Properties

Label 306.2.l.c.253.1
Level $306$
Weight $2$
Character 306.253
Analytic conductor $2.443$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [306,2,Mod(19,306)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(306, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("306.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 306.l (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,8,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.44342230185\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 253.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 306.253
Dual form 306.2.l.c.127.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(3.41421 - 1.41421i) q^{5} +(1.41421 + 0.585786i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-3.41421 - 1.41421i) q^{10} +(-1.70711 + 4.12132i) q^{11} +0.828427i q^{13} +(-0.585786 - 1.41421i) q^{14} -1.00000 q^{16} +(2.12132 - 3.53553i) q^{17} +(0.585786 + 0.585786i) q^{19} +(1.41421 + 3.41421i) q^{20} +(4.12132 - 1.70711i) q^{22} +(1.17157 - 2.82843i) q^{23} +(6.12132 - 6.12132i) q^{25} +(0.585786 - 0.585786i) q^{26} +(-0.585786 + 1.41421i) q^{28} +(1.41421 - 0.585786i) q^{29} +(-1.41421 - 3.41421i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-4.00000 + 1.00000i) q^{34} +5.65685 q^{35} +(0.828427 + 2.00000i) q^{37} -0.828427i q^{38} +(1.41421 - 3.41421i) q^{40} +(-10.3640 - 4.29289i) q^{41} +(-1.24264 + 1.24264i) q^{43} +(-4.12132 - 1.70711i) q^{44} +(-2.82843 + 1.17157i) q^{46} +9.65685i q^{47} +(-3.29289 - 3.29289i) q^{49} -8.65685 q^{50} -0.828427 q^{52} +(-0.585786 - 0.585786i) q^{53} +16.4853i q^{55} +(1.41421 - 0.585786i) q^{56} +(-1.41421 - 0.585786i) q^{58} +(-0.414214 + 0.414214i) q^{59} +(6.82843 + 2.82843i) q^{61} +(-1.41421 + 3.41421i) q^{62} -1.00000i q^{64} +(1.17157 + 2.82843i) q^{65} -7.41421 q^{67} +(3.53553 + 2.12132i) q^{68} +(-4.00000 - 4.00000i) q^{70} +(-0.828427 - 2.00000i) q^{71} +(-4.94975 + 2.05025i) q^{73} +(0.828427 - 2.00000i) q^{74} +(-0.585786 + 0.585786i) q^{76} +(-4.82843 + 4.82843i) q^{77} +(-2.00000 + 4.82843i) q^{79} +(-3.41421 + 1.41421i) q^{80} +(4.29289 + 10.3640i) q^{82} +(-4.41421 - 4.41421i) q^{83} +(2.24264 - 15.0711i) q^{85} +1.75736 q^{86} +(1.70711 + 4.12132i) q^{88} +15.0711i q^{89} +(-0.485281 + 1.17157i) q^{91} +(2.82843 + 1.17157i) q^{92} +(6.82843 - 6.82843i) q^{94} +(2.82843 + 1.17157i) q^{95} +(-5.12132 + 2.12132i) q^{97} +4.65685i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} - 8 q^{10} - 4 q^{11} - 8 q^{14} - 4 q^{16} + 8 q^{19} + 8 q^{22} + 16 q^{23} + 16 q^{25} + 8 q^{26} - 8 q^{28} - 16 q^{34} - 8 q^{37} - 16 q^{41} + 12 q^{43} - 8 q^{44} - 16 q^{49} - 12 q^{50}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/306\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 3.41421 1.41421i 1.52688 0.632456i 0.547927 0.836526i \(-0.315417\pi\)
0.978956 + 0.204071i \(0.0654173\pi\)
\(6\) 0 0
\(7\) 1.41421 + 0.585786i 0.534522 + 0.221406i 0.633583 0.773675i \(-0.281584\pi\)
−0.0990602 + 0.995081i \(0.531584\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −3.41421 1.41421i −1.07967 0.447214i
\(11\) −1.70711 + 4.12132i −0.514712 + 1.24262i 0.426401 + 0.904534i \(0.359781\pi\)
−0.941113 + 0.338091i \(0.890219\pi\)
\(12\) 0 0
\(13\) 0.828427i 0.229764i 0.993379 + 0.114882i \(0.0366490\pi\)
−0.993379 + 0.114882i \(0.963351\pi\)
\(14\) −0.585786 1.41421i −0.156558 0.377964i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 2.12132 3.53553i 0.514496 0.857493i
\(18\) 0 0
\(19\) 0.585786 + 0.585786i 0.134389 + 0.134389i 0.771101 0.636713i \(-0.219706\pi\)
−0.636713 + 0.771101i \(0.719706\pi\)
\(20\) 1.41421 + 3.41421i 0.316228 + 0.763441i
\(21\) 0 0
\(22\) 4.12132 1.70711i 0.878668 0.363956i
\(23\) 1.17157 2.82843i 0.244290 0.589768i −0.753410 0.657551i \(-0.771593\pi\)
0.997700 + 0.0677829i \(0.0215925\pi\)
\(24\) 0 0
\(25\) 6.12132 6.12132i 1.22426 1.22426i
\(26\) 0.585786 0.585786i 0.114882 0.114882i
\(27\) 0 0
\(28\) −0.585786 + 1.41421i −0.110703 + 0.267261i
\(29\) 1.41421 0.585786i 0.262613 0.108778i −0.247492 0.968890i \(-0.579606\pi\)
0.510105 + 0.860112i \(0.329606\pi\)
\(30\) 0 0
\(31\) −1.41421 3.41421i −0.254000 0.613211i 0.744520 0.667601i \(-0.232679\pi\)
−0.998520 + 0.0543898i \(0.982679\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −4.00000 + 1.00000i −0.685994 + 0.171499i
\(35\) 5.65685 0.956183
\(36\) 0 0
\(37\) 0.828427 + 2.00000i 0.136193 + 0.328798i 0.977231 0.212177i \(-0.0680553\pi\)
−0.841039 + 0.540975i \(0.818055\pi\)
\(38\) 0.828427i 0.134389i
\(39\) 0 0
\(40\) 1.41421 3.41421i 0.223607 0.539835i
\(41\) −10.3640 4.29289i −1.61858 0.670437i −0.624695 0.780869i \(-0.714777\pi\)
−0.993884 + 0.110432i \(0.964777\pi\)
\(42\) 0 0
\(43\) −1.24264 + 1.24264i −0.189501 + 0.189501i −0.795480 0.605979i \(-0.792781\pi\)
0.605979 + 0.795480i \(0.292781\pi\)
\(44\) −4.12132 1.70711i −0.621312 0.257356i
\(45\) 0 0
\(46\) −2.82843 + 1.17157i −0.417029 + 0.172739i
\(47\) 9.65685i 1.40860i 0.709904 + 0.704298i \(0.248738\pi\)
−0.709904 + 0.704298i \(0.751262\pi\)
\(48\) 0 0
\(49\) −3.29289 3.29289i −0.470413 0.470413i
\(50\) −8.65685 −1.22426
\(51\) 0 0
\(52\) −0.828427 −0.114882
\(53\) −0.585786 0.585786i −0.0804640 0.0804640i 0.665729 0.746193i \(-0.268121\pi\)
−0.746193 + 0.665729i \(0.768121\pi\)
\(54\) 0 0
\(55\) 16.4853i 2.22287i
\(56\) 1.41421 0.585786i 0.188982 0.0782790i
\(57\) 0 0
\(58\) −1.41421 0.585786i −0.185695 0.0769175i
\(59\) −0.414214 + 0.414214i −0.0539260 + 0.0539260i −0.733556 0.679630i \(-0.762141\pi\)
0.679630 + 0.733556i \(0.262141\pi\)
\(60\) 0 0
\(61\) 6.82843 + 2.82843i 0.874291 + 0.362143i 0.774280 0.632843i \(-0.218112\pi\)
0.100011 + 0.994986i \(0.468112\pi\)
\(62\) −1.41421 + 3.41421i −0.179605 + 0.433606i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 1.17157 + 2.82843i 0.145316 + 0.350823i
\(66\) 0 0
\(67\) −7.41421 −0.905790 −0.452895 0.891564i \(-0.649609\pi\)
−0.452895 + 0.891564i \(0.649609\pi\)
\(68\) 3.53553 + 2.12132i 0.428746 + 0.257248i
\(69\) 0 0
\(70\) −4.00000 4.00000i −0.478091 0.478091i
\(71\) −0.828427 2.00000i −0.0983162 0.237356i 0.867067 0.498191i \(-0.166002\pi\)
−0.965383 + 0.260835i \(0.916002\pi\)
\(72\) 0 0
