Properties

Label 850.2.l.a.501.1
Level $850$
Weight $2$
Character 850.501
Analytic conductor $6.787$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,2,Mod(151,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.l (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,4,-4,0,8,0,-4,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 501.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 850.501
Dual form 850.2.l.a.151.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(0.707107 - 1.70711i) q^{3} -1.00000i q^{4} +(0.707107 + 1.70711i) q^{6} +(-1.41421 + 0.585786i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.292893 - 0.292893i) q^{9} +(1.70711 + 4.12132i) q^{11} +(-1.70711 - 0.707107i) q^{12} +0.828427i q^{13} +(0.585786 - 1.41421i) q^{14} -1.00000 q^{16} +(2.12132 + 3.53553i) q^{17} +0.414214 q^{18} +(0.585786 - 0.585786i) q^{19} +2.82843i q^{21} +(-4.12132 - 1.70711i) q^{22} +(1.17157 + 2.82843i) q^{23} +(1.70711 - 0.707107i) q^{24} +(-0.585786 - 0.585786i) q^{26} +(4.41421 - 1.82843i) q^{27} +(0.585786 + 1.41421i) q^{28} +(-1.41421 - 0.585786i) q^{29} +(-1.41421 + 3.41421i) q^{31} +(0.707107 - 0.707107i) q^{32} +8.24264 q^{33} +(-4.00000 - 1.00000i) q^{34} +(-0.292893 + 0.292893i) q^{36} +(-0.828427 + 2.00000i) q^{37} +0.828427i q^{38} +(1.41421 + 0.585786i) q^{39} +(10.3640 - 4.29289i) q^{41} +(-2.00000 - 2.00000i) q^{42} +(1.24264 + 1.24264i) q^{43} +(4.12132 - 1.70711i) q^{44} +(-2.82843 - 1.17157i) q^{46} -9.65685i q^{47} +(-0.707107 + 1.70711i) q^{48} +(-3.29289 + 3.29289i) q^{49} +(7.53553 - 1.12132i) q^{51} +0.828427 q^{52} +(-0.585786 + 0.585786i) q^{53} +(-1.82843 + 4.41421i) q^{54} +(-1.41421 - 0.585786i) q^{56} +(-0.585786 - 1.41421i) q^{57} +(1.41421 - 0.585786i) q^{58} +(0.414214 + 0.414214i) q^{59} +(6.82843 - 2.82843i) q^{61} +(-1.41421 - 3.41421i) q^{62} +(0.585786 + 0.242641i) q^{63} +1.00000i q^{64} +(-5.82843 + 5.82843i) q^{66} +7.41421 q^{67} +(3.53553 - 2.12132i) q^{68} +5.65685 q^{69} +(0.828427 - 2.00000i) q^{71} -0.414214i q^{72} +(4.94975 + 2.05025i) q^{73} +(-0.828427 - 2.00000i) q^{74} +(-0.585786 - 0.585786i) q^{76} +(-4.82843 - 4.82843i) q^{77} +(-1.41421 + 0.585786i) q^{78} +(-2.00000 - 4.82843i) q^{79} -10.0711i q^{81} +(-4.29289 + 10.3640i) q^{82} +(-4.41421 + 4.41421i) q^{83} +2.82843 q^{84} -1.75736 q^{86} +(-2.00000 + 2.00000i) q^{87} +(-1.70711 + 4.12132i) q^{88} +15.0711i q^{89} +(-0.485281 - 1.17157i) q^{91} +(2.82843 - 1.17157i) q^{92} +(4.82843 + 4.82843i) q^{93} +(6.82843 + 6.82843i) q^{94} +(-0.707107 - 1.70711i) q^{96} +(5.12132 + 2.12132i) q^{97} -4.65685i q^{98} +(0.707107 - 1.70711i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 4 q^{11} - 4 q^{12} + 8 q^{14} - 4 q^{16} - 4 q^{18} + 8 q^{19} - 8 q^{22} + 16 q^{23} + 4 q^{24} - 8 q^{26} + 12 q^{27} + 8 q^{28} + 16 q^{33} - 16 q^{34} - 4 q^{36} + 8 q^{37} + 16 q^{41}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0.707107 1.70711i 0.408248 0.985599i −0.577350 0.816497i \(-0.695913\pi\)
0.985599 0.169102i \(-0.0540867\pi\)
\(4\) 1.00000i 0.500000i
\(5\) 0 0
\(6\) 0.707107 + 1.70711i 0.288675 + 0.696923i
\(7\) −1.41421 + 0.585786i −0.534522 + 0.221406i −0.633583 0.773675i \(-0.718416\pi\)
0.0990602 + 0.995081i \(0.468416\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) −0.292893 0.292893i −0.0976311 0.0976311i
\(10\) 0 0
\(11\) 1.70711 + 4.12132i 0.514712 + 1.24262i 0.941113 + 0.338091i \(0.109781\pi\)
−0.426401 + 0.904534i \(0.640219\pi\)
\(12\) −1.70711 0.707107i −0.492799 0.204124i
\(13\) 0.828427i 0.229764i 0.993379 + 0.114882i \(0.0366490\pi\)
−0.993379 + 0.114882i \(0.963351\pi\)
\(14\) 0.585786 1.41421i 0.156558 0.377964i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 2.12132 + 3.53553i 0.514496 + 0.857493i
\(18\) 0.414214 0.0976311
\(19\) 0.585786 0.585786i 0.134389 0.134389i −0.636713 0.771101i \(-0.719706\pi\)
0.771101 + 0.636713i \(0.219706\pi\)
\(20\) 0 0
\(21\) 2.82843i 0.617213i
\(22\) −4.12132 1.70711i −0.878668 0.363956i
\(23\) 1.17157 + 2.82843i 0.244290 + 0.589768i 0.997700 0.0677829i \(-0.0215925\pi\)
−0.753410 + 0.657551i \(0.771593\pi\)
\(24\) 1.70711 0.707107i 0.348462 0.144338i
\(25\) 0 0
\(26\) −0.585786 0.585786i −0.114882 0.114882i
\(27\) 4.41421 1.82843i 0.849516 0.351881i
\(28\) 0.585786 + 1.41421i 0.110703 + 0.267261i
\(29\) −1.41421 0.585786i −0.262613 0.108778i 0.247492 0.968890i \(-0.420394\pi\)
−0.510105 + 0.860112i \(0.670394\pi\)
\(30\) 0 0
\(31\) −1.41421 + 3.41421i −0.254000 + 0.613211i −0.998520 0.0543898i \(-0.982679\pi\)
0.744520 + 0.667601i \(0.232679\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 8.24264 1.43486
\(34\) −4.00000 1.00000i −0.685994 0.171499i
\(35\) 0 0
\(36\) −0.292893 + 0.292893i −0.0488155 + 0.0488155i
\(37\) −0.828427 + 2.00000i −0.136193 + 0.328798i −0.977231 0.212177i \(-0.931945\pi\)
0.841039 + 0.540975i \(0.181945\pi\)
\(38\) 0.828427i 0.134389i
\(39\) 1.41421 + 0.585786i 0.226455 + 0.0938009i
\(40\) 0 0
\(41\) 10.3640 4.29289i 1.61858 0.670437i 0.624695 0.780869i \(-0.285223\pi\)
0.993884 + 0.110432i \(0.0352233\pi\)
\(42\) −2.00000 2.00000i −0.308607 0.308607i
\(43\) 1.24264 + 1.24264i 0.189501 + 0.189501i 0.795480 0.605979i \(-0.207219\pi\)
−0.605979 + 0.795480i \(0.707219\pi\)
\(44\) 4.12132 1.70711i 0.621312 0.257356i
\(45\) 0 0
\(46\) −2.82843 1.17157i −0.417029 0.172739i
\(47\) 9.65685i 1.40860i −0.709904 0.704298i \(-0.751262\pi\)
0.709904 0.704298i \(-0.248738\pi\)
\(48\) −0.707107 + 1.70711i −0.102062 + 0.246400i
\(49\) −3.29289 + 3.29289i −0.470413 + 0.470413i
\(50\) 0 0
\(51\) 7.53553 1.12132i 1.05519 0.157016i
\(52\) 0.828427 0.114882
\(53\) −0.585786 + 0.585786i −0.0804640 + 0.0804640i −0.746193 0.665729i \(-0.768121\pi\)
