L(s) = 1 | − 3·3-s + 10.5·5-s − 7·7-s + 9·9-s − 34.7·11-s − 37.2·13-s − 31.6·15-s − 10.5·17-s + 58.5·19-s + 21·21-s + 125.·23-s − 13.7·25-s − 27·27-s − 35.4·29-s − 291.·31-s + 104.·33-s − 73.8·35-s − 259.·37-s + 111.·39-s − 338.·41-s − 6.80·43-s + 94.9·45-s − 250.·47-s + 49·49-s + 31.6·51-s − 536.·53-s − 366.·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 0.943·5-s − 0.377·7-s + 0.333·9-s − 0.952·11-s − 0.795·13-s − 0.544·15-s − 0.150·17-s + 0.707·19-s + 0.218·21-s + 1.13·23-s − 0.109·25-s − 0.192·27-s − 0.226·29-s − 1.69·31-s + 0.549·33-s − 0.356·35-s − 1.15·37-s + 0.459·39-s − 1.28·41-s − 0.0241·43-s + 0.314·45-s − 0.778·47-s + 0.142·49-s + 0.0868·51-s − 1.39·53-s − 0.898·55-s + ⋯ |
Λ(s)=(=(336s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(336s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3T |
| 7 | 1+7T |
good | 5 | 1−10.5T+125T2 |
| 11 | 1+34.7T+1.33e3T2 |
| 13 | 1+37.2T+2.19e3T2 |
| 17 | 1+10.5T+4.91e3T2 |
| 19 | 1−58.5T+6.85e3T2 |
| 23 | 1−125.T+1.21e4T2 |
| 29 | 1+35.4T+2.43e4T2 |
| 31 | 1+291.T+2.97e4T2 |
| 37 | 1+259.T+5.06e4T2 |
| 41 | 1+338.T+6.89e4T2 |
| 43 | 1+6.80T+7.95e4T2 |
| 47 | 1+250.T+1.03e5T2 |
| 53 | 1+536.T+1.48e5T2 |
| 59 | 1−35.8T+2.05e5T2 |
| 61 | 1−57.7T+2.26e5T2 |
| 67 | 1+481.T+3.00e5T2 |
| 71 | 1+363.T+3.57e5T2 |
| 73 | 1−581.T+3.89e5T2 |
| 79 | 1−693.T+4.93e5T2 |
| 83 | 1+1.33e3T+5.71e5T2 |
| 89 | 1+353.T+7.04e5T2 |
| 97 | 1−1.44e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55314252260507057026967221669, −9.851108601031503344667657035441, −9.035669858805245242311123142654, −7.59989857386556468797913429421, −6.73022719050793100184404417295, −5.56055115271339643577045628393, −4.98150113830503365689327347887, −3.20033352580597576395212986654, −1.82745178827283682517970098341, 0,
1.82745178827283682517970098341, 3.20033352580597576395212986654, 4.98150113830503365689327347887, 5.56055115271339643577045628393, 6.73022719050793100184404417295, 7.59989857386556468797913429421, 9.035669858805245242311123142654, 9.851108601031503344667657035441, 10.55314252260507057026967221669