\(73\) −4.94975 + 2.05025i −0.579324 + 0.239964i −0.653050 0.757315i \(-0.726511\pi\)
0.0737261 + 0.997279i \(0.476511\pi\)
\(74\) 0.828427 2.00000i 0.0963027 0.232495i
\(75\) 0 0
\(76\) −0.585786 + 0.585786i −0.0671943 + 0.0671943i
\(77\) −4.82843 + 4.82843i −0.550250 + 0.550250i
\(78\) 0 0
\(79\) −2.00000 + 4.82843i −0.225018 + 0.543240i −0.995558 0.0941507i \(-0.969986\pi\)
0.770540 + 0.637391i \(0.219986\pi\)
\(80\) −3.41421 + 1.41421i −0.381721 + 0.158114i
\(81\) 0 0
\(82\) 4.29289 + 10.3640i 0.474071 + 1.14451i
\(83\) −4.41421 4.41421i −0.484523 0.484523i 0.422050 0.906573i \(-0.361311\pi\)
−0.906573 + 0.422050i \(0.861311\pi\)
\(84\) 0 0
\(85\) 2.24264 15.0711i 0.243249 1.63469i
\(86\) 1.75736 0.189501
\(87\) 0 0
\(88\) 1.70711 + 4.12132i 0.181978 + 0.439334i
\(89\) 15.0711i 1.59753i 0.601643 + 0.798765i \(0.294513\pi\)
−0.601643 + 0.798765i \(0.705487\pi\)
\(90\) 0 0
\(91\) −0.485281 + 1.17157i −0.0508713 + 0.122814i
\(92\) 2.82843 + 1.17157i 0.294884 + 0.122145i
\(93\) 0 0
\(94\) 6.82843 6.82843i 0.704298 0.704298i
\(95\) 2.82843 + 1.17157i 0.290191 + 0.120201i
\(96\) 0 0
\(97\) −5.12132 + 2.12132i −0.519991 + 0.215387i −0.627213 0.778848i \(-0.715804\pi\)
0.107222 + 0.994235i \(0.465804\pi\)
\(98\) 4.65685i 0.470413i
\(99\) 0 0
\(100\) 6.12132 + 6.12132i 0.612132 + 0.612132i
\(101\) −4.34315 −0.432159 −0.216080 0.976376i \(-0.569327\pi\)
−0.216080 + 0.976376i \(0.569327\pi\)
\(102\) 0 0
\(103\) 12.4853 1.23021 0.615106 0.788445i \(-0.289113\pi\)
0.615106 + 0.788445i \(0.289113\pi\)
\(104\) 0.585786 + 0.585786i 0.0574411 + 0.0574411i
\(105\) 0 0
\(106\) 0.828427i 0.0804640i
\(107\) −10.7782 + 4.46447i −1.04197 + 0.431596i −0.837017 0.547177i \(-0.815703\pi\)
−0.204948 + 0.978773i \(0.565703\pi\)
\(108\) 0 0
\(109\) −9.07107 3.75736i −0.868851 0.359890i −0.0966881 0.995315i \(-0.530825\pi\)
−0.772163 + 0.635425i \(0.780825\pi\)
\(110\) 11.6569 11.6569i 1.11144 1.11144i
\(111\) 0 0
\(112\) −1.41421 0.585786i −0.133631 0.0553516i
\(113\) 3.53553 8.53553i 0.332595 0.802955i −0.665790 0.746140i \(-0.731905\pi\)
0.998385 0.0568160i \(-0.0180948\pi\)
\(114\) 0 0
\(115\) 11.3137i 1.05501i
\(116\) 0.585786 + 1.41421i 0.0543889 + 0.131306i
\(117\) 0 0
\(118\) 0.585786 0.0539260
\(119\) 5.07107 3.75736i 0.464864 0.344437i
\(120\) 0 0
\(121\) −6.29289 6.29289i −0.572081 0.572081i
\(122\) −2.82843 6.82843i −0.256074 0.618217i
\(123\) 0 0
\(124\) 3.41421 1.41421i 0.306605 0.127000i
\(125\) 5.17157 12.4853i 0.462560 1.11672i
\(126\) 0 0
\(127\) −9.17157 + 9.17157i −0.813845 + 0.813845i −0.985208 0.171363i \(-0.945183\pi\)
0.171363 + 0.985208i \(0.445183\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 1.17157 2.82843i 0.102754 0.248069i
\(131\) −0.121320 + 0.0502525i −0.0105998 + 0.00439058i −0.387977 0.921669i \(-0.626826\pi\)
0.377377 + 0.926060i \(0.376826\pi\)
\(132\) 0 0
\(133\) 0.485281 + 1.17157i 0.0420792 + 0.101588i
\(134\) 5.24264 + 5.24264i 0.452895 + 0.452895i
\(135\) 0 0
\(136\) −1.00000 4.00000i −0.0857493 0.342997i
\(137\) 2.34315 0.200188 0.100094 0.994978i \(-0.468086\pi\)
0.100094 + 0.994978i \(0.468086\pi\)
\(138\) 0 0
\(139\) −0.707107 1.70711i −0.0599760 0.144795i 0.891051 0.453904i \(-0.149969\pi\)
−0.951027 + 0.309109i \(0.899969\pi\)
\(140\) 5.65685i 0.478091i
\(141\) 0 0
\(142\) −0.828427 + 2.00000i −0.0695201 + 0.167836i
\(143\) −3.41421 1.41421i −0.285511 0.118262i
\(144\) 0 0
\(145\) 4.00000 4.00000i 0.332182 0.332182i
\(146\) 4.94975 + 2.05025i 0.409644 + 0.169680i
\(147\) 0 0
\(148\) −2.00000 + 0.828427i −0.164399 + 0.0680963i
\(149\) 15.6569i 1.28266i −0.767265 0.641330i \(-0.778383\pi\)
0.767265 0.641330i \(-0.221617\pi\)
\(150\) 0 0
\(151\) −15.6569 15.6569i −1.27414 1.27414i −0.943897 0.330240i \(-0.892870\pi\)
−0.330240 0.943897i \(-0.607130\pi\)
\(152\) 0.828427 0.0671943
\(153\) 0 0
\(154\) 6.82843 0.550250
\(155\) −9.65685 9.65685i −0.775657 0.775657i
\(156\) 0 0
\(157\) 13.3137i 1.06255i 0.847200 + 0.531275i \(0.178287\pi\)
−0.847200 + 0.531275i \(0.821713\pi\)
\(158\) 4.82843 2.00000i 0.384129 0.159111i
\(159\) 0 0
\(160\) 3.41421 + 1.41421i 0.269917 + 0.111803i
\(161\) 3.31371 3.31371i 0.261157 0.261157i
\(162\) 0 0
\(163\) 21.0208 + 8.70711i 1.64648 + 0.681993i 0.996928 0.0783260i \(-0.0249575\pi\)
0.649550 + 0.760319i \(0.274958\pi\)
\(164\) 4.29289 10.3640i 0.335219 0.809289i
\(165\) 0 0
\(166\) 6.24264i 0.484523i
\(167\) 7.55635 + 18.2426i 0.584728 + 1.41166i 0.888484 + 0.458908i \(0.151759\pi\)
−0.303756 + 0.952750i \(0.598241\pi\)
\(168\) 0 0
\(169\) 12.3137 0.947208
\(170\) −12.2426 + 9.07107i −0.938968 + 0.695719i
\(171\) 0 0
\(172\) −1.24264 1.24264i −0.0947505 0.0947505i
\(173\) 2.24264 + 5.41421i 0.170505 + 0.411635i 0.985915 0.167249i \(-0.0534884\pi\)
−0.815410 + 0.578884i \(0.803488\pi\)
\(174\) 0 0
\(175\) 12.2426 5.07107i 0.925457 0.383337i
\(176\) 1.70711 4.12132i 0.128678 0.310656i
\(177\) 0 0
\(178\) 10.6569 10.6569i 0.798765 0.798765i
\(179\) 18.2426 18.2426i 1.36352 1.36352i 0.494132 0.869387i \(-0.335486\pi\)
0.869387 0.494132i \(-0.164514\pi\)
\(180\) 0 0
\(181\) 2.34315 5.65685i 0.174165 0.420471i −0.812559 0.582879i \(-0.801926\pi\)
0.986724 + 0.162408i \(0.0519262\pi\)
\(182\) 1.17157 0.485281i 0.0868428 0.0359714i
\(183\) 0 0
\(184\) −1.17157 2.82843i −0.0863695 0.208514i
\(185\) 5.65685 + 5.65685i 0.415900 + 0.415900i
\(186\) 0 0
\(187\) 10.9497 + 14.7782i 0.800725 + 1.08069i
\(188\) −9.65685 −0.704298
\(189\) 0 0
\(190\) −1.17157 2.82843i −0.0849948 0.205196i
\(191\) 2.82843i 0.204658i −0.994751 0.102329i \(-0.967371\pi\)
0.994751 0.102329i \(-0.0326294\pi\)
\(192\) 0 0
\(193\) 4.70711 11.3640i 0.338825 0.817996i −0.659004 0.752139i \(-0.729022\pi\)
0.997829 0.0658565i \(-0.0209780\pi\)
\(194\) 5.12132 + 2.12132i 0.367689 + 0.152302i
\(195\) 0 0
\(196\) 3.29289 3.29289i 0.235207 0.235207i
\(197\) 18.4853 + 7.65685i 1.31702 + 0.545528i 0.926925 0.375246i \(-0.122442\pi\)
0.390096 + 0.920774i \(0.372442\pi\)
\(198\) 0 0
\(199\) −19.3137 + 8.00000i −1.36911 + 0.567105i −0.941548 0.336880i \(-0.890628\pi\)
−0.427565 + 0.903985i \(0.640628\pi\)
\(200\) 8.65685i 0.612132i
\(201\) 0 0
\(202\) 3.07107 + 3.07107i 0.216080 + 0.216080i
\(203\) 2.34315 0.164457
\(204\) 0 0