0.665729 + 0.746193i \(0.268121\pi\)
\(54\) −1.82843 + 4.41421i −0.248817 + 0.600698i
\(55\) 0 0
\(56\) −1.41421 0.585786i −0.188982 0.0782790i
\(57\) −0.585786 1.41421i −0.0775893 0.187317i
\(58\) 1.41421 0.585786i 0.185695 0.0769175i
\(59\) 0.414214 + 0.414214i 0.0539260 + 0.0539260i 0.733556 0.679630i \(-0.237859\pi\)
−0.679630 + 0.733556i \(0.737859\pi\)
\(60\) 0 0
\(61\) 6.82843 2.82843i 0.874291 0.362143i 0.100011 0.994986i \(-0.468112\pi\)
0.774280 + 0.632843i \(0.218112\pi\)
\(62\) −1.41421 3.41421i −0.179605 0.433606i
\(63\) 0.585786 + 0.242641i 0.0738022 + 0.0305699i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) −5.82843 + 5.82843i −0.717430 + 0.717430i
\(67\) 7.41421 0.905790 0.452895 0.891564i \(-0.350391\pi\)
0.452895 + 0.891564i \(0.350391\pi\)
\(68\) 3.53553 2.12132i 0.428746 0.257248i
\(69\) 5.65685 0.681005
\(70\) 0 0
\(71\) 0.828427 2.00000i 0.0983162 0.237356i −0.867067 0.498191i \(-0.833998\pi\)
0.965383 + 0.260835i \(0.0839978\pi\)
\(72\) 0.414214i 0.0488155i
\(73\) 4.94975 + 2.05025i 0.579324 + 0.239964i 0.653050 0.757315i \(-0.273489\pi\)
−0.0737261 + 0.997279i \(0.523489\pi\)
\(74\) −0.828427 2.00000i −0.0963027 0.232495i
\(75\) 0 0
\(76\) −0.585786 0.585786i −0.0671943 0.0671943i
\(77\) −4.82843 4.82843i −0.550250 0.550250i
\(78\) −1.41421 + 0.585786i −0.160128 + 0.0663273i
\(79\) −2.00000 4.82843i −0.225018 0.543240i 0.770540 0.637391i \(-0.219986\pi\)
−0.995558 + 0.0941507i \(0.969986\pi\)
\(80\) 0 0
\(81\) 10.0711i 1.11901i
\(82\) −4.29289 + 10.3640i −0.474071 + 1.14451i
\(83\) −4.41421 + 4.41421i −0.484523 + 0.484523i −0.906573 0.422050i \(-0.861311\pi\)
0.422050 + 0.906573i \(0.361311\pi\)
\(84\) 2.82843 0.308607
\(85\) 0 0
\(86\) −1.75736 −0.189501
\(87\) −2.00000 + 2.00000i −0.214423 + 0.214423i
\(88\) −1.70711 + 4.12132i −0.181978 + 0.439334i
\(89\) 15.0711i 1.59753i 0.601643 + 0.798765i \(0.294513\pi\)
−0.601643 + 0.798765i \(0.705487\pi\)
\(90\) 0 0
\(91\) −0.485281 1.17157i −0.0508713 0.122814i
\(92\) 2.82843 1.17157i 0.294884 0.122145i
\(93\) 4.82843 + 4.82843i 0.500685 + 0.500685i
\(94\) 6.82843 + 6.82843i 0.704298 + 0.704298i
\(95\) 0 0
\(96\) −0.707107 1.70711i −0.0721688 0.174231i
\(97\) 5.12132 + 2.12132i 0.519991 + 0.215387i 0.627213 0.778848i \(-0.284196\pi\)
−0.107222 + 0.994235i \(0.534196\pi\)
\(98\) 4.65685i 0.470413i
\(99\) 0.707107 1.70711i 0.0710669 0.171571i
\(100\) 0 0
\(101\) 4.34315 0.432159 0.216080 0.976376i \(-0.430673\pi\)
0.216080 + 0.976376i \(0.430673\pi\)
\(102\) −4.53553 + 6.12132i −0.449085 + 0.606101i
\(103\) −12.4853 −1.23021 −0.615106 0.788445i \(-0.710887\pi\)
−0.615106 + 0.788445i \(0.710887\pi\)
\(104\) −0.585786 + 0.585786i −0.0574411 + 0.0574411i
\(105\) 0 0
\(106\) 0.828427i 0.0804640i
\(107\) −10.7782 4.46447i −1.04197 0.431596i −0.204948 0.978773i \(-0.565703\pi\)
−0.837017 + 0.547177i \(0.815703\pi\)
\(108\) −1.82843 4.41421i −0.175940 0.424758i
\(109\) −9.07107 + 3.75736i −0.868851 + 0.359890i −0.772163 0.635425i \(-0.780825\pi\)
−0.0966881 + 0.995315i \(0.530825\pi\)
\(110\) 0 0
\(111\) 2.82843 + 2.82843i 0.268462 + 0.268462i
\(112\) 1.41421 0.585786i 0.133631 0.0553516i
\(113\) 3.53553 + 8.53553i 0.332595 + 0.802955i 0.998385 + 0.0568160i \(0.0180948\pi\)
−0.665790 + 0.746140i \(0.731905\pi\)
\(114\) 1.41421 + 0.585786i 0.132453 + 0.0548639i
\(115\) 0 0
\(116\) −0.585786 + 1.41421i −0.0543889 + 0.131306i
\(117\) 0.242641 0.242641i 0.0224321 0.0224321i
\(118\) −0.585786 −0.0539260
\(119\) −5.07107 3.75736i −0.464864 0.344437i
\(120\) 0 0
\(121\) −6.29289 + 6.29289i −0.572081 + 0.572081i
\(122\) −2.82843 + 6.82843i −0.256074 + 0.618217i
\(123\) 20.7279i 1.86897i
\(124\) 3.41421 + 1.41421i 0.306605 + 0.127000i
\(125\) 0 0
\(126\) −0.585786 + 0.242641i −0.0521860 + 0.0216162i
\(127\) 9.17157 + 9.17157i 0.813845 + 0.813845i 0.985208 0.171363i \(-0.0548169\pi\)
−0.171363 + 0.985208i \(0.554817\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 3.00000 1.24264i 0.264135 0.109408i
\(130\) 0 0
\(131\) 0.121320 + 0.0502525i 0.0105998 + 0.00439058i 0.387977 0.921669i \(-0.373174\pi\)
−0.377377 + 0.926060i \(0.623174\pi\)
\(132\) 8.24264i 0.717430i
\(133\) −0.485281 + 1.17157i −0.0420792 + 0.101588i
\(134\) −5.24264 + 5.24264i −0.452895 + 0.452895i
\(135\) 0 0
\(136\) −1.00000 + 4.00000i −0.0857493 + 0.342997i
\(137\) 2.34315 0.200188 0.100094 0.994978i \(-0.468086\pi\)
0.100094 + 0.994978i \(0.468086\pi\)
\(138\) −4.00000 + 4.00000i −0.340503 + 0.340503i
\(139\) −0.707107 + 1.70711i −0.0599760 + 0.144795i −0.951027 0.309109i \(-0.899969\pi\)
0.891051 + 0.453904i \(0.149969\pi\)
\(140\) 0 0
\(141\) −16.4853 6.82843i −1.38831 0.575057i
\(142\) 0.828427 + 2.00000i 0.0695201 + 0.167836i
\(143\) −3.41421 + 1.41421i −0.285511 + 0.118262i
\(144\) 0.292893 + 0.292893i 0.0244078 + 0.0244078i
\(145\) 0 0
\(146\) −4.94975 + 2.05025i −0.409644 + 0.169680i
\(147\) 3.29289 + 7.94975i 0.271593 + 0.655684i
\(148\) 2.00000 + 0.828427i 0.164399 + 0.0680963i
\(149\) 15.6569i 1.28266i −0.767265 0.641330i \(-0.778383\pi\)
0.767265 0.641330i \(-0.221617\pi\)
\(150\) 0 0
\(151\) −15.6569 + 15.6569i −1.27414 + 1.27414i −0.330240 + 0.943897i \(0.607130\pi\)
−0.943897 + 0.330240i \(0.892870\pi\)
\(152\) 0.828427 0.0671943
\(153\) 0.414214 1.65685i 0.0334872 0.133949i
\(154\) 6.82843 0.550250
\(155\) 0 0
\(156\) 0.585786 1.41421i 0.0469005 0.113228i
\(157\) 13.3137i 1.06255i 0.847200 + 0.531275i \(0.178287\pi\)
−0.847200 + 0.531275i \(0.821713\pi\)
\(158\) 4.82843 + 2.00000i 0.384129 + 0.159111i
\(159\) 0.585786 + 1.41421i 0.0464559 + 0.112154i
\(160\) 0 0
\(161\) −3.31371 3.31371i −0.261157 0.261157i
\(162\) 7.12132 + 7.12132i 0.559504 + 0.559504i
