L(s) = 1 | − 3·3-s − 4.54·5-s − 7·7-s + 9·9-s + 40.7·11-s + 53.2·13-s + 13.6·15-s + 4.54·17-s − 122.·19-s + 21·21-s − 131.·23-s − 104.·25-s − 27·27-s − 216.·29-s + 251.·31-s − 122.·33-s + 31.8·35-s + 11.8·37-s − 159.·39-s − 111.·41-s − 369.·43-s − 40.9·45-s + 262.·47-s + 49·49-s − 13.6·51-s − 567.·53-s − 185.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.406·5-s − 0.377·7-s + 0.333·9-s + 1.11·11-s + 1.13·13-s + 0.234·15-s + 0.0649·17-s − 1.48·19-s + 0.218·21-s − 1.19·23-s − 0.834·25-s − 0.192·27-s − 1.38·29-s + 1.45·31-s − 0.644·33-s + 0.153·35-s + 0.0528·37-s − 0.656·39-s − 0.425·41-s − 1.30·43-s − 0.135·45-s + 0.815·47-s + 0.142·49-s − 0.0374·51-s − 1.46·53-s − 0.454·55-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(336s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 7 | 1+7T |
good | 5 | 1+4.54T+125T2 |
| 11 | 1−40.7T+1.33e3T2 |
| 13 | 1−53.2T+2.19e3T2 |
| 17 | 1−4.54T+4.91e3T2 |
| 19 | 1+122.T+6.85e3T2 |
| 23 | 1+131.T+1.21e4T2 |
| 29 | 1+216.T+2.43e4T2 |
| 31 | 1−251.T+2.97e4T2 |
| 37 | 1−11.8T+5.06e4T2 |
| 41 | 1+111.T+6.89e4T2 |
| 43 | 1+369.T+7.95e4T2 |
| 47 | 1−262.T+1.03e5T2 |
| 53 | 1+567.T+1.48e5T2 |
| 59 | 1+839.T+2.05e5T2 |
| 61 | 1+485.T+2.26e5T2 |
| 67 | 1−333.T+3.00e5T2 |
| 71 | 1+590.T+3.57e5T2 |
| 73 | 1−490.T+3.89e5T2 |
| 79 | 1+121.T+4.93e5T2 |
| 83 | 1+609.T+5.71e5T2 |
| 89 | 1−719.T+7.04e5T2 |
| 97 | 1+637.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79362011636077056360559561261, −9.808679348015717556555181655322, −8.785405480726387599516454570238, −7.82202061269941747277692550723, −6.46557243205676936061600349675, −6.04793192761779134497314478525, −4.40433686169121043609948429682, −3.61100062040112321213645830065, −1.65353758962625653150982339879, 0,
1.65353758962625653150982339879, 3.61100062040112321213645830065, 4.40433686169121043609948429682, 6.04793192761779134497314478525, 6.46557243205676936061600349675, 7.82202061269941747277692550723, 8.785405480726387599516454570238, 9.808679348015717556555181655322, 10.79362011636077056360559561261