\(205\) −41.4558 −2.89540
\(206\) −8.82843 8.82843i −0.615106 0.615106i
\(207\) 0 0
\(208\) 0.828427i 0.0574411i
\(209\) −3.41421 + 1.41421i −0.236166 + 0.0978232i
\(210\) 0 0
\(211\) −0.121320 0.0502525i −0.00835204 0.00345953i 0.378504 0.925600i \(-0.376439\pi\)
−0.386856 + 0.922140i \(0.626439\pi\)
\(212\) 0.585786 0.585786i 0.0402320 0.0402320i
\(213\) 0 0
\(214\) 10.7782 + 4.46447i 0.736781 + 0.305185i
\(215\) −2.48528 + 6.00000i −0.169495 + 0.409197i
\(216\) 0 0
\(217\) 5.65685i 0.384012i
\(218\) 3.75736 + 9.07107i 0.254480 + 0.614370i
\(219\) 0 0
\(220\) −16.4853 −1.11144
\(221\) 2.92893 + 1.75736i 0.197021 + 0.118213i
\(222\) 0 0
\(223\) −17.3137 17.3137i −1.15941 1.15941i −0.984602 0.174809i \(-0.944069\pi\)
−0.174809 0.984602i \(-0.555931\pi\)
\(224\) 0.585786 + 1.41421i 0.0391395 + 0.0944911i
\(225\) 0 0
\(226\) −8.53553 + 3.53553i −0.567775 + 0.235180i
\(227\) −7.77817 + 18.7782i −0.516256 + 1.24635i 0.423932 + 0.905694i \(0.360650\pi\)
−0.940188 + 0.340657i \(0.889350\pi\)
\(228\) 0 0
\(229\) 13.0711 13.0711i 0.863760 0.863760i −0.128012 0.991773i \(-0.540860\pi\)
0.991773 + 0.128012i \(0.0408596\pi\)
\(230\) −8.00000 + 8.00000i −0.527504 + 0.527504i
\(231\) 0 0
\(232\) 0.585786 1.41421i 0.0384588 0.0928477i
\(233\) −9.70711 + 4.02082i −0.635934 + 0.263412i −0.677272 0.735733i \(-0.736838\pi\)
0.0413382 + 0.999145i \(0.486838\pi\)
\(234\) 0 0
\(235\) 13.6569 + 32.9706i 0.890875 + 2.15076i
\(236\) −0.414214 0.414214i −0.0269630 0.0269630i
\(237\) 0 0
\(238\) −6.24264 0.928932i −0.404650 0.0602137i
\(239\) −21.1716 −1.36948 −0.684738 0.728790i \(-0.740083\pi\)
−0.684738 + 0.728790i \(0.740083\pi\)
\(240\) 0 0
\(241\) 7.60660 + 18.3640i 0.489984 + 1.18293i 0.954728 + 0.297481i \(0.0961466\pi\)
−0.464743 + 0.885445i \(0.653853\pi\)
\(242\) 8.89949i 0.572081i
\(243\) 0 0
\(244\) −2.82843 + 6.82843i −0.181071 + 0.437145i
\(245\) −15.8995 6.58579i −1.01578 0.420750i
\(246\) 0 0
\(247\) −0.485281 + 0.485281i −0.0308777 + 0.0308777i
\(248\) −3.41421 1.41421i −0.216803 0.0898027i
\(249\) 0 0
\(250\) −12.4853 + 5.17157i −0.789639 + 0.327079i
\(251\) 18.7279i 1.18210i −0.806636 0.591048i \(-0.798714\pi\)
0.806636 0.591048i \(-0.201286\pi\)
\(252\) 0 0
\(253\) 9.65685 + 9.65685i 0.607121 + 0.607121i
\(254\) 12.9706 0.813845
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.82843 5.82843i −0.363567 0.363567i 0.501557 0.865124i \(-0.332761\pi\)
−0.865124 + 0.501557i \(0.832761\pi\)
\(258\) 0 0
\(259\) 3.31371i 0.205904i
\(260\) −2.82843 + 1.17157i −0.175412 + 0.0726579i
\(261\) 0 0
\(262\) 0.121320 + 0.0502525i 0.00749520 + 0.00310461i
\(263\) −5.65685 + 5.65685i −0.348817 + 0.348817i −0.859669 0.510852i \(-0.829330\pi\)
0.510852 + 0.859669i \(0.329330\pi\)
\(264\) 0 0
\(265\) −2.82843 1.17157i −0.173749 0.0719691i
\(266\) 0.485281 1.17157i 0.0297545 0.0718337i
\(267\) 0 0
\(268\) 7.41421i 0.452895i
\(269\) −2.92893 7.07107i −0.178580 0.431131i 0.809089 0.587686i \(-0.199961\pi\)
−0.987669 + 0.156555i \(0.949961\pi\)
\(270\) 0 0
\(271\) −14.8284 −0.900763 −0.450381 0.892836i \(-0.648712\pi\)
−0.450381 + 0.892836i \(0.648712\pi\)
\(272\) −2.12132 + 3.53553i −0.128624 + 0.214373i
\(273\) 0 0
\(274\) −1.65685 1.65685i −0.100094 0.100094i
\(275\) 14.7782 + 35.6777i 0.891157 + 2.15144i
\(276\) 0 0
\(277\) 21.8995 9.07107i 1.31581 0.545028i 0.389238 0.921137i \(-0.372738\pi\)
0.926575 + 0.376110i \(0.122738\pi\)
\(278\) −0.707107 + 1.70711i −0.0424094 + 0.102385i
\(279\) 0 0
\(280\) 4.00000 4.00000i 0.239046 0.239046i
\(281\) −10.1421 + 10.1421i −0.605029 + 0.605029i −0.941643 0.336614i \(-0.890718\pi\)
0.336614 + 0.941643i \(0.390718\pi\)
\(282\) 0 0
\(283\) 0.435029 1.05025i 0.0258598 0.0624310i −0.910422 0.413680i \(-0.864243\pi\)
0.936282 + 0.351249i \(0.114243\pi\)
\(284\) 2.00000 0.828427i 0.118678 0.0491581i
\(285\) 0 0
\(286\) 1.41421 + 3.41421i 0.0836242 + 0.201887i
\(287\) −12.1421 12.1421i −0.716728 0.716728i
\(288\) 0 0
\(289\) −8.00000 15.0000i −0.470588 0.882353i
\(290\) −5.65685 −0.332182
\(291\) 0 0
\(292\) −2.05025 4.94975i −0.119982 0.289662i
\(293\) 22.0000i 1.28525i −0.766179 0.642627i \(-0.777845\pi\)
0.766179 0.642627i \(-0.222155\pi\)
\(294\) 0 0
\(295\) −0.828427 + 2.00000i −0.0482329 + 0.116445i
\(296\) 2.00000 + 0.828427i 0.116248 + 0.0481513i
\(297\) 0 0
\(298\) −11.0711 + 11.0711i −0.641330 + 0.641330i
\(299\) 2.34315 + 0.970563i 0.135508 + 0.0561291i
\(300\) 0 0
\(301\) −2.48528 + 1.02944i −0.143249 + 0.0593358i
\(302\) 22.1421i 1.27414i
\(303\) 0 0
\(304\) −0.585786 0.585786i −0.0335972 0.0335972i
\(305\) 27.3137 1.56398
\(306\) 0 0
\(307\) 6.34315 0.362022 0.181011 0.983481i \(-0.442063\pi\)
0.181011 + 0.983481i \(0.442063\pi\)
\(308\) −4.82843 4.82843i −0.275125 0.275125i
\(309\) 0 0
\(310\) 13.6569i 0.775657i
\(311\) 13.8995 5.75736i 0.788168 0.326470i 0.0479613 0.998849i \(-0.484728\pi\)
0.740207 + 0.672379i \(0.234728\pi\)
\(312\) 0 0
\(313\) 12.5355 + 5.19239i 0.708550 + 0.293491i 0.707705 0.706509i \(-0.249731\pi\)
0.000845724 1.00000i \(0.499731\pi\)
\(314\) 9.41421 9.41421i 0.531275 0.531275i
\(315\) 0 0
\(316\) −4.82843 2.00000i −0.271620 0.112509i
\(317\) −8.48528 + 20.4853i −0.476581 + 1.15057i 0.484622 + 0.874724i \(0.338957\pi\)
−0.961202 + 0.275844i \(0.911043\pi\)
\(318\) 0 0
\(319\) 6.82843i 0.382319i
\(320\) −1.41421 3.41421i −0.0790569 0.190860i
\(321\) 0 0
\(322\) −4.68629 −0.261157
\(323\) 3.31371 0.828427i 0.184380 0.0460949i
\(324\) 0 0
\(325\) 5.07107 + 5.07107i 0.281292 + 0.281292i
\(326\) −8.70711 21.0208i −0.482242 1.16424i
\(327\) 0 0
\(328\) −10.3640 + 4.29289i −0.572254 + 0.237035i
\(329\) −5.65685 + 13.6569i −0.311872 + 0.752927i
\(330\) 0 0
\(331\) 19.5858 19.5858i 1.07653 1.07653i 0.0797144 0.996818i \(-0.474599\pi\)
0.996818 0.0797144i \(-0.0254008\pi\)
\(332\) 4.41421 4.41421i 0.242261 0.242261i
\(333\) 0 0
\(334\) 7.55635 18.2426i 0.413465 0.998193i
\(335\) −25.3137 + 10.4853i −1.38304 + 0.572872i
\(336\) 0 0
\(337\) 4.46447 + 10.7782i 0.243195 + 0.587125i 0.997597 0.0692885i \(-0.0220729\pi\)
−0.754402 + 0.656413i \(0.772073\pi\)
\(338\) −8.70711 8.70711i −0.473604 0.473604i
\(339\) 0 0
\(340\) 15.0711 + 2.24264i 0.817343 + 0.121624i
\(341\) 16.4853 0.892728