\(163\) −21.0208 + 8.70711i −1.64648 + 0.681993i −0.996928 0.0783260i \(-0.975042\pi\)
−0.649550 + 0.760319i \(0.725042\pi\)
\(164\) −4.29289 10.3640i −0.335219 0.809289i
\(165\) 0 0
\(166\) 6.24264i 0.484523i
\(167\) 7.55635 18.2426i 0.584728 1.41166i −0.303756 0.952750i \(-0.598241\pi\)
0.888484 0.458908i \(-0.151759\pi\)
\(168\) −2.00000 + 2.00000i −0.154303 + 0.154303i
\(169\) 12.3137 0.947208
\(170\) 0 0
\(171\) −0.343146 −0.0262410
\(172\) 1.24264 1.24264i 0.0947505 0.0947505i
\(173\) 2.24264 5.41421i 0.170505 0.411635i −0.815410 0.578884i \(-0.803488\pi\)
0.985915 + 0.167249i \(0.0534884\pi\)
\(174\) 2.82843i 0.214423i
\(175\) 0 0
\(176\) −1.70711 4.12132i −0.128678 0.310656i
\(177\) 1.00000 0.414214i 0.0751646 0.0311342i
\(178\) −10.6569 10.6569i −0.798765 0.798765i
\(179\) −18.2426 18.2426i −1.36352 1.36352i −0.869387 0.494132i \(-0.835486\pi\)
−0.494132 0.869387i \(-0.664514\pi\)
\(180\) 0 0
\(181\) 2.34315 + 5.65685i 0.174165 + 0.420471i 0.986724 0.162408i \(-0.0519262\pi\)
−0.812559 + 0.582879i \(0.801926\pi\)
\(182\) 1.17157 + 0.485281i 0.0868428 + 0.0359714i
\(183\) 13.6569i 1.00954i
\(184\) −1.17157 + 2.82843i −0.0863695 + 0.208514i
\(185\) 0 0
\(186\) −6.82843 −0.500685
\(187\) −10.9497 + 14.7782i −0.800725 + 1.08069i
\(188\) −9.65685 −0.704298
\(189\) −5.17157 + 5.17157i −0.376177 + 0.376177i
\(190\) 0 0
\(191\) 2.82843i 0.204658i −0.994751 0.102329i \(-0.967371\pi\)
0.994751 0.102329i \(-0.0326294\pi\)
\(192\) 1.70711 + 0.707107i 0.123200 + 0.0510310i
\(193\) −4.70711 11.3640i −0.338825 0.817996i −0.997829 0.0658565i \(-0.979022\pi\)
0.659004 0.752139i \(-0.270978\pi\)
\(194\) −5.12132 + 2.12132i −0.367689 + 0.152302i
\(195\) 0 0
\(196\) 3.29289 + 3.29289i 0.235207 + 0.235207i
\(197\) 18.4853 7.65685i 1.31702 0.545528i 0.390096 0.920774i \(-0.372442\pi\)
0.926925 + 0.375246i \(0.122442\pi\)
\(198\) 0.707107 + 1.70711i 0.0502519 + 0.121319i
\(199\) −19.3137 8.00000i −1.36911 0.567105i −0.427565 0.903985i \(-0.640628\pi\)
−0.941548 + 0.336880i \(0.890628\pi\)
\(200\) 0 0
\(201\) 5.24264 12.6569i 0.369787 0.892746i
\(202\) −3.07107 + 3.07107i −0.216080 + 0.216080i
\(203\) 2.34315 0.164457
\(204\) −1.12132 7.53553i −0.0785081 0.527593i
\(205\) 0 0
\(206\) 8.82843 8.82843i 0.615106 0.615106i
\(207\) 0.485281 1.17157i 0.0337294 0.0814299i
\(208\) 0.828427i 0.0574411i
\(209\) 3.41421 + 1.41421i 0.236166 + 0.0978232i
\(210\) 0 0
\(211\) −0.121320 + 0.0502525i −0.00835204 + 0.00345953i −0.386856 0.922140i \(-0.626439\pi\)
0.378504 + 0.925600i \(0.376439\pi\)
\(212\) 0.585786 + 0.585786i 0.0402320 + 0.0402320i
\(213\) −2.82843 2.82843i −0.193801 0.193801i
\(214\) 10.7782 4.46447i 0.736781 0.305185i
\(215\) 0 0
\(216\) 4.41421 + 1.82843i 0.300349 + 0.124409i
\(217\) 5.65685i 0.384012i
\(218\) 3.75736 9.07107i 0.254480 0.614370i
\(219\) 7.00000 7.00000i 0.473016 0.473016i
\(220\) 0 0
\(221\) −2.92893 + 1.75736i −0.197021 + 0.118213i
\(222\) −4.00000 −0.268462
\(223\) 17.3137 17.3137i 1.15941 1.15941i 0.174809 0.984602i \(-0.444069\pi\)
0.984602 0.174809i \(-0.0559309\pi\)
\(224\) −0.585786 + 1.41421i −0.0391395 + 0.0944911i
\(225\) 0 0
\(226\) −8.53553 3.53553i −0.567775 0.235180i
\(227\) −7.77817 18.7782i −0.516256 1.24635i −0.940188 0.340657i \(-0.889350\pi\)
0.423932 0.905694i \(-0.360650\pi\)
\(228\) −1.41421 + 0.585786i −0.0936586 + 0.0387947i
\(229\) 13.0711 + 13.0711i 0.863760 + 0.863760i 0.991773 0.128012i \(-0.0408596\pi\)
−0.128012 + 0.991773i \(0.540860\pi\)
\(230\) 0 0
\(231\) −11.6569 + 4.82843i −0.766965 + 0.317687i
\(232\) −0.585786 1.41421i −0.0384588 0.0928477i
\(233\) −9.70711 4.02082i −0.635934 0.263412i 0.0413382 0.999145i \(-0.486838\pi\)
−0.677272 + 0.735733i \(0.736838\pi\)
\(234\) 0.343146i 0.0224321i
\(235\) 0 0
\(236\) 0.414214 0.414214i 0.0269630 0.0269630i
\(237\) −9.65685 −0.627280
\(238\) 6.24264 0.928932i 0.404650 0.0602137i
\(239\) 21.1716 1.36948 0.684738 0.728790i \(-0.259917\pi\)
0.684738 + 0.728790i \(0.259917\pi\)
\(240\) 0 0
\(241\) 7.60660 18.3640i 0.489984 1.18293i −0.464743 0.885445i \(-0.653853\pi\)
0.954728 0.297481i \(-0.0961466\pi\)
\(242\) 8.89949i 0.572081i
\(243\) −3.94975 1.63604i −0.253376 0.104952i
\(244\) −2.82843 6.82843i −0.181071 0.437145i
\(245\) 0 0
\(246\) 14.6569 + 14.6569i 0.934487 + 0.934487i
\(247\) 0.485281 + 0.485281i 0.0308777 + 0.0308777i
\(248\) −3.41421 + 1.41421i −0.216803 + 0.0898027i
\(249\) 4.41421 + 10.6569i 0.279739 + 0.675351i
\(250\) 0 0
\(251\) 18.7279i 1.18210i −0.806636 0.591048i \(-0.798714\pi\)
0.806636 0.591048i \(-0.201286\pi\)
\(252\) 0.242641 0.585786i 0.0152849 0.0369011i
\(253\) −9.65685 + 9.65685i −0.607121 + 0.607121i
\(254\) −12.9706 −0.813845
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.82843 + 5.82843i −0.363567 + 0.363567i −0.865124 0.501557i \(-0.832761\pi\)
0.501557 + 0.865124i \(0.332761\pi\)
\(258\) −1.24264 + 3.00000i −0.0773634 + 0.186772i
\(259\) 3.31371i 0.205904i
\(260\) 0 0
\(261\) 0.242641 + 0.585786i 0.0150191 + 0.0362593i
\(262\) −0.121320 + 0.0502525i −0.00749520 + 0.00310461i
\(263\) −5.65685 5.65685i −0.348817 0.348817i 0.510852 0.859669i \(-0.329330\pi\)
−0.859669 + 0.510852i \(0.829330\pi\)
\(264\) 5.82843 + 5.82843i 0.358715 + 0.358715i
\(265\) 0 0
\(266\) −0.485281 1.17157i −0.0297545 0.0718337i
\(267\) 25.7279 + 10.6569i 1.57452 + 0.652189i
\(268\) 7.41421i 0.452895i
\(269\) 2.92893 7.07107i 0.178580 0.431131i −0.809089 0.587686i \(-0.800039\pi\)
0.987669 + 0.156555i \(0.0500390\pi\)
\(270\) 0 0
\(271\) −14.8284 −0.900763 −0.450381 0.892836i \(-0.648712\pi\)
−0.450381 + 0.892836i \(0.648712\pi\)
\(272\) −2.12132 3.53553i −0.128624 0.214373i
\(273\) −2.34315 −0.141814
\(274\) −1.65685 + 1.65685i −0.100094 + 0.100094i
