
336.4.a.g 1
336.4.a.h 1
336.4.a.i 1
336.4.a.j 1
336.4.a.k 1
336.4.a.l 1
336.4.a.m 2
336.4.a.n 2
336.4.a.o 2
336.4.b χ336(223,)\chi_{336}(223, \cdot) 336.4.b.a 2 1
336.4.b.b 2
336.4.b.c 2
336.4.b.d 2
336.4.b.e 8
336.4.b.f 8
336.4.c χ336(169,)\chi_{336}(169, \cdot) None 0 1
336.4.h χ336(239,)\chi_{336}(239, \cdot) 336.4.h.a 12 1
336.4.h.b 24
336.4.i χ336(41,)\chi_{336}(41, \cdot) None 0 1
336.4.j χ336(71,)\chi_{336}(71, \cdot) None 0 1
336.4.k χ336(209,)\chi_{336}(209, \cdot) 336.4.k.a 2 1
336.4.k.b 4
336.4.k.c 8
336.4.k.d 8
336.4.k.e 24
336.4.p χ336(55,)\chi_{336}(55, \cdot) None 0 1
336.4.q χ336(193,)\chi_{336}(193, \cdot) 336.4.q.a 2 2
336.4.q.b 2
336.4.q.c 2
336.4.q.d 2
336.4.q.e 2
336.4.q.f 2
336.4.q.g 4
336.4.q.h 4
336.4.q.i 4
336.4.q.j 4
336.4.q.k 6
336.4.q.l 6
336.4.q.m 8
336.4.s χ336(155,)\chi_{336}(155, \cdot) n/a 288 2
336.4.u χ336(139,)\chi_{336}(139, \cdot) n/a 192 2
336.4.w χ336(85,)\chi_{336}(85, \cdot) n/a 144 2
336.4.y χ336(125,)\chi_{336}(125, \cdot) n/a 376 2
336.4.bb χ336(103,)\chi_{336}(103, \cdot) None 0 2
336.4.bc χ336(17,)\chi_{336}(17, \cdot) 336.4.bc.a 2 2
336.4.bc.b 2
336.4.bc.c 12
336.4.bc.d 12
336.4.bc.e 16
336.4.bc.f 48
336.4.bd χ336(23,)\chi_{336}(23, \cdot) None 0 2
336.4.bi χ336(89,)\chi_{336}(89, \cdot) None 0 2
336.4.bj χ336(95,)\chi_{336}(95, \cdot) 336.4.bj.a 2 2
336.4.bj.b 2
336.4.bj.c 2
336.4.bj.d 2
336.4.bj.e 28
336.4.bj.f 28
336.4.bj.g 32
336.4.bk χ336(25,)\chi_{336}(25, \cdot) None 0 2
336.4.bl χ336(31,)\chi_{336}(31, \cdot) 336.4.bl.a 2 2
336.4.bl.b 2
336.4.bl.c 2
336.4.bl.d 2
336.4.bl.e 6
336.4.bl.f 6
336.4.bl.g 6
336.4.bl.h 6
336.4.bl.i 8
336.4.bl.j 8
336.4.bo χ336(5,)\chi_{336}(5, \cdot) n/a 752 4
336.4.bq χ336(37,)\chi_{336}(37, \cdot) n/a 384 4
336.4.bs χ336(19,)\chi_{336}(19, \cdot) n/a 384 4
336.4.bu χ336(11,)\chi_{336}(11, \cdot) n/a 752 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S4old(Γ1(336))S_{4}^{\mathrm{old}}(\Gamma_1(336)) into lower level spaces

S4old(Γ1(336)) S_{4}^{\mathrm{old}}(\Gamma_1(336)) \cong S4new(Γ1(1))S_{4}^{\mathrm{new}}(\Gamma_1(1))20^{\oplus 20}\oplusS4new(Γ1(2))S_{4}^{\mathrm{new}}(\Gamma_1(2))16^{\oplus 16}\oplusS4new(Γ1(3))S_{4}^{\mathrm{new}}(\Gamma_1(3))10^{\oplus 10}\oplusS4new(Γ1(4))S_{4}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS4new(Γ1(6))S_{4}^{\mathrm{new}}(\Gamma_1(6))8^{\oplus 8}\oplusS4new(Γ1(7))S_{4}^{\mathrm{new}}(\Gamma_1(7))10^{\oplus 10}\oplusS4new(Γ1(8))S_{4}^{\mathrm{new}}(\Gamma_1(8))8^{\oplus 8}\oplusS4new(Γ1(12))S_{4}^{\mathrm{new}}(\Gamma_1(12))6^{\oplus 6}\oplusS4new(Γ1(14))S_{4}^{\mathrm{new}}(\Gamma_1(14))8^{\oplus 8}\oplusS4new(Γ1(16))S_{4}^{\mathrm{new}}(\Gamma_1(16))4^{\oplus 4}\oplusS4new(Γ1(21))S_{4}^{\mathrm{new}}(\Gamma_1(21))5^{\oplus 5}\oplusS4new(Γ1(24))S_{4}^{\mathrm{new}}(\Gamma_1(24))4^{\oplus 4}\oplusS4new(Γ1(28))S_{4}^{\mathrm{new}}(\Gamma_1(28))6^{\oplus 6}\oplusS4new(Γ1(42))S_{4}^{\mathrm{new}}(\Gamma_1(42))4^{\oplus 4}\oplusS4new(Γ1(48))S_{4}^{\mathrm{new}}(\Gamma_1(48))2^{\oplus 2}\oplusS4new(Γ1(56))S_{4}^{\mathrm{new}}(\Gamma_1(56))4^{\oplus 4}\oplusS4new(Γ1(84))S_{4}^{\mathrm{new}}(\Gamma_1(84))3^{\oplus 3}\oplusS4new(Γ1(112))S_{4}^{\mathrm{new}}(\Gamma_1(112))2^{\oplus 2}\oplusS4new(Γ1(168))S_{4}^{\mathrm{new}}(\Gamma_1(168))2^{\oplus 2}