\(342\) 0 0
\(343\) −6.82843 16.4853i −0.368700 0.890122i
\(344\) 1.75736i 0.0947505i
\(345\) 0 0
\(346\) 2.24264 5.41421i 0.120565 0.291070i
\(347\) 14.9497 + 6.19239i 0.802544 + 0.332425i 0.745975 0.665974i \(-0.231984\pi\)
0.0565694 + 0.998399i \(0.481984\pi\)
\(348\) 0 0
\(349\) −13.8995 + 13.8995i −0.744023 + 0.744023i −0.973350 0.229327i \(-0.926348\pi\)
0.229327 + 0.973350i \(0.426348\pi\)
\(350\) −12.2426 5.07107i −0.654397 0.271060i
\(351\) 0 0
\(352\) −4.12132 + 1.70711i −0.219667 + 0.0909891i
\(353\) 14.3848i 0.765624i −0.923826 0.382812i \(-0.874956\pi\)
0.923826 0.382812i \(-0.125044\pi\)
\(354\) 0 0
\(355\) −5.65685 5.65685i −0.300235 0.300235i
\(356\) −15.0711 −0.798765
\(357\) 0 0
\(358\) −25.7990 −1.36352
\(359\) −8.00000 8.00000i −0.422224 0.422224i 0.463745 0.885969i \(-0.346505\pi\)
−0.885969 + 0.463745i \(0.846505\pi\)
\(360\) 0 0
\(361\) 18.3137i 0.963879i
\(362\) −5.65685 + 2.34315i −0.297318 + 0.123153i
\(363\) 0 0
\(364\) −1.17157 0.485281i −0.0614071 0.0254357i
\(365\) −14.0000 + 14.0000i −0.732793 + 0.732793i
\(366\) 0 0
\(367\) 17.3137 + 7.17157i 0.903768 + 0.374353i 0.785668 0.618649i \(-0.212320\pi\)
0.118100 + 0.993002i \(0.462320\pi\)
\(368\) −1.17157 + 2.82843i −0.0610725 + 0.147442i
\(369\) 0 0
\(370\) 8.00000i 0.415900i
\(371\) −0.485281 1.17157i −0.0251946 0.0608250i
\(372\) 0 0
\(373\) −10.4853 −0.542907 −0.271454 0.962452i \(-0.587504\pi\)
−0.271454 + 0.962452i \(0.587504\pi\)
\(374\) 2.70711 18.1924i 0.139981 0.940706i
\(375\) 0 0
\(376\) 6.82843 + 6.82843i 0.352149 + 0.352149i
\(377\) 0.485281 + 1.17157i 0.0249933 + 0.0603391i
\(378\) 0 0
\(379\) 8.60660 3.56497i 0.442091 0.183120i −0.150523 0.988606i \(-0.548096\pi\)
0.592614 + 0.805486i \(0.298096\pi\)
\(380\) −1.17157 + 2.82843i −0.0601004 + 0.145095i
\(381\) 0 0
\(382\) −2.00000 + 2.00000i −0.102329 + 0.102329i
\(383\) 21.3137 21.3137i 1.08908 1.08908i 0.0934562 0.995623i \(-0.470208\pi\)
0.995623 0.0934562i \(-0.0297915\pi\)
\(384\) 0 0
\(385\) −9.65685 + 23.3137i −0.492159 + 1.18818i
\(386\) −11.3640 + 4.70711i −0.578410 + 0.239585i
\(387\) 0 0
\(388\) −2.12132 5.12132i −0.107694 0.259996i
\(389\) −2.24264 2.24264i −0.113706 0.113706i 0.647964 0.761671i \(-0.275621\pi\)
−0.761671 + 0.647964i \(0.775621\pi\)
\(390\) 0 0
\(391\) −7.51472 10.1421i −0.380036 0.512910i
\(392\) −4.65685 −0.235207
\(393\) 0 0
\(394\) −7.65685 18.4853i −0.385747 0.931275i
\(395\) 19.3137i 0.971778i
\(396\) 0 0
\(397\) 3.17157 7.65685i 0.159177 0.384286i −0.824090 0.566459i \(-0.808313\pi\)
0.983267 + 0.182173i \(0.0583129\pi\)
\(398\) 19.3137 + 8.00000i 0.968109 + 0.401004i
\(399\) 0 0
\(400\) −6.12132 + 6.12132i −0.306066 + 0.306066i
\(401\) 22.1924 + 9.19239i 1.10823 + 0.459046i 0.860330 0.509738i \(-0.170258\pi\)
0.247905 + 0.968784i \(0.420258\pi\)
\(402\) 0 0
\(403\) 2.82843 1.17157i 0.140894 0.0583602i
\(404\) 4.34315i 0.216080i
\(405\) 0 0
\(406\) −1.65685 1.65685i −0.0822283 0.0822283i
\(407\) −9.65685 −0.478672
\(408\) 0 0
\(409\) 15.5563 0.769212 0.384606 0.923081i \(-0.374337\pi\)
0.384606 + 0.923081i \(0.374337\pi\)
\(410\) 29.3137 + 29.3137i 1.44770 + 1.44770i
\(411\) 0 0
\(412\) 12.4853i 0.615106i
\(413\) −0.828427 + 0.343146i −0.0407642 + 0.0168851i
\(414\) 0 0
\(415\) −21.3137 8.82843i −1.04625 0.433370i
\(416\) −0.585786 + 0.585786i −0.0287205 + 0.0287205i
\(417\) 0 0
\(418\) 3.41421 + 1.41421i 0.166995 + 0.0691714i
\(419\) 6.60660 15.9497i 0.322754 0.779196i −0.676338 0.736591i \(-0.736434\pi\)
0.999092 0.0426051i \(-0.0135657\pi\)
\(420\) 0 0
\(421\) 15.6569i 0.763068i 0.924355 + 0.381534i \(0.124604\pi\)
−0.924355 + 0.381534i \(0.875396\pi\)
\(422\) 0.0502525 + 0.121320i 0.00244625 + 0.00590578i
\(423\) 0 0
\(424\) −0.828427 −0.0402320
\(425\) −8.65685 34.6274i −0.419919 1.67968i
\(426\) 0 0
\(427\) 8.00000 + 8.00000i 0.387147 + 0.387147i
\(428\) −4.46447 10.7782i −0.215798 0.520983i
\(429\) 0 0
\(430\) 6.00000 2.48528i 0.289346 0.119851i
\(431\) 5.51472 13.3137i 0.265635 0.641299i −0.733634 0.679545i \(-0.762177\pi\)
0.999268 + 0.0382464i \(0.0121772\pi\)
\(432\) 0 0
\(433\) −9.17157 + 9.17157i −0.440758 + 0.440758i −0.892267 0.451509i \(-0.850886\pi\)
0.451509 + 0.892267i \(0.350886\pi\)
\(434\) −4.00000 + 4.00000i −0.192006 + 0.192006i
\(435\) 0 0
\(436\) 3.75736 9.07107i 0.179945 0.434425i
\(437\) 2.34315 0.970563i 0.112088 0.0464283i
\(438\) 0 0
\(439\) −8.82843 21.3137i −0.421358 1.01725i −0.981947 0.189154i \(-0.939425\pi\)
0.560590 0.828094i \(-0.310575\pi\)
\(440\) 11.6569 + 11.6569i 0.555719 + 0.555719i
\(441\) 0 0
\(442\) −0.828427 3.31371i −0.0394043 0.157617i
\(443\) 36.8701 1.75175 0.875875 0.482539i \(-0.160285\pi\)
0.875875 + 0.482539i \(0.160285\pi\)
\(444\) 0 0
\(445\) 21.3137 + 51.4558i 1.01037 + 2.43924i
\(446\) 24.4853i 1.15941i
\(447\) 0 0
\(448\) 0.585786 1.41421i 0.0276758 0.0668153i
\(449\) −5.12132 2.12132i −0.241690 0.100111i 0.258551 0.965998i \(-0.416755\pi\)
−0.500241 + 0.865886i \(0.666755\pi\)
\(450\) 0 0
\(451\) 35.3848 35.3848i 1.66620 1.66620i
\(452\) 8.53553 + 3.53553i 0.401478 + 0.166298i
\(453\) 0 0
\(454\) 18.7782 7.77817i 0.881303 0.365048i
\(455\) 4.68629i 0.219697i
\(456\) 0 0
\(457\) 3.51472 + 3.51472i 0.164412 + 0.164412i 0.784518 0.620106i \(-0.212911\pi\)
−0.620106 + 0.784518i \(0.712911\pi\)
\(458\) −18.4853 −0.863760
\(459\) 0 0
\(460\) 11.3137 0.527504
\(461\) 24.7279 + 24.7279i 1.15169 + 1.15169i 0.986213 + 0.165481i \(0.0529177\pi\)
0.165481 + 0.986213i \(0.447082\pi\)
\(462\) 0 0
\(463\) 3.31371i 0.154001i −0.997031 0.0770005i \(-0.975466\pi\)
0.997031 0.0770005i \(-0.0245343\pi\)
\(464\) −1.41421 + 0.585786i −0.0656532 + 0.0271945i
\(465\) 0 0
\(466\) 9.70711 + 4.02082i 0.449673 + 0.186261i
\(467\) 1.75736 1.75736i 0.0813209 0.0813209i −0.665276 0.746597i \(-0.731686\pi\)
0.746597 + 0.665276i \(0.231686\pi\)
\(468\) 0 0
\(469\) −10.4853 4.34315i −0.484165 0.200548i
\(470\) 13.6569 32.9706i 0.629944 1.52082i
\(471\) 0 0
\(472\) 0.585786i 0.0269630i
\(473\) −3.00000 7.24264i −0.137940 0.333017i
\(474\) 0 0
\(475\) 7.17157 0.329054
\(476\) 3.75736 + 5.07107i 0.172218 + 0.232432i
\(477\) 0 0
\(478\) 14.9706 + 14.9706i 0.684738 + 0.684738i
\(479\) −9.51472 22.9706i −0.434739 1.04955i −0.977740 0.209820i \(-0.932712\pi\)