\(275\) 0 0
\(276\) 5.65685i 0.340503i
\(277\) −21.8995 9.07107i −1.31581 0.545028i −0.389238 0.921137i \(-0.627262\pi\)
−0.926575 + 0.376110i \(0.877262\pi\)
\(278\) −0.707107 1.70711i −0.0424094 0.102385i
\(279\) 1.41421 0.585786i 0.0846668 0.0350701i
\(280\) 0 0
\(281\) 10.1421 + 10.1421i 0.605029 + 0.605029i 0.941643 0.336614i \(-0.109282\pi\)
−0.336614 + 0.941643i \(0.609282\pi\)
\(282\) 16.4853 6.82843i 0.981684 0.406627i
\(283\) −0.435029 1.05025i −0.0258598 0.0624310i 0.910422 0.413680i \(-0.135757\pi\)
−0.936282 + 0.351249i \(0.885757\pi\)
\(284\) −2.00000 0.828427i −0.118678 0.0491581i
\(285\) 0 0
\(286\) 1.41421 3.41421i 0.0836242 0.201887i
\(287\) −12.1421 + 12.1421i −0.716728 + 0.716728i
\(288\) −0.414214 −0.0244078
\(289\) −8.00000 + 15.0000i −0.470588 + 0.882353i
\(290\) 0 0
\(291\) 7.24264 7.24264i 0.424571 0.424571i
\(292\) 2.05025 4.94975i 0.119982 0.289662i
\(293\) 22.0000i 1.28525i 0.766179 + 0.642627i \(0.222155\pi\)
−0.766179 + 0.642627i \(0.777845\pi\)
\(294\) −7.94975 3.29289i −0.463639 0.192045i
\(295\) 0 0
\(296\) −2.00000 + 0.828427i −0.116248 + 0.0481513i
\(297\) 15.0711 + 15.0711i 0.874512 + 0.874512i
\(298\) 11.0711 + 11.0711i 0.641330 + 0.641330i
\(299\) −2.34315 + 0.970563i −0.135508 + 0.0561291i
\(300\) 0 0
\(301\) −2.48528 1.02944i −0.143249 0.0593358i
\(302\) 22.1421i 1.27414i
\(303\) 3.07107 7.41421i 0.176428 0.425935i
\(304\) −0.585786 + 0.585786i −0.0335972 + 0.0335972i
\(305\) 0 0
\(306\) 0.878680 + 1.46447i 0.0502308 + 0.0837180i
\(307\) −6.34315 −0.362022 −0.181011 0.983481i \(-0.557937\pi\)
−0.181011 + 0.983481i \(0.557937\pi\)
\(308\) −4.82843 + 4.82843i −0.275125 + 0.275125i
\(309\) −8.82843 + 21.3137i −0.502232 + 1.21249i
\(310\) 0 0
\(311\) −13.8995 5.75736i −0.788168 0.326470i −0.0479613 0.998849i \(-0.515272\pi\)
−0.740207 + 0.672379i \(0.765272\pi\)
\(312\) 0.585786 + 1.41421i 0.0331636 + 0.0800641i
\(313\) −12.5355 + 5.19239i −0.708550 + 0.293491i −0.707705 0.706509i \(-0.750269\pi\)
−0.000845724 1.00000i \(0.500269\pi\)
\(314\) −9.41421 9.41421i −0.531275 0.531275i
\(315\) 0 0
\(316\) −4.82843 + 2.00000i −0.271620 + 0.112509i
\(317\) −8.48528 20.4853i −0.476581 1.15057i −0.961202 0.275844i \(-0.911043\pi\)
0.484622 0.874724i \(-0.338957\pi\)
\(318\) −1.41421 0.585786i −0.0793052 0.0328493i
\(319\) 6.82843i 0.382319i
\(320\) 0 0
\(321\) −15.2426 + 15.2426i −0.850761 + 0.850761i
\(322\) 4.68629 0.261157
\(323\) 3.31371 + 0.828427i 0.184380 + 0.0460949i
\(324\) −10.0711 −0.559504
\(325\) 0 0
\(326\) 8.70711 21.0208i 0.482242 1.16424i
\(327\) 18.1421i 1.00326i
\(328\) 10.3640 + 4.29289i 0.572254 + 0.237035i
\(329\) 5.65685 + 13.6569i 0.311872 + 0.752927i
\(330\) 0 0
\(331\) 19.5858 + 19.5858i 1.07653 + 1.07653i 0.996818 + 0.0797144i \(0.0254008\pi\)
0.0797144 + 0.996818i \(0.474599\pi\)
\(332\) 4.41421 + 4.41421i 0.242261 + 0.242261i
\(333\) 0.828427 0.343146i 0.0453975 0.0188043i
\(334\) 7.55635 + 18.2426i 0.413465 + 0.998193i
\(335\) 0 0
\(336\) 2.82843i 0.154303i
\(337\) −4.46447 + 10.7782i −0.243195 + 0.587125i −0.997597 0.0692885i \(-0.977927\pi\)
0.754402 + 0.656413i \(0.227927\pi\)
\(338\) −8.70711 + 8.70711i −0.473604 + 0.473604i
\(339\) 17.0711 0.927173
\(340\) 0 0
\(341\) −16.4853 −0.892728
\(342\) 0.242641 0.242641i 0.0131205 0.0131205i
\(343\) 6.82843 16.4853i 0.368700 0.890122i
\(344\) 1.75736i 0.0947505i
\(345\) 0 0
\(346\) 2.24264 + 5.41421i 0.120565 + 0.291070i
\(347\) 14.9497 6.19239i 0.802544 0.332425i 0.0565694 0.998399i \(-0.481984\pi\)
0.745975 + 0.665974i \(0.231984\pi\)
\(348\) 2.00000 + 2.00000i 0.107211 + 0.107211i
\(349\) −13.8995 13.8995i −0.744023 0.744023i 0.229327 0.973350i \(-0.426348\pi\)
−0.973350 + 0.229327i \(0.926348\pi\)
\(350\) 0 0
\(351\) 1.51472 + 3.65685i 0.0808497 + 0.195188i
\(352\) 4.12132 + 1.70711i 0.219667 + 0.0909891i
\(353\) 14.3848i 0.765624i 0.923826 + 0.382812i \(0.125044\pi\)
−0.923826 + 0.382812i \(0.874956\pi\)
\(354\) −0.414214 + 1.00000i −0.0220152 + 0.0531494i
\(355\) 0 0
\(356\) 15.0711 0.798765
\(357\) −10.0000 + 6.00000i −0.529256 + 0.317554i
\(358\) 25.7990 1.36352
\(359\) 8.00000 8.00000i 0.422224 0.422224i −0.463745 0.885969i \(-0.653495\pi\)
0.885969 + 0.463745i \(0.153495\pi\)
\(360\) 0 0
\(361\) 18.3137i 0.963879i
\(362\) −5.65685 2.34315i −0.297318 0.123153i
\(363\) 6.29289 + 15.1924i 0.330291 + 0.797394i
\(364\) −1.17157 + 0.485281i −0.0614071 + 0.0254357i
\(365\) 0 0
\(366\) 9.65685 + 9.65685i 0.504772 + 0.504772i
\(367\) −17.3137 + 7.17157i −0.903768 + 0.374353i −0.785668 0.618649i \(-0.787680\pi\)
−0.118100 + 0.993002i \(0.537680\pi\)
\(368\) −1.17157 2.82843i −0.0610725 0.147442i
\(369\) −4.29289 1.77817i −0.223479 0.0925681i
\(370\) 0 0
\(371\) 0.485281 1.17157i 0.0251946 0.0608250i
\(372\) 4.82843 4.82843i 0.250342 0.250342i
\(373\) 10.4853 0.542907 0.271454 0.962452i \(-0.412496\pi\)
0.271454 + 0.962452i \(0.412496\pi\)
\(374\) −2.70711 18.1924i −0.139981 0.940706i
\(375\) 0 0
\(376\) 6.82843 6.82843i 0.352149 0.352149i
\(377\) 0.485281 1.17157i 0.0249933 0.0603391i
\(378\) 7.31371i 0.376177i
\(379\) 8.60660 + 3.56497i 0.442091 + 0.183120i 0.592614 0.805486i \(-0.298096\pi\)
−0.150523 + 0.988606i \(0.548096\pi\)
\(380\) 0 0
\(381\) 22.1421 9.17157i 1.13438 0.469874i
\(382\) 2.00000 + 2.00000i 0.102329 + 0.102329i
\(383\) 21.3137 + 21.3137i 1.08908 + 1.08908i 0.995623 + 0.0934562i \(0.0297915\pi\)
0.0934562 + 0.995623i \(0.470208\pi\)
\(384\) −1.70711 + 0.707107i −0.0871154 + 0.0360844i
\(385\) 0 0
\(386\) 11.3640 + 4.70711i 0.578410 + 0.239585i
\(387\) 0.727922i 0.0370024i
\(388\) 2.12132 5.12132i 0.107694 0.259996i
\(389\) 2.24264 2.24264i 0.113706 0.113706i −0.647964 0.761671i \(-0.724379\pi\)
0.761671 + 0.647964i \(0.224379\pi\)