0.543001 0.839732i \(-0.317288\pi\)
\(480\) 0 0
\(481\) −1.65685 + 0.686292i −0.0755461 + 0.0312922i
\(482\) 7.60660 18.3640i 0.346471 0.836456i
\(483\) 0 0
\(484\) 6.29289 6.29289i 0.286041 0.286041i
\(485\) −14.4853 + 14.4853i −0.657743 + 0.657743i
\(486\) 0 0
\(487\) 8.48528 20.4853i 0.384505 0.928277i −0.606577 0.795024i \(-0.707458\pi\)
0.991082 0.133252i \(-0.0425420\pi\)
\(488\) 6.82843 2.82843i 0.309108 0.128037i
\(489\) 0 0
\(490\) 6.58579 + 15.8995i 0.297516 + 0.718266i
\(491\) −10.9289 10.9289i −0.493216 0.493216i 0.416102 0.909318i \(-0.363396\pi\)
−0.909318 + 0.416102i \(0.863396\pi\)
\(492\) 0 0
\(493\) 0.928932 6.24264i 0.0418370 0.281154i
\(494\) 0.686292 0.0308777
\(495\) 0 0
\(496\) 1.41421 + 3.41421i 0.0635001 + 0.153303i
\(497\) 3.31371i 0.148640i
\(498\) 0 0
\(499\) −14.0919 + 34.0208i −0.630839 + 1.52298i 0.207730 + 0.978186i \(0.433392\pi\)
−0.838569 + 0.544795i \(0.816608\pi\)
\(500\) 12.4853 + 5.17157i 0.558359 + 0.231280i
\(501\) 0 0
\(502\) −13.2426 + 13.2426i −0.591048 + 0.591048i
\(503\) −11.1716 4.62742i −0.498116 0.206326i 0.119458 0.992839i \(-0.461884\pi\)
−0.617574 + 0.786513i \(0.711884\pi\)
\(504\) 0 0
\(505\) −14.8284 + 6.14214i −0.659856 + 0.273321i
\(506\) 13.6569i 0.607121i
\(507\) 0 0
\(508\) −9.17157 9.17157i −0.406923 0.406923i
\(509\) −16.6274 −0.736997 −0.368499 0.929628i \(-0.620128\pi\)
−0.368499 + 0.929628i \(0.620128\pi\)
\(510\) 0 0
\(511\) −8.20101 −0.362791
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 8.24264i 0.363567i
\(515\) 42.6274 17.6569i 1.87839 0.778054i
\(516\) 0 0
\(517\) −39.7990 16.4853i −1.75036 0.725022i
\(518\) 2.34315 2.34315i 0.102952 0.102952i
\(519\) 0 0
\(520\) 2.82843 + 1.17157i 0.124035 + 0.0513769i
\(521\) −13.4645 + 32.5061i −0.589889 + 1.42412i 0.293720 + 0.955892i \(0.405107\pi\)
−0.883609 + 0.468226i \(0.844893\pi\)
\(522\) 0 0
\(523\) 23.2132i 1.01504i −0.861639 0.507521i \(-0.830562\pi\)
0.861639 0.507521i \(-0.169438\pi\)
\(524\) −0.0502525 0.121320i −0.00219529 0.00529990i
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) −15.0711 2.24264i −0.656506 0.0976910i
\(528\) 0 0
\(529\) 9.63604 + 9.63604i 0.418958 + 0.418958i
\(530\) 1.17157 + 2.82843i 0.0508899 + 0.122859i
\(531\) 0 0
\(532\) −1.17157 + 0.485281i −0.0507941 + 0.0210396i
\(533\) 3.55635 8.58579i 0.154043 0.371892i
\(534\) 0 0
\(535\) −30.4853 + 30.4853i −1.31799 + 1.31799i
\(536\) −5.24264 + 5.24264i −0.226448 + 0.226448i
\(537\) 0 0
\(538\) −2.92893 + 7.07107i −0.126275 + 0.304855i
\(539\) 19.1924 7.94975i 0.826675 0.342420i
\(540\) 0 0
\(541\) 7.79899 + 18.8284i 0.335305 + 0.809497i 0.998153 + 0.0607439i \(0.0193473\pi\)
−0.662849 + 0.748753i \(0.730653\pi\)
\(542\) 10.4853 + 10.4853i 0.450381 + 0.450381i
\(543\) 0 0
\(544\) 4.00000 1.00000i 0.171499 0.0428746i
\(545\) −36.2843 −1.55425
\(546\) 0 0
\(547\) −9.39340 22.6777i −0.401633 0.969627i −0.987270 0.159054i \(-0.949156\pi\)
0.585637 0.810573i \(-0.300844\pi\)
\(548\) 2.34315i 0.100094i
\(549\) 0 0
\(550\) 14.7782 35.6777i 0.630143 1.52130i
\(551\) 1.17157 + 0.485281i 0.0499107 + 0.0206737i
\(552\) 0 0
\(553\) −5.65685 + 5.65685i −0.240554 + 0.240554i
\(554\) −21.8995 9.07107i −0.930420 0.385393i
\(555\) 0 0
\(556\) 1.70711 0.707107i 0.0723975 0.0299880i
\(557\) 41.1127i 1.74200i 0.491282 + 0.871000i \(0.336528\pi\)
−0.491282 + 0.871000i \(0.663472\pi\)
\(558\) 0 0
\(559\) −1.02944 1.02944i −0.0435406 0.0435406i
\(560\) −5.65685 −0.239046
\(561\) 0 0
\(562\) 14.3431 0.605029
\(563\) 5.92893 + 5.92893i 0.249875 + 0.249875i 0.820919 0.571044i \(-0.193462\pi\)
−0.571044 + 0.820919i \(0.693462\pi\)
\(564\) 0 0
\(565\) 34.1421i 1.43637i
\(566\) −1.05025 + 0.435029i −0.0441454 + 0.0182856i
\(567\) 0 0
\(568\) −2.00000 0.828427i −0.0839181 0.0347600i
\(569\) −3.48528 + 3.48528i −0.146111 + 0.146111i −0.776378 0.630267i \(-0.782945\pi\)
0.630267 + 0.776378i \(0.282945\pi\)
\(570\) 0 0
\(571\) 2.22183 + 0.920310i 0.0929805 + 0.0385138i 0.428689 0.903452i \(-0.358976\pi\)
−0.335708 + 0.941966i \(0.608976\pi\)
\(572\) 1.41421 3.41421i 0.0591312 0.142755i
\(573\) 0 0
\(574\) 17.1716i 0.716728i
\(575\) −10.1421 24.4853i −0.422956 1.02111i
\(576\) 0 0
\(577\) −16.6274 −0.692208 −0.346104 0.938196i \(-0.612496\pi\)
−0.346104 + 0.938196i \(0.612496\pi\)
\(578\) −4.94975 + 16.2635i −0.205882 + 0.676471i
\(579\) 0 0
\(580\) 4.00000 + 4.00000i 0.166091 + 0.166091i
\(581\) −3.65685 8.82843i −0.151712 0.366265i
\(582\) 0 0
\(583\) 3.41421 1.41421i 0.141402 0.0585707i
\(584\) −2.05025 + 4.94975i −0.0848401 + 0.204822i
\(585\) 0 0
\(586\) −15.5563 + 15.5563i −0.642627 + 0.642627i
\(587\) 2.14214 2.14214i 0.0884154 0.0884154i −0.661516 0.749931i \(-0.730087\pi\)
0.749931 + 0.661516i \(0.230087\pi\)
\(588\) 0 0
\(589\) 1.17157 2.82843i 0.0482738 0.116543i
\(590\) 2.00000 0.828427i 0.0823387 0.0341058i
\(591\) 0 0
\(592\) −0.828427 2.00000i −0.0340481 0.0821995i
\(593\) 3.00000 + 3.00000i 0.123195 + 0.123195i 0.766016 0.642821i \(-0.222236\pi\)
−0.642821 + 0.766016i \(0.722236\pi\)
\(594\) 0 0
\(595\) 12.0000 20.0000i 0.491952 0.819920i
\(596\) 15.6569 0.641330
\(597\) 0 0
\(598\) −0.970563 2.34315i −0.0396893 0.0958184i
\(599\) 26.3431i 1.07635i −0.842833 0.538176i \(-0.819114\pi\)
0.842833 0.538176i \(-0.180886\pi\)
\(600\) 0 0
\(601\) −7.05025 + 17.0208i −0.287586 + 0.694294i −0.999972 0.00749419i \(-0.997615\pi\)
0.712386 + 0.701788i \(0.247615\pi\)
\(602\) 2.48528 + 1.02944i 0.101293 + 0.0419567i
\(603\) 0 0
\(604\) 15.6569 15.6569i 0.637068 0.637068i
\(605\) −30.3848 12.5858i −1.23532 0.511685i
\(606\) 0 0
\(607\) 9.07107 3.75736i 0.368183 0.152507i −0.190918 0.981606i \(-0.561146\pi\)
0.559101 + 0.829100i \(0.311146\pi\)
\(608\) 0.828427i 0.0335972i
\(609\) 0 0
\(610\) −19.3137 19.3137i −0.781989 0.781989i
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 37.7990 1.52669 0.763343 0.645993i \(-0.223556\pi\)
0.763343 + 0.645993i \(0.223556\pi\)
\(614\) −4.48528 4.48528i −0.181011 0.181011i
\(615\) 0 0
\(616\) 6.82843i 0.275125i
\(617\) 16.7071 6.92031i 0.672603 0.278601i −0.0201281 0.999797i \(-0.506407\pi\)
0.692731 + 0.721196i \(0.256407\pi\)
\(618\) 0 0
\(619\) 5.12132 + 2.12132i 0.205843 + 0.0852631i 0.483223 0.875497i \(-0.339466\pi\)
−0.277380 + 0.960760i \(0.589466\pi\)
\(620\) 9.65685 9.65685i 0.387829 0.387829i
\(621\) 0 0
\(622\) −13.8995 5.75736i −0.557319 0.230849i
\(623\) −8.82843 + 21.3137i −0.353703 + 0.853916i
\(624\) 0 0
\(625\) 6.65685i 0.266274i
\(626\) −5.19239 12.5355i −0.207530 0.501021i
\(627\) 0 0
\(628\) −13.3137 −0.531275
\(629\) 8.82843 + 1.31371i 0.352012 + 0.0523810i
\(630\) 0 0
\(631\) −21.6569 21.6569i −0.862146 0.862146i 0.129441 0.991587i \(-0.458682\pi\)
−0.991587 + 0.129441i \(0.958682\pi\)
\(632\) 2.00000 + 4.82843i 0.0795557 + 0.192065i
\(633\) 0 0
\(634\) 20.4853 8.48528i 0.813574 0.336994i
\(635\) −18.3431 + 44.2843i −0.727926 + 1.75737i
\(636\) 0 0
\(637\) 2.72792 2.72792i 0.108084 0.108084i
\(638\) 4.82843 4.82843i 0.191159 0.191159i
\(639\) 0 0
\(640\) −1.41421 + 3.41421i −0.0559017 + 0.134959i
\(641\) 13.4350 5.56497i 0.530652 0.219803i −0.101237 0.994862i \(-0.532280\pi\)
0.631889 + 0.775059i \(0.282280\pi\)
\(642\) 0 0
\(643\) −5.12132 12.3640i −0.201965 0.487587i 0.790150 0.612913i \(-0.210002\pi\)
−0.992116 + 0.125326i \(0.960002\pi\)
\(644\) 3.31371 + 3.31371i 0.130578 + 0.130578i
\(645\) 0 0
\(646\) −2.92893 1.75736i −0.115237 0.0691424i
\(647\) −12.4853 −0.490847 −0.245424 0.969416i \(-0.578927\pi\)
−0.245424 + 0.969416i \(0.578927\pi\)
\(648\) 0 0
\(649\) −1.00000 2.41421i −0.0392534 0.0947662i
\(650\) 7.17157i 0.281292i
\(651\) 0 0
\(652\) −8.70711 + 21.0208i −0.340997 + 0.823239i
\(653\) 23.8995 + 9.89949i 0.935260 + 0.387397i 0.797671 0.603092i \(-0.206065\pi\)
0.137588 + 0.990490i \(0.456065\pi\)
\(654\) 0 0
\(655\) −0.343146 + 0.343146i −0.0134078 + 0.0134078i
\(656\) 10.3640 + 4.29289i 0.404645 + 0.167609i
\(657\) 0 0
\(658\) 13.6569 5.65685i 0.532400 0.220527i
\(659\) 39.3137i 1.53144i 0.643171 + 0.765722i \(0.277618\pi\)
−0.643171 + 0.765722i \(0.722382\pi\)
\(660\) 0 0
\(661\) 12.7279 + 12.7279i 0.495059 + 0.495059i 0.909896 0.414837i \(-0.136161\pi\)
−0.414837 + 0.909896i \(0.636161\pi\)
\(662\) −27.6985 −1.07653
\(663\) 0 0
\(664\) −6.24264 −0.242261
\(665\) 3.31371 + 3.31371i 0.128500 + 0.128500i
\(666\) 0 0
\(667\) 4.68629i 0.181454i
\(668\) −18.2426 + 7.55635i −0.705829 + 0.292364i
\(669\) 0 0
\(670\) 25.3137 + 10.4853i 0.977954 + 0.405082i
\(671\) −23.3137 + 23.3137i −0.900016 + 0.900016i
\(672\) 0 0
\(673\) 0.949747 + 0.393398i 0.0366101 + 0.0151644i 0.400913 0.916116i \(-0.368693\pi\)
−0.364303 + 0.931280i \(0.618693\pi\)
\(674\) 4.46447 10.7782i 0.171965 0.415160i
\(675\) 0 0
\(676\) 12.3137i 0.473604i
\(677\) 4.48528 + 10.8284i 0.172383 + 0.416170i 0.986333 0.164766i \(-0.0526867\pi\)
−0.813949 + 0.580936i \(0.802687\pi\)
\(678\) 0 0
\(679\) −8.48528 −0.325635
\(680\) −9.07107 12.2426i −0.347860 0.469484i
\(681\) 0 0
\(682\) −11.6569 11.6569i −0.446364 0.446364i
\(683\) 4.15076 + 10.0208i 0.158824 + 0.383436i 0.983181 0.182635i \(-0.0584628\pi\)
−0.824356 + 0.566071i \(0.808463\pi\)
\(684\) 0 0
\(685\) 8.00000 3.31371i 0.305664 0.126610i
\(686\) −6.82843 + 16.4853i −0.260711 + 0.629411i
\(687\) 0 0
\(688\) 1.24264 1.24264i 0.0473752 0.0473752i
\(689\) 0.485281 0.485281i 0.0184877 0.0184877i
\(690\) 0 0
\(691\) −17.9914 + 43.4350i −0.684424 + 1.65235i 0.0712988 + 0.997455i \(0.477286\pi\)
−0.755723 + 0.654891i \(0.772714\pi\)
\(692\) −5.41421 + 2.24264i −0.205818 + 0.0852524i
\(693\) 0 0
\(694\) −6.19239 14.9497i −0.235060 0.567485i
\(695\) −4.82843 4.82843i −0.183153 0.183153i
\(696\) 0 0
\(697\) −37.1630 + 27.5355i −1.40765 + 1.04298i
\(698\) 19.6569 0.744023
\(699\) 0 0
\(700\) 5.07107 + 12.2426i 0.191668 + 0.462728i
\(701\) 1.51472i 0.0572101i 0.999591 + 0.0286051i \(0.00910652\pi\)
−0.999591 + 0.0286051i \(0.990893\pi\)
\(702\) 0 0
\(703\) −0.686292 + 1.65685i −0.0258840 + 0.0624894i
\(704\) 4.12132 + 1.70711i 0.155328 + 0.0643390i
\(705\) 0 0
\(706\) −10.1716 + 10.1716i −0.382812 + 0.382812i
\(707\) −6.14214 2.54416i −0.230999 0.0956828i
\(708\) 0 0
\(709\) −5.75736 + 2.38478i −0.216222 + 0.0895622i −0.488165 0.872751i \(-0.662334\pi\)
0.271943 + 0.962313i \(0.412334\pi\)
\(710\) 8.00000i 0.300235i
\(711\) 0 0
\(712\) 10.6569 + 10.6569i 0.399382 + 0.399382i
\(713\) −11.3137 −0.423702
\(714\) 0 0
\(715\) −13.6569 −0.510737
\(716\) 18.2426 + 18.2426i 0.681759 + 0.681759i
\(717\) 0 0
\(718\) 11.3137i 0.422224i
\(719\) −4.00000 + 1.65685i −0.149175 + 0.0617902i −0.456022 0.889969i \(-0.650726\pi\)
0.306847 + 0.951759i \(0.400726\pi\)
\(720\) 0 0
\(721\) 17.6569 + 7.31371i 0.657576 + 0.272377i
\(722\) −12.9497 + 12.9497i −0.481940 + 0.481940i
\(723\) 0 0
\(724\) 5.65685 + 2.34315i 0.210235 + 0.0870823i
\(725\) 5.07107 12.2426i 0.188335 0.454680i
\(726\) 0 0
\(727\) 32.2843i 1.19736i 0.800989 + 0.598679i \(0.204307\pi\)
−0.800989 + 0.598679i \(0.795693\pi\)
\(728\) 0.485281 + 1.17157i 0.0179857 + 0.0434214i
\(729\) 0 0
\(730\) 19.7990 0.732793
\(731\) 1.75736 + 7.02944i 0.0649983 + 0.259993i
\(732\) 0 0
\(733\) −9.89949 9.89949i −0.365646 0.365646i 0.500240 0.865887i \(-0.333245\pi\)
−0.865887 + 0.500240i \(0.833245\pi\)
\(734\) −7.17157 17.3137i −0.264708 0.639061i
\(735\) 0 0
\(736\) 2.82843 1.17157i 0.104257 0.0431847i
\(737\) 12.6569 30.5563i 0.466221 1.12556i
\(738\) 0 0
\(739\) −0.485281 + 0.485281i −0.0178514 + 0.0178514i −0.715976 0.698125i \(-0.754018\pi\)
0.698125 + 0.715976i \(0.254018\pi\)
\(740\) −5.65685 + 5.65685i −0.207950 + 0.207950i
\(741\) 0 0
\(742\) −0.485281 + 1.17157i −0.0178152 + 0.0430098i
\(743\) −23.8995 + 9.89949i −0.876787 + 0.363177i −0.775250 0.631654i \(-0.782376\pi\)
−0.101537 + 0.994832i \(0.532376\pi\)
\(744\) 0 0
\(745\) −22.1421 53.4558i −0.811225 1.95847i
\(746\) 7.41421 + 7.41421i 0.271454 + 0.271454i
\(747\) 0 0
\(748\) −14.7782 + 10.9497i −0.540344 + 0.400362i
\(749\) −17.8579 −0.652512
\(750\) 0 0
\(751\) 9.51472 + 22.9706i 0.347197 + 0.838208i 0.996949 + 0.0780611i \(0.0248729\pi\)
−0.649752 + 0.760147i \(0.725127\pi\)
\(752\) 9.65685i 0.352149i
\(753\) 0 0
\(754\) 0.485281 1.17157i 0.0176729 0.0426662i
\(755\) −75.5980 31.3137i −2.75129 1.13962i
\(756\) 0 0
\(757\) −7.75736 + 7.75736i −0.281946 + 0.281946i −0.833885 0.551939i \(-0.813888\pi\)
0.551939 + 0.833885i \(0.313888\pi\)