\(390\) 0 0
\(391\) −7.51472 + 10.1421i −0.380036 + 0.512910i
\(392\) −4.65685 −0.235207
\(393\) 0.171573 0.171573i 0.00865471 0.00865471i
\(394\) −7.65685 + 18.4853i −0.385747 + 0.931275i
\(395\) 0 0
\(396\) −1.70711 0.707107i −0.0857853 0.0355335i
\(397\) −3.17157 7.65685i −0.159177 0.384286i 0.824090 0.566459i \(-0.191687\pi\)
−0.983267 + 0.182173i \(0.941687\pi\)
\(398\) 19.3137 8.00000i 0.968109 0.401004i
\(399\) 1.65685 + 1.65685i 0.0829465 + 0.0829465i
\(400\) 0 0
\(401\) −22.1924 + 9.19239i −1.10823 + 0.459046i −0.860330 0.509738i \(-0.829742\pi\)
−0.247905 + 0.968784i \(0.579742\pi\)
\(402\) 5.24264 + 12.6569i 0.261479 + 0.631267i
\(403\) −2.82843 1.17157i −0.140894 0.0583602i
\(404\) 4.34315i 0.216080i
\(405\) 0 0
\(406\) −1.65685 + 1.65685i −0.0822283 + 0.0822283i
\(407\) −9.65685 −0.478672
\(408\) 6.12132 + 4.53553i 0.303051 + 0.224542i
\(409\) 15.5563 0.769212 0.384606 0.923081i \(-0.374337\pi\)
0.384606 + 0.923081i \(0.374337\pi\)
\(410\) 0 0
\(411\) 1.65685 4.00000i 0.0817266 0.197305i
\(412\) 12.4853i 0.615106i
\(413\) −0.828427 0.343146i −0.0407642 0.0168851i
\(414\) 0.485281 + 1.17157i 0.0238503 + 0.0575797i
\(415\) 0 0
\(416\) 0.585786 + 0.585786i 0.0287205 + 0.0287205i
\(417\) 2.41421 + 2.41421i 0.118225 + 0.118225i
\(418\) −3.41421 + 1.41421i −0.166995 + 0.0691714i
\(419\) −6.60660 15.9497i −0.322754 0.779196i −0.999092 0.0426051i \(-0.986434\pi\)
0.676338 0.736591i \(-0.263566\pi\)
\(420\) 0 0
\(421\) 15.6569i 0.763068i −0.924355 0.381534i \(-0.875396\pi\)
0.924355 0.381534i \(-0.124604\pi\)
\(422\) 0.0502525 0.121320i 0.00244625 0.00590578i
\(423\) −2.82843 + 2.82843i −0.137523 + 0.137523i
\(424\) −0.828427 −0.0402320
\(425\) 0 0
\(426\) 4.00000 0.193801
\(427\) −8.00000 + 8.00000i −0.387147 + 0.387147i
\(428\) −4.46447 + 10.7782i −0.215798 + 0.520983i
\(429\) 6.82843i 0.329680i
\(430\) 0 0
\(431\) −5.51472 13.3137i −0.265635 0.641299i 0.733634 0.679545i \(-0.237823\pi\)
−0.999268 + 0.0382464i \(0.987823\pi\)
\(432\) −4.41421 + 1.82843i −0.212379 + 0.0879702i
\(433\) 9.17157 + 9.17157i 0.440758 + 0.440758i 0.892267 0.451509i \(-0.149114\pi\)
−0.451509 + 0.892267i \(0.649114\pi\)
\(434\) 4.00000 + 4.00000i 0.192006 + 0.192006i
\(435\) 0 0
\(436\) 3.75736 + 9.07107i 0.179945 + 0.434425i
\(437\) 2.34315 + 0.970563i 0.112088 + 0.0464283i
\(438\) 9.89949i 0.473016i
\(439\) −8.82843 + 21.3137i −0.421358 + 1.01725i 0.560590 + 0.828094i \(0.310575\pi\)
−0.981947 + 0.189154i \(0.939425\pi\)
\(440\) 0 0
\(441\) 1.92893 0.0918539
\(442\) 0.828427 3.31371i 0.0394043 0.157617i
\(443\) 36.8701 1.75175 0.875875 0.482539i \(-0.160285\pi\)
0.875875 + 0.482539i \(0.160285\pi\)
\(444\) 2.82843 2.82843i 0.134231 0.134231i
\(445\) 0 0
\(446\) 24.4853i 1.15941i
\(447\) −26.7279 11.0711i −1.26419 0.523644i
\(448\) −0.585786 1.41421i −0.0276758 0.0668153i
\(449\) 5.12132 2.12132i 0.241690 0.100111i −0.258551 0.965998i \(-0.583245\pi\)
0.500241 + 0.865886i \(0.333245\pi\)
\(450\) 0 0
\(451\) 35.3848 + 35.3848i 1.66620 + 1.66620i
\(452\) 8.53553 3.53553i 0.401478 0.166298i
\(453\) 15.6569 + 37.7990i 0.735623 + 1.77595i
\(454\) 18.7782 + 7.77817i 0.881303 + 0.365048i
\(455\) 0 0
\(456\) 0.585786 1.41421i 0.0274320 0.0662266i
\(457\) −3.51472 + 3.51472i −0.164412 + 0.164412i −0.784518 0.620106i \(-0.787089\pi\)
0.620106 + 0.784518i \(0.287089\pi\)
\(458\) −18.4853 −0.863760
\(459\) 15.8284 + 11.7279i 0.738808 + 0.547413i
\(460\) 0 0
\(461\) −24.7279 + 24.7279i −1.15169 + 1.15169i −0.165481 + 0.986213i \(0.552918\pi\)
−0.986213 + 0.165481i \(0.947082\pi\)
\(462\) 4.82843 11.6569i 0.224639 0.542326i
\(463\) 3.31371i 0.154001i −0.997031 0.0770005i \(-0.975466\pi\)
0.997031 0.0770005i \(-0.0245343\pi\)
\(464\) 1.41421 + 0.585786i 0.0656532 + 0.0271945i
\(465\) 0 0
\(466\) 9.70711 4.02082i 0.449673 0.186261i
\(467\) 1.75736 + 1.75736i 0.0813209 + 0.0813209i 0.746597 0.665276i \(-0.231686\pi\)
−0.665276 + 0.746597i \(0.731686\pi\)
\(468\) −0.242641 0.242641i −0.0112161 0.0112161i
\(469\) −10.4853 + 4.34315i −0.484165 + 0.200548i
\(470\) 0 0
\(471\) 22.7279 + 9.41421i 1.04725 + 0.433784i
\(472\) 0.585786i 0.0269630i
\(473\) −3.00000 + 7.24264i −0.137940 + 0.333017i
\(474\) 6.82843 6.82843i 0.313640 0.313640i
\(475\) 0 0
\(476\) −3.75736 + 5.07107i −0.172218 + 0.232432i
\(477\) 0.343146 0.0157116
\(478\) −14.9706 + 14.9706i −0.684738 + 0.684738i
\(479\) 9.51472 22.9706i 0.434739 1.04955i −0.543001 0.839732i \(-0.682712\pi\)
0.977740 0.209820i \(-0.0672878\pi\)
\(480\) 0 0
\(481\) −1.65685 0.686292i −0.0755461 0.0312922i
\(482\) 7.60660 + 18.3640i 0.346471 + 0.836456i
\(483\) −8.00000 + 3.31371i −0.364013 + 0.150779i
\(484\) 6.29289 + 6.29289i 0.286041 + 0.286041i
\(485\) 0 0
\(486\) 3.94975 1.63604i 0.179164 0.0742122i
\(487\) −8.48528 20.4853i −0.384505 0.928277i −0.991082 0.133252i \(-0.957458\pi\)
0.606577 0.795024i \(-0.292542\pi\)
\(488\) 6.82843 + 2.82843i 0.309108 + 0.128037i
\(489\) 42.0416i 1.90119i
\(490\) 0 0
\(491\) 10.9289 10.9289i 0.493216 0.493216i −0.416102 0.909318i \(-0.636604\pi\)
0.909318 + 0.416102i \(0.136604\pi\)
\(492\) −20.7279 −0.934487
\(493\) −0.928932 6.24264i −0.0418370 0.281154i
\(494\) −0.686292 −0.0308777
\(495\) 0 0
\(496\) 1.41421 3.41421i 0.0635001 0.153303i
\(497\) 3.31371i 0.148640i
\(498\) −10.6569 4.41421i −0.477545 0.197806i
\(499\) −14.0919 34.0208i −0.630839 1.52298i −0.838569 0.544795i \(-0.816608\pi\)
0.207730 0.978186i \(-0.433392\pi\)
\(500\) 0 0
\(501\) −25.7990 25.7990i −1.15261 1.15261i
\(502\) 13.2426 + 13.2426i 0.591048 + 0.591048i
\(503\) −11.1716 + 4.62742i −0.498116 + 0.206326i −0.617574 0.786513i \(-0.711884\pi\)
0.119458 + 0.992839i \(0.461884\pi\)