\(758\) −8.60660 3.56497i −0.312606 0.129486i
\(759\) 0 0
\(760\) 2.82843 1.17157i 0.102598 0.0424974i
\(761\) 53.2548i 1.93049i −0.261354 0.965243i \(-0.584169\pi\)
0.261354 0.965243i \(-0.415831\pi\)
\(762\) 0 0
\(763\) −10.6274 10.6274i −0.384738 0.384738i
\(764\) 2.82843 0.102329
\(765\) 0 0
\(766\) −30.1421 −1.08908
\(767\) −0.343146 0.343146i −0.0123903 0.0123903i
\(768\) 0 0
\(769\) 26.3431i 0.949958i 0.879997 + 0.474979i \(0.157544\pi\)
−0.879997 + 0.474979i \(0.842456\pi\)
\(770\) 23.3137 9.65685i 0.840168 0.348009i
\(771\) 0 0
\(772\) 11.3640 + 4.70711i 0.408998 + 0.169412i
\(773\) −2.58579 + 2.58579i −0.0930043 + 0.0930043i −0.752078 0.659074i \(-0.770948\pi\)
0.659074 + 0.752078i \(0.270948\pi\)
\(774\) 0 0
\(775\) −29.5563 12.2426i −1.06170 0.439769i
\(776\) −2.12132 + 5.12132i −0.0761510 + 0.183845i
\(777\) 0 0
\(778\) 3.17157i 0.113706i
\(779\) −3.55635 8.58579i −0.127419 0.307618i
\(780\) 0 0
\(781\) 9.65685 0.345549
\(782\) −1.85786 + 12.4853i −0.0664371 + 0.446473i
\(783\) 0 0
\(784\) 3.29289 + 3.29289i 0.117603 + 0.117603i
\(785\) 18.8284 + 45.4558i 0.672015 + 1.62239i
\(786\) 0 0
\(787\) −17.6066 + 7.29289i −0.627608 + 0.259964i −0.673736 0.738972i \(-0.735312\pi\)
0.0461286 + 0.998936i \(0.485312\pi\)
\(788\) −7.65685 + 18.4853i −0.272764 + 0.658511i
\(789\) 0 0
\(790\) 13.6569 13.6569i 0.485889 0.485889i
\(791\) 10.0000 10.0000i 0.355559 0.355559i
\(792\) 0 0
\(793\) −2.34315 + 5.65685i −0.0832075 + 0.200881i
\(794\) −7.65685 + 3.17157i −0.271732 + 0.112555i
\(795\) 0 0
\(796\) −8.00000 19.3137i −0.283552 0.684556i
\(797\) −18.8701 18.8701i −0.668412 0.668412i 0.288937 0.957348i \(-0.406698\pi\)
−0.957348 + 0.288937i \(0.906698\pi\)
\(798\) 0 0
\(799\) 34.1421 + 20.4853i 1.20786 + 0.724717i
\(800\) 8.65685 0.306066
\(801\) 0 0
\(802\) −9.19239 22.1924i −0.324595 0.783640i
\(803\) 23.8995i 0.843395i
\(804\) 0 0
\(805\) 6.62742 16.0000i 0.233586 0.563926i
\(806\) −2.82843 1.17157i −0.0996271 0.0412669i
\(807\) 0 0
\(808\) −3.07107 + 3.07107i −0.108040 + 0.108040i
\(809\) 43.1630 + 17.8787i 1.51753 + 0.628581i 0.977095 0.212806i \(-0.0682601\pi\)
0.540434 + 0.841386i \(0.318260\pi\)
\(810\) 0 0
\(811\) 45.5061 18.8492i 1.59794 0.661886i 0.606813 0.794844i \(-0.292447\pi\)
0.991122 + 0.132958i \(0.0424475\pi\)
\(812\) 2.34315i 0.0822283i
\(813\) 0 0
\(814\) 6.82843 + 6.82843i 0.239336 + 0.239336i
\(815\) 84.0833 2.94531
\(816\) 0 0
\(817\) −1.45584 −0.0509335
\(818\) −11.0000 11.0000i −0.384606 0.384606i
\(819\) 0 0
\(820\) 41.4558i 1.44770i
\(821\) 0.343146 0.142136i 0.0119759 0.00496057i −0.376687 0.926340i \(-0.622937\pi\)
0.388663 + 0.921380i \(0.372937\pi\)
\(822\) 0 0
\(823\) 40.2843 + 16.6863i 1.40422 + 0.581648i 0.950844 0.309671i \(-0.100219\pi\)
0.453378 + 0.891319i \(0.350219\pi\)
\(824\) 8.82843 8.82843i 0.307553 0.307553i
\(825\) 0 0
\(826\) 0.828427 + 0.343146i 0.0288247 + 0.0119396i
\(827\) 9.15076 22.0919i 0.318203 0.768210i −0.681147 0.732147i \(-0.738518\pi\)
0.999350 0.0360629i \(-0.0114817\pi\)
\(828\) 0 0
\(829\) 20.1421i 0.699565i −0.936831 0.349783i \(-0.886255\pi\)
0.936831 0.349783i \(-0.113745\pi\)
\(830\) 8.82843 + 21.3137i 0.306439 + 0.739810i
\(831\) 0 0
\(832\) 0.828427 0.0287205
\(833\) −18.6274 + 4.65685i −0.645402 + 0.161350i
\(834\) 0 0
\(835\) 51.5980 + 51.5980i 1.78562 + 1.78562i
\(836\) −1.41421 3.41421i −0.0489116 0.118083i
\(837\) 0 0
\(838\) −15.9497 + 6.60660i −0.550975 + 0.228221i
\(839\) −18.5269 + 44.7279i −0.639620 + 1.54418i 0.187566 + 0.982252i \(0.439940\pi\)
−0.827187 + 0.561927i \(0.810060\pi\)
\(840\) 0 0
\(841\) −18.8492 + 18.8492i −0.649974 + 0.649974i
\(842\) 11.0711 11.0711i 0.381534 0.381534i
\(843\) 0 0
\(844\) 0.0502525 0.121320i 0.00172976 0.00417602i
\(845\) 42.0416 17.4142i 1.44628 0.599067i
\(846\) 0 0
\(847\) −5.21320 12.5858i −0.179128 0.432453i
\(848\) 0.585786 + 0.585786i 0.0201160 + 0.0201160i
\(849\) 0 0
\(850\) −18.3640 + 30.6066i −0.629879 + 1.04980i
\(851\) 6.62742 0.227185
\(852\) 0 0
\(853\) −14.5269 35.0711i −0.497392 1.20081i −0.950883 0.309550i \(-0.899822\pi\)
0.453491 0.891261i \(-0.350178\pi\)
\(854\) 11.3137i 0.387147i
\(855\) 0 0
\(856\) −4.46447 + 10.7782i −0.152592 + 0.368390i
\(857\) 37.1924 + 15.4056i 1.27047 + 0.526245i 0.913106 0.407721i \(-0.133676\pi\)
0.357361 + 0.933966i \(0.383676\pi\)
\(858\) 0 0
\(859\) 0.556349 0.556349i 0.0189824 0.0189824i −0.697552 0.716534i \(-0.745727\pi\)
0.716534 + 0.697552i \(0.245727\pi\)
\(860\) −6.00000 2.48528i −0.204598 0.0847474i
\(861\) 0 0
\(862\) −13.3137 + 5.51472i −0.453467 + 0.187832i
\(863\) 0.970563i 0.0330383i 0.999864 + 0.0165192i \(0.00525845\pi\)
−0.999864 + 0.0165192i \(0.994742\pi\)
\(864\) 0 0
\(865\) 15.3137 + 15.3137i 0.520682 + 0.520682i
\(866\) 12.9706 0.440758
\(867\) 0 0
\(868\) 5.65685 0.192006
\(869\) −16.4853 16.4853i −0.559225 0.559225i
\(870\) 0 0
\(871\) 6.14214i 0.208118i
\(872\) −9.07107 + 3.75736i −0.307185 + 0.127240i
\(873\) 0 0
\(874\) −2.34315 0.970563i −0.0792581 0.0328298i
\(875\) 14.6274 14.6274i 0.494497 0.494497i
\(876\) 0 0
\(877\) 9.89949 + 4.10051i 0.334282 + 0.138464i 0.543510 0.839403i \(-0.317095\pi\)
−0.209228 + 0.977867i \(0.567095\pi\)
\(878\) −8.82843 + 21.3137i −0.297945 + 0.719303i
\(879\) 0 0
\(880\) 16.4853i 0.555719i
\(881\) 6.92031 + 16.7071i 0.233151 + 0.562877i 0.996545 0.0830568i \(-0.0264683\pi\)
−0.763394 + 0.645934i \(0.776468\pi\)
\(882\) 0 0
\(883\) 34.5269 1.16192 0.580962 0.813931i \(-0.302677\pi\)
0.580962 + 0.813931i \(0.302677\pi\)
\(884\) −1.75736 + 2.92893i −0.0591064 + 0.0985106i
\(885\) 0 0
\(886\) −26.0711 26.0711i −0.875875 0.875875i
\(887\) 0.970563 + 2.34315i 0.0325883 + 0.0786751i 0.939336 0.342999i \(-0.111443\pi\)
−0.906748 + 0.421674i \(0.861443\pi\)
\(888\) 0 0
\(889\) −18.3431 + 7.59798i −0.615209 + 0.254828i
\(890\) 21.3137 51.4558i 0.714437 1.72480i
\(891\) 0 0
\(892\) 17.3137 17.3137i 0.579706 0.579706i
\(893\) −5.65685 + 5.65685i −0.189299 + 0.189299i
\(894\) 0 0
\(895\) 36.4853 88.0833i 1.21957 2.94430i
\(896\) −1.41421 + 0.585786i −0.0472456 + 0.0195698i
\(897\) 0 0
\(898\) 2.12132 + 5.12132i 0.0707894 + 0.170901i
\(899\) −4.00000 4.00000i −0.133407 0.133407i
\(900\) 0 0
\(901\) −3.31371 + 0.828427i −0.110396 + 0.0275989i
\(902\) −50.0416 −1.66620
\(903\) 0 0
\(904\) −3.53553 8.53553i −0.117590 0.283888i
\(905\) 22.6274i 0.752161i
\(906\) 0 0
\(907\) 5.60660 13.5355i 0.186164 0.449440i −0.803051 0.595910i \(-0.796791\pi\)
0.989215 + 0.146470i \(0.0467913\pi\)
\(908\) −18.7782 7.77817i −0.623176 0.258128i
\(909\) 0 0
\(910\) 3.31371 3.31371i 0.109848 0.109848i
\(911\) 21.5563 + 8.92893i 0.714194 + 0.295829i 0.710039 0.704163i \(-0.248677\pi\)
0.00415500 + 0.999991i \(0.498677\pi\)
\(912\) 0 0
\(913\) 25.7279 10.6569i 0.851470 0.352690i
\(914\) 4.97056i 0.164412i
\(915\) 0 0
\(916\) 13.0711 + 13.0711i 0.431880 + 0.431880i
\(917\) −0.201010 −0.00663794
\(918\) 0 0
\(919\) −2.34315 −0.0772932 −0.0386466 0.999253i \(-0.512305\pi\)
−0.0386466 + 0.999253i \(0.512305\pi\)
\(920\) −8.00000 8.00000i −0.263752 0.263752i
\(921\) 0 0
\(922\) 34.9706i 1.15169i
\(923\) 1.65685 0.686292i 0.0545360 0.0225896i
\(924\) 0 0
\(925\) 17.3137 + 7.17157i 0.569271 + 0.235800i
\(926\) −2.34315 + 2.34315i −0.0770005 + 0.0770005i
\(927\) 0 0
\(928\) 1.41421 + 0.585786i 0.0464238 + 0.0192294i
\(929\) 3.53553 8.53553i 0.115997 0.280042i −0.855209 0.518284i \(-0.826571\pi\)
0.971206 + 0.238242i \(0.0765711\pi\)
\(930\) 0 0
\(931\) 3.85786i 0.126436i
\(932\) −4.02082 9.70711i −0.131706 0.317967i
\(933\) 0 0
\(934\) −2.48528 −0.0813209
\(935\) 58.2843 + 34.9706i 1.90610 + 1.14366i
\(936\) 0 0
\(937\) −3.75736 3.75736i −0.122748 0.122748i 0.643064 0.765812i \(-0.277663\pi\)
−0.765812 + 0.643064i \(0.777663\pi\)
\(938\) 4.34315 + 10.4853i 0.141809 + 0.342357i
\(939\) 0 0
\(940\) −32.9706 + 13.6569i −1.07538 + 0.445437i
\(941\) −7.51472 + 18.1421i −0.244973 + 0.591417i −0.997763 0.0668433i \(-0.978707\pi\)
0.752791 + 0.658260i \(0.228707\pi\)
\(942\) 0 0
\(943\) −24.2843 + 24.2843i −0.790805 + 0.790805i
\(944\) 0.414214 0.414214i 0.0134815 0.0134815i
\(945\) 0 0
\(946\) −3.00000 + 7.24264i −0.0975384 + 0.235479i
\(947\) 48.3345 20.0208i 1.57066 0.650589i 0.583761 0.811925i \(-0.301580\pi\)
0.986900 + 0.161336i \(0.0515803\pi\)
\(948\) 0 0
\(949\) −1.69848 4.10051i −0.0551352 0.133108i
\(950\) −5.07107 5.07107i −0.164527 0.164527i
\(951\) 0 0
\(952\) 0.928932 6.24264i 0.0301069 0.202325i
\(953\) 11.5563 0.374347 0.187173 0.982327i \(-0.440067\pi\)
0.187173 + 0.982327i \(0.440067\pi\)
\(954\) 0 0
\(955\) −4.00000 9.65685i −0.129437 0.312488i
\(956\) 21.1716i 0.684738i
\(957\) 0 0
\(958\) −9.51472 + 22.9706i −0.307407 + 0.742145i
\(959\) 3.31371 + 1.37258i 0.107005 + 0.0443230i
\(960\) 0 0
\(961\) 12.2635 12.2635i 0.395595 0.395595i
\(962\) 1.65685 + 0.686292i 0.0534191 + 0.0221269i
\(963\) 0 0
\(964\) −18.3640 + 7.60660i −0.591463 + 0.244992i
\(965\) 45.4558i 1.46328i
\(966\) 0 0
\(967\) 9.65685 + 9.65685i 0.310543 + 0.310543i 0.845120 0.534577i \(-0.179529\pi\)
−0.534577 + 0.845120i \(0.679529\pi\)
\(968\) −8.89949 −0.286041
\(969\) 0 0
\(970\) 20.4853 0.657743
\(971\) −15.0416 15.0416i −0.482709 0.482709i 0.423287 0.905996i \(-0.360876\pi\)
−0.905996 + 0.423287i \(0.860876\pi\)
\(972\) 0 0
\(973\) 2.82843i 0.0906752i
\(974\) −20.4853 + 8.48528i −0.656391 + 0.271886i
\(975\) 0 0
\(976\) −6.82843 2.82843i −0.218573 0.0905357i
\(977\) −20.1127 + 20.1127i −0.643462 + 0.643462i −0.951405 0.307943i \(-0.900359\pi\)
0.307943 + 0.951405i \(0.400359\pi\)
\(978\) 0 0
\(979\) −62.1127 25.7279i −1.98513 0.822268i
\(980\) 6.58579 15.8995i 0.210375 0.507891i
\(981\) 0 0
\(982\) 15.4558i 0.493216i
\(983\) −10.3431 24.9706i −0.329895 0.796437i −0.998599 0.0529088i \(-0.983151\pi\)
0.668704 0.743529i \(-0.266849\pi\)
\(984\) 0 0
\(985\) 73.9411 2.35596
\(986\) −5.07107 + 3.75736i −0.161496 + 0.119659i
\(987\) 0 0
\(988\) −0.485281 0.485281i −0.0154389 0.0154389i
\(989\) 2.05887 + 4.97056i 0.0654684 + 0.158055i
\(990\) 0 0
\(991\) −42.2843 + 17.5147i −1.34320 + 0.556373i −0.934392 0.356245i \(-0.884057\pi\)
−0.408812 + 0.912619i \(0.634057\pi\)
\(992\) 1.41421 3.41421i 0.0449013 0.108401i
\(993\) 0 0
\(994\) −2.34315 + 2.34315i −0.0743201 + 0.0743201i
\(995\) −54.6274 + 54.6274i −1.73181 + 1.73181i
\(996\) 0 0
\(997\) −4.54416 + 10.9706i −0.143915 + 0.347441i −0.979357 0.202137i \(-0.935211\pi\)
0.835442 + 0.549578i \(0.185211\pi\)
\(998\) 34.0208 14.0919i 1.07691 0.446071i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 306.2.l.c.253.1 4
3.2 odd 2 34.2.d.a.15.1 4
12.11 even 2 272.2.v.b.49.1 4
15.2 even 4 850.2.o.a.49.1 4
15.8 even 4 850.2.o.b.49.1 4
15.14 odd 2 850.2.l.a.151.1 4
17.5 odd 16 5202.2.a.bw.1.1 4
17.8 even 8 inner 306.2.l.c.127.1 4
17.12 odd 16 5202.2.a.bw.1.4 4
51.2 odd 8 578.2.d.a.179.1 4
51.5 even 16 578.2.a.i.1.4 4
51.8 odd 8 34.2.d.a.25.1 yes 4
51.11 even 16 578.2.c.f.251.4 8
51.14 even 16 578.2.b.d.577.4 4
51.20 even 16 578.2.b.d.577.1 4
51.23 even 16 578.2.c.f.251.1 8
51.26 odd 8 578.2.d.b.399.1 4
51.29 even 16 578.2.a.i.1.1 4
51.32 odd 8 578.2.d.c.179.1 4
51.38 odd 4 578.2.d.a.155.1 4
51.41 even 16 578.2.c.f.327.1 8
51.44 even 16 578.2.c.f.327.4 8
51.47 odd 4 578.2.d.c.155.1 4
51.50 odd 2 578.2.d.b.423.1 4
204.59 even 8 272.2.v.b.161.1 4
204.107 odd 16 4624.2.a.bn.1.1 4
204.131 odd 16 4624.2.a.bn.1.4 4
255.8 even 8 850.2.o.a.399.1 4
255.59 odd 8 850.2.l.a.501.1 4
255.212 even 8 850.2.o.b.399.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.d.a.15.1 4 3.2 odd 2
34.2.d.a.25.1 yes 4 51.8 odd 8
272.2.v.b.49.1 4 12.11 even 2
272.2.v.b.161.1 4 204.59 even 8
306.2.l.c.127.1 4 17.8 even 8 inner
306.2.l.c.253.1 4 1.1 even 1 trivial
578.2.a.i.1.1 4 51.29 even 16
578.2.a.i.1.4 4 51.5 even 16
578.2.b.d.577.1 4 51.20 even 16
578.2.b.d.577.4 4 51.14 even 16
578.2.c.f.251.1 8 51.23 even 16
578.2.c.f.251.4 8 51.11 even 16
578.2.c.f.327.1 8 51.41 even 16
578.2.c.f.327.4 8 51.44 even 16
578.2.d.a.155.1 4 51.38 odd 4
578.2.d.a.179.1 4 51.2 odd 8
578.2.d.b.399.1 4 51.26 odd 8
578.2.d.b.423.1 4 51.50 odd 2
578.2.d.c.155.1 4 51.47 odd 4
578.2.d.c.179.1 4 51.32 odd 8
850.2.l.a.151.1 4 15.14 odd 2
850.2.l.a.501.1 4 255.59 odd 8
850.2.o.a.49.1 4 15.2 even 4
850.2.o.a.399.1 4 255.8 even 8
850.2.o.b.49.1 4 15.8 even 4
850.2.o.b.399.1 4 255.212 even 8
4624.2.a.bn.1.1 4 204.107 odd 16
4624.2.a.bn.1.4 4 204.131 odd 16
5202.2.a.bw.1.1 4 17.5 odd 16
5202.2.a.bw.1.4 4 17.12 odd 16