\(504\) 0.242641 + 0.585786i 0.0108081 + 0.0260930i
\(505\) 0 0
\(506\) 13.6569i 0.607121i
\(507\) 8.70711 21.0208i 0.386696 0.933567i
\(508\) 9.17157 9.17157i 0.406923 0.406923i
\(509\) 16.6274 0.736997 0.368499 0.929628i \(-0.379872\pi\)
0.368499 + 0.929628i \(0.379872\pi\)
\(510\) 0 0
\(511\) −8.20101 −0.362791
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 1.51472 3.65685i 0.0668765 0.161454i
\(514\) 8.24264i 0.363567i
\(515\) 0 0
\(516\) −1.24264 3.00000i −0.0547042 0.132068i
\(517\) 39.7990 16.4853i 1.75036 0.725022i
\(518\) 2.34315 + 2.34315i 0.102952 + 0.102952i
\(519\) −7.65685 7.65685i −0.336099 0.336099i
\(520\) 0 0
\(521\) 13.4645 + 32.5061i 0.589889 + 1.42412i 0.883609 + 0.468226i \(0.155107\pi\)
−0.293720 + 0.955892i \(0.594893\pi\)
\(522\) −0.585786 0.242641i −0.0256392 0.0106201i
\(523\) 23.2132i 1.01504i −0.861639 0.507521i \(-0.830562\pi\)
0.861639 0.507521i \(-0.169438\pi\)
\(524\) 0.0502525 0.121320i 0.00219529 0.00529990i
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) −15.0711 + 2.24264i −0.656506 + 0.0976910i
\(528\) −8.24264 −0.358715
\(529\) 9.63604 9.63604i 0.418958 0.418958i
\(530\) 0 0
\(531\) 0.242641i 0.0105297i
\(532\) 1.17157 + 0.485281i 0.0507941 + 0.0210396i
\(533\) 3.55635 + 8.58579i 0.154043 + 0.371892i
\(534\) −25.7279 + 10.6569i −1.11336 + 0.461167i
\(535\) 0 0
\(536\) 5.24264 + 5.24264i 0.226448 + 0.226448i
\(537\) −44.0416 + 18.2426i −1.90054 + 0.787228i
\(538\) 2.92893 + 7.07107i 0.126275 + 0.304855i
\(539\) −19.1924 7.94975i −0.826675 0.342420i
\(540\) 0 0
\(541\) 7.79899 18.8284i 0.335305 0.809497i −0.662849 0.748753i \(-0.730653\pi\)
0.998153 0.0607439i \(-0.0193473\pi\)
\(542\) 10.4853 10.4853i 0.450381 0.450381i
\(543\) 11.3137 0.485518
\(544\) 4.00000 + 1.00000i 0.171499 + 0.0428746i
\(545\) 0 0
\(546\) 1.65685 1.65685i 0.0709068 0.0709068i
\(547\) 9.39340 22.6777i 0.401633 0.969627i −0.585637 0.810573i \(-0.699156\pi\)
0.987270 0.159054i \(-0.0508443\pi\)
\(548\) 2.34315i 0.100094i
\(549\) −2.82843 1.17157i −0.120714 0.0500015i
\(550\) 0 0
\(551\) −1.17157 + 0.485281i −0.0499107 + 0.0206737i
\(552\) 4.00000 + 4.00000i 0.170251 + 0.170251i
\(553\) 5.65685 + 5.65685i 0.240554 + 0.240554i
\(554\) 21.8995 9.07107i 0.930420 0.385393i
\(555\) 0 0
\(556\) 1.70711 + 0.707107i 0.0723975 + 0.0299880i
\(557\) 41.1127i 1.74200i −0.491282 0.871000i \(-0.663472\pi\)
0.491282 0.871000i \(-0.336528\pi\)
\(558\) −0.585786 + 1.41421i −0.0247983 + 0.0598684i
\(559\) −1.02944 + 1.02944i −0.0435406 + 0.0435406i
\(560\) 0 0
\(561\) 17.4853 + 29.1421i 0.738229 + 1.23038i
\(562\) −14.3431 −0.605029
\(563\) 5.92893 5.92893i 0.249875 0.249875i −0.571044 0.820919i \(-0.693462\pi\)
0.820919 + 0.571044i \(0.193462\pi\)
\(564\) −6.82843 + 16.4853i −0.287529 + 0.694156i
\(565\) 0 0
\(566\) 1.05025 + 0.435029i 0.0441454 + 0.0182856i
\(567\) 5.89949 + 14.2426i 0.247755 + 0.598135i
\(568\) 2.00000 0.828427i 0.0839181 0.0347600i
\(569\) 3.48528 + 3.48528i 0.146111 + 0.146111i 0.776378 0.630267i \(-0.217055\pi\)
−0.630267 + 0.776378i \(0.717055\pi\)
\(570\) 0 0
\(571\) 2.22183 0.920310i 0.0929805 0.0385138i −0.335708 0.941966i \(-0.608976\pi\)
0.428689 + 0.903452i \(0.358976\pi\)
\(572\) 1.41421 + 3.41421i 0.0591312 + 0.142755i
\(573\) −4.82843 2.00000i −0.201710 0.0835512i
\(574\) 17.1716i 0.716728i
\(575\) 0 0
\(576\) 0.292893 0.292893i 0.0122039 0.0122039i
\(577\) 16.6274 0.692208 0.346104 0.938196i \(-0.387504\pi\)
0.346104 + 0.938196i \(0.387504\pi\)
\(578\) −4.94975 16.2635i −0.205882 0.676471i
\(579\) −22.7279 −0.944540
\(580\) 0 0
\(581\) 3.65685 8.82843i 0.151712 0.366265i
\(582\) 10.2426i 0.424571i
\(583\) −3.41421 1.41421i −0.141402 0.0585707i
\(584\) 2.05025 + 4.94975i 0.0848401 + 0.204822i
\(585\) 0 0
\(586\) −15.5563 15.5563i −0.642627 0.642627i
\(587\) 2.14214 + 2.14214i 0.0884154 + 0.0884154i 0.749931 0.661516i \(-0.230087\pi\)
−0.661516 + 0.749931i \(0.730087\pi\)
\(588\) 7.94975 3.29289i 0.327842 0.135797i
\(589\) 1.17157 + 2.82843i 0.0482738 + 0.116543i
\(590\) 0 0
\(591\) 36.9706i 1.52077i
\(592\) 0.828427 2.00000i 0.0340481 0.0821995i
\(593\) 3.00000 3.00000i 0.123195 0.123195i −0.642821 0.766016i \(-0.722236\pi\)
0.766016 + 0.642821i \(0.222236\pi\)
\(594\) −21.3137 −0.874512
\(595\) 0 0
\(596\) −15.6569 −0.641330
\(597\) −27.3137 + 27.3137i −1.11788 + 1.11788i
\(598\) 0.970563 2.34315i 0.0396893 0.0958184i
\(599\) 26.3431i 1.07635i −0.842833 0.538176i \(-0.819114\pi\)
0.842833 0.538176i \(-0.180886\pi\)
\(600\) 0 0
\(601\) −7.05025 17.0208i −0.287586 0.694294i 0.712386 0.701788i \(-0.247615\pi\)
−0.999972 + 0.00749419i \(0.997615\pi\)
\(602\) 2.48528 1.02944i 0.101293 0.0419567i
\(603\) −2.17157 2.17157i −0.0884333 0.0884333i
\(604\) 15.6569 + 15.6569i 0.637068 + 0.637068i
\(605\) 0 0
\(606\) 3.07107 + 7.41421i 0.124754 + 0.301182i
\(607\) −9.07107 3.75736i −0.368183 0.152507i 0.190918 0.981606i \(-0.438854\pi\)
−0.559101 + 0.829100i \(0.688854\pi\)
\(608\) 0.828427i 0.0335972i
\(609\) 1.65685 4.00000i 0.0671391 0.162088i
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) −1.65685 0.414214i −0.0669744 0.0167436i
\(613\) −37.7990 −1.52669 −0.763343 0.645993i \(-0.776444\pi\)
−0.763343 + 0.645993i \(0.776444\pi\)
\(614\) 4.48528 4.48528i 0.181011 0.181011i
\(615\) 0 0
\(616\) 6.82843i 0.275125i
\(617\) 16.7071 + 6.92031i 0.672603 + 0.278601i 0.692731 0.721196i \(-0.256407\pi\)
−0.0201281 + 0.999797i \(0.506407\pi\)
\(618\) −8.82843 21.3137i −0.355131 0.857363i
\(619\) 5.12132 2.12132i 0.205843 0.0852631i −0.277380 0.960760i \(-0.589466\pi\)
0.483223 + 0.875497i \(0.339466\pi\)
\(620\) 0 0
\(621\) 10.3431 + 10.3431i 0.415056 + 0.415056i
\(622\) 13.8995 5.75736i 0.557319 0.230849i
\(623\) −8.82843 21.3137i −0.353703 0.853916i
\(624\) −1.41421 0.585786i −0.0566139 0.0234502i
\(625\) 0 0
\(626\) 5.19239 12.5355i 0.207530 0.501021i
\(627\) 4.82843 4.82843i 0.192829 0.192829i
\(628\) 13.3137 0.531275
\(629\) −8.82843 + 1.31371i −0.352012 + 0.0523810i
\(630\) 0 0
\(631\) −21.6569 + 21.6569i −0.862146 + 0.862146i −0.991587 0.129441i \(-0.958682\pi\)
0.129441 + 0.991587i \(0.458682\pi\)
\(632\) 2.00000 4.82843i 0.0795557 0.192065i
\(633\) 0.242641i 0.00964410i
\(634\) 20.4853 + 8.48528i 0.813574 + 0.336994i
\(635\) 0 0
\(636\) 1.41421 0.585786i 0.0560772 0.0232279i
\(637\) −2.72792 2.72792i −0.108084 0.108084i
\(638\) 4.82843 + 4.82843i 0.191159 + 0.191159i
\(639\) −0.828427 + 0.343146i −0.0327721 + 0.0135746i
\(640\) 0 0
\(641\) −13.4350 5.56497i −0.530652 0.219803i 0.101237 0.994862i \(-0.467720\pi\)
−0.631889 + 0.775059i \(0.717720\pi\)
\(642\) 21.5563i 0.850761i
\(643\) 5.12132 12.3640i 0.201965 0.487587i −0.790150 0.612913i \(-0.789998\pi\)
0.992116 + 0.125326i \(0.0399976\pi\)
\(644\) −3.31371 + 3.31371i −0.130578 + 0.130578i
\(645\) 0 0
\(646\) −2.92893 + 1.75736i −0.115237 + 0.0691424i
\(647\) −12.4853 −0.490847 −0.245424 0.969416i \(-0.578927\pi\)
−0.245424 + 0.969416i \(0.578927\pi\)
\(648\) 7.12132 7.12132i 0.279752 0.279752i
\(649\) −1.00000 + 2.41421i −0.0392534 + 0.0947662i
\(650\) 0 0
\(651\) −9.65685 4.00000i −0.378482 0.156772i
\(652\) 8.70711 + 21.0208i 0.340997 + 0.823239i
\(653\) 23.8995 9.89949i 0.935260 0.387397i 0.137588 0.990490i \(-0.456065\pi\)
0.797671 + 0.603092i \(0.206065\pi\)
\(654\) −12.8284 12.8284i −0.501631 0.501631i
\(655\) 0 0
\(656\) −10.3640 + 4.29289i −0.404645 + 0.167609i
\(657\) −0.849242 2.05025i −0.0331321 0.0799880i
\(658\) −13.6569 5.65685i −0.532400 0.220527i
\(659\) 39.3137i 1.53144i 0.643171 + 0.765722i \(0.277618\pi\)
−0.643171 + 0.765722i \(0.722382\pi\)
\(660\) 0 0
\(661\) 12.7279 12.7279i 0.495059 0.495059i −0.414837 0.909896i \(-0.636161\pi\)
0.909896 + 0.414837i \(0.136161\pi\)
\(662\) −27.6985 −1.07653
\(663\) 0.928932 + 6.24264i 0.0360767 + 0.242444i
\(664\) −6.24264 −0.242261
\(665\) 0 0
\(666\) −0.343146 + 0.828427i −0.0132966 + 0.0321009i
\(667\) 4.68629i 0.181454i
\(668\) −18.2426 7.55635i −0.705829 0.292364i
\(669\) −17.3137 41.7990i −0.669387 1.61604i
\(670\) 0 0
\(671\) 23.3137 + 23.3137i 0.900016 + 0.900016i
\(672\) 2.00000 + 2.00000i 0.0771517 + 0.0771517i
\(673\) −0.949747 + 0.393398i −0.0366101 + 0.0151644i −0.400913 0.916116i \(-0.631307\pi\)
0.364303 + 0.931280i \(0.381307\pi\)
\(674\) −4.46447 10.7782i −0.171965 0.415160i
\(675\) 0 0
\(676\) 12.3137i 0.473604i
\(677\) 4.48528 10.8284i 0.172383 0.416170i −0.813949 0.580936i \(-0.802687\pi\)
0.986333 + 0.164766i \(0.0526867\pi\)
\(678\) −12.0711 + 12.0711i −0.463587 + 0.463587i
\(679\) −8.48528 −0.325635
\(680\) 0 0
\(681\) −37.5563 −1.43916
\(682\) 11.6569 11.6569i 0.446364 0.446364i
\(683\) 4.15076 10.0208i 0.158824 0.383436i −0.824356 0.566071i \(-0.808463\pi\)
0.983181 + 0.182635i \(0.0584628\pi\)
\(684\) 0.343146i 0.0131205i
\(685\) 0 0
\(686\) 6.82843 + 16.4853i 0.260711 + 0.629411i
\(687\) 31.5563 13.0711i 1.20395 0.498692i
\(688\) −1.24264 1.24264i −0.0473752 0.0473752i
\(689\) −0.485281 0.485281i −0.0184877 0.0184877i
\(690\) 0 0
\(691\) −17.9914 43.4350i −0.684424 1.65235i −0.755723 0.654891i \(-0.772714\pi\)
0.0712988 0.997455i \(-0.477286\pi\)
\(692\) −5.41421 2.24264i −0.205818 0.0852524i
\(693\) 2.82843i 0.107443i
\(694\) −6.19239 + 14.9497i −0.235060 + 0.567485i
\(695\) 0 0
\(696\) −2.82843 −0.107211
\(697\) 37.1630 + 27.5355i 1.40765 + 1.04298i
\(698\) 19.6569 0.744023
\(699\) −13.7279 + 13.7279i −0.519238 + 0.519238i
\(700\) 0 0
\(701\) 1.51472i 0.0572101i 0.999591 + 0.0286051i \(0.00910652\pi\)
−0.999591 + 0.0286051i \(0.990893\pi\)
\(702\) −3.65685 1.51472i −0.138019 0.0571694i
\(703\) 0.686292 + 1.65685i 0.0258840 + 0.0624894i
\(704\) −4.12132 + 1.70711i −0.155328 + 0.0643390i
\(705\) 0 0
\(706\) −10.1716 10.1716i −0.382812 0.382812i
\(707\) −6.14214 + 2.54416i −0.230999 + 0.0956828i
\(708\) −0.414214 1.00000i −0.0155671 0.0375823i
\(709\) −5.75736 2.38478i −0.216222 0.0895622i 0.271943 0.962313i \(-0.412334\pi\)
−0.488165 + 0.872751i \(0.662334\pi\)
\(710\) 0 0
\(711\) −0.828427 + 2.00000i −0.0310684 + 0.0750059i
\(712\) −10.6569 + 10.6569i −0.399382 + 0.399382i
\(713\) −11.3137 −0.423702
\(714\) 2.82843 11.3137i 0.105851 0.423405i
\(715\) 0 0
\(716\) −18.2426 + 18.2426i −0.681759 + 0.681759i
\(717\) 14.9706 36.1421i 0.559086 1.34975i
\(718\) 11.3137i 0.422224i
\(719\) 4.00000 + 1.65685i 0.149175 + 0.0617902i 0.456022 0.889969i \(-0.349274\pi\)
−0.306847 + 0.951759i \(0.599274\pi\)
\(720\) 0 0
\(721\) 17.6569 7.31371i 0.657576 0.272377i
\(722\) −12.9497 12.9497i −0.481940 0.481940i
\(723\) −25.9706 25.9706i −0.965856 0.965856i
\(724\) 5.65685 2.34315i 0.210235 0.0870823i
\(725\) 0 0
\(726\) −15.1924 6.29289i −0.563842 0.233551i
\(727\) 32.2843i 1.19736i 0.800989 + 0.598679i \(0.204307\pi\)
−0.800989 + 0.598679i \(0.795693\pi\)
\(728\) 0.485281 1.17157i 0.0179857 0.0434214i
\(729\) 15.7782 15.7782i 0.584377 0.584377i
\(730\) 0 0
\(731\) −1.75736 + 7.02944i −0.0649983 + 0.259993i
\(732\) −13.6569 −0.504772
\(733\) 9.89949 9.89949i 0.365646 0.365646i −0.500240 0.865887i \(-0.666755\pi\)
0.865887 + 0.500240i \(0.166755\pi\)
\(734\) 7.17157 17.3137i 0.264708 0.639061i
\(735\) 0 0
\(736\) 2.82843 + 1.17157i 0.104257 + 0.0431847i
\(737\) 12.6569 + 30.5563i 0.466221 + 1.12556i
\(738\) 4.29289 1.77817i 0.158024 0.0654555i
\(739\) −0.485281 0.485281i −0.0178514 0.0178514i 0.698125 0.715976i \(-0.254018\pi\)
−0.715976 + 0.698125i \(0.754018\pi\)
\(740\) 0 0
\(741\) 1.17157 0.485281i 0.0430388 0.0178273i
\(742\) 0.485281 + 1.17157i 0.0178152 + 0.0430098i
\(743\) −23.8995 9.89949i −0.876787 0.363177i −0.101537 0.994832i \(-0.532376\pi\)
−0.775250 + 0.631654i \(0.782376\pi\)
\(744\) 6.82843i 0.250342i
\(745\) 0 0
\(746\) −7.41421 + 7.41421i −0.271454 + 0.271454i
\(747\) 2.58579 0.0946090
\(748\) 14.7782 + 10.9497i 0.540344 + 0.400362i
\(749\) 17.8579 0.652512
\(750\) 0 0
\(751\) 9.51472 22.9706i 0.347197 0.838208i −0.649752 0.760147i \(-0.725127\pi\)
0.996949 0.0780611i \(-0.0248729\pi\)
\(752\) 9.65685i 0.352149i
\(753\) −31.9706 13.2426i −1.16507 0.482589i
\(754\) 0.485281 + 1.17157i 0.0176729 + 0.0426662i
\(755\) 0 0
\(756\) 5.17157 + 5.17157i 0.188088 + 0.188088i
\(757\) 7.75736 + 7.75736i 0.281946 + 0.281946i 0.833885 0.551939i \(-0.186112\pi\)
−0.551939 + 0.833885i \(0.686112\pi\)
\(758\) −8.60660 + 3.56497i −0.312606 + 0.129486i
\(759\) 9.65685 + 23.3137i 0.350522 + 0.846234i
\(760\) 0 0
\(761\) 53.2548i 1.93049i −0.261354 0.965243i \(-0.584169\pi\)
0.261354 0.965243i \(-0.415831\pi\)
\(762\) −9.17157 + 22.1421i −0.332251 + 0.802125i
\(763\) 10.6274 10.6274i 0.384738 0.384738i
\(764\) −2.82843 −0.102329
\(765\) 0 0
\(766\) −30.1421 −1.08908
\(767\) −0.343146 + 0.343146i −0.0123903 + 0.0123903i
\(768\) 0.707107 1.70711i 0.0255155 0.0615999i
\(769\) 26.3431i 0.949958i −0.879997 0.474979i \(-0.842456\pi\)
0.879997 0.474979i \(-0.157544\pi\)
\(770\) 0 0
\(771\) 5.82843 + 14.0711i 0.209906 + 0.506757i
\(772\) −11.3640 + 4.70711i −0.408998 + 0.169412i
\(773\) −2.58579 2.58579i −0.0930043 0.0930043i 0.659074 0.752078i \(-0.270948\pi\)
−0.752078 + 0.659074i \(0.770948\pi\)
\(774\) 0.514719 + 0.514719i 0.0185012 + 0.0185012i
\(775\) 0 0
\(776\) 2.12132 + 5.12132i 0.0761510 + 0.183845i
\(777\) −5.65685 2.34315i −0.202939 0.0840599i
\(778\) 3.17157i 0.113706i
\(779\) 3.55635 8.58579i 0.127419 0.307618i
\(780\) 0 0
\(781\) 9.65685 0.345549
\(782\) −1.85786 12.4853i −0.0664371 0.446473i
\(783\) −7.31371 −0.261371
\(784\) 3.29289 3.29289i 0.117603 0.117603i
\(785\) 0 0
\(786\) 0.242641i 0.00865471i
\(787\) 17.6066 + 7.29289i 0.627608 + 0.259964i 0.673736 0.738972i \(-0.264688\pi\)
−0.0461286 + 0.998936i \(0.514688\pi\)
\(788\) −7.65685 18.4853i −0.272764 0.658511i
\(789\) −13.6569 + 5.65685i −0.486197 + 0.201389i
\(790\) 0 0
\(791\) −10.0000 10.0000i −0.355559 0.355559i
\(792\) 1.70711 0.707107i 0.0606594 0.0251259i
\(793\) 2.34315 + 5.65685i 0.0832075 + 0.200881i
\(794\) 7.65685 + 3.17157i 0.271732 + 0.112555i
\(795\) 0 0
\(796\) −8.00000 + 19.3137i −0.283552 + 0.684556i
\(797\) −18.8701 + 18.8701i −0.668412 + 0.668412i −0.957348 0.288937i \(-0.906698\pi\)
0.288937 + 0.957348i \(0.406698\pi\)
\(798\) −2.34315 −0.0829465
\(799\) 34.1421 20.4853i 1.20786 0.724717i
\(800\) 0 0
\(801\) 4.41421 4.41421i 0.155969 0.155969i
\(802\) 9.19239 22.1924i 0.324595 0.783640i
\(803\) 23.8995i 0.843395i
\(804\) −12.6569 5.24264i −0.446373 0.184894i
\(805\) 0 0
\(806\) 2.82843 1.17157i 0.0996271 0.0412669i
\(807\) −10.0000 10.0000i −0.352017 0.352017i
\(808\) 3.07107 + 3.07107i 0.108040 + 0.108040i
\(809\) −43.1630 + 17.8787i −1.51753 + 0.628581i −0.977095 0.212806i \(-0.931740\pi\)
−0.540434 + 0.841386i \(0.681740\pi\)
\(810\) 0 0
\(811\) 45.5061 + 18.8492i 1.59794 + 0.661886i 0.991122 0.132958i \(-0.0424475\pi\)
0.606813 + 0.794844i \(0.292447\pi\)
\(812\) 2.34315i 0.0822283i
\(813\) −10.4853 + 25.3137i −0.367735 + 0.887791i
\(814\) 6.82843 6.82843i 0.239336 0.239336i
\(815\) 0 0
\(816\) −7.53553 + 1.12132i −0.263796 + 0.0392541i
\(817\) 1.45584 0.0509335
\(818\) −11.0000 + 11.0000i −0.384606 + 0.384606i
\(819\) −0.201010 + 0.485281i −0.00702386 + 0.0169571i
\(820\) 0 0
\(821\) −0.343146 0.142136i −0.0119759 0.00496057i 0.376687 0.926340i \(-0.377063\pi\)
−0.388663 + 0.921380i \(0.627063\pi\)
\(822\) 1.65685 + 4.00000i 0.0577894 + 0.139516i
\(823\) −40.2843 + 16.6863i −1.40422 + 0.581648i −0.950844 0.309671i \(-0.899781\pi\)
−0.453378 + 0.891319i \(0.649781\pi\)
\(824\) −8.82843 8.82843i −0.307553 0.307553i
\(825\) 0 0
\(826\) 0.828427 0.343146i 0.0288247 0.0119396i
\(827\) 9.15076 + 22.0919i 0.318203 + 0.768210i 0.999350 + 0.0360629i \(0.0114817\pi\)
−0.681147 + 0.732147i \(0.738518\pi\)
\(828\) −1.17157 0.485281i −0.0407150 0.0168647i
\(829\) 20.1421i 0.699565i 0.936831 + 0.349783i \(0.113745\pi\)
−0.936831 + 0.349783i \(0.886255\pi\)
\(830\) 0 0
\(831\) −30.9706 + 30.9706i −1.07436 + 1.07436i
\(832\) −0.828427 −0.0287205
\(833\) −18.6274 4.65685i −0.645402 0.161350i
\(834\) −3.41421 −0.118225
\(835\) 0 0
\(836\) 1.41421 3.41421i 0.0489116 0.118083i
\(837\) 17.6569i 0.610310i
\(838\) 15.9497 + 6.60660i 0.550975 + 0.228221i
\(839\) 18.5269 + 44.7279i 0.639620 + 1.54418i 0.827187 + 0.561927i \(0.189940\pi\)
−0.187566 + 0.982252i \(0.560060\pi\)
\(840\) 0 0
\(841\) −18.8492 18.8492i −0.649974 0.649974i
\(842\) 11.0711 + 11.0711i 0.381534 + 0.381534i
\(843\) 24.4853 10.1421i 0.843318 0.349314i
\(844\) 0.0502525 + 0.121320i 0.00172976 + 0.00417602i
\(845\) 0 0
\(846\) 4.00000i 0.137523i
\(847\) 5.21320 12.5858i 0.179128 0.432453i
\(848\) 0.585786 0.585786i 0.0201160 0.0201160i
\(849\) −2.10051 −0.0720891
\(850\) 0 0
\(851\) −6.62742 −0.227185
\(852\) −2.82843 + 2.82843i −0.0969003 + 0.0969003i
\(853\) 14.5269 35.0711i 0.497392 1.20081i −0.453491 0.891261i \(-0.649822\pi\)
0.950883 0.309550i \(-0.100178\pi\)
\(854\) 11.3137i 0.387147i
\(855\) 0 0
\(856\) −4.46447 10.7782i −0.152592 0.368390i
\(857\) 37.1924 15.4056i 1.27047 0.526245i 0.357361 0.933966i \(-0.383676\pi\)
0.913106 + 0.407721i \(0.133676\pi\)
\(858\) −4.82843 4.82843i −0.164840 0.164840i
\(859\) 0.556349 + 0.556349i 0.0189824 + 0.0189824i 0.716534 0.697552i \(-0.245727\pi\)
−0.697552 + 0.716534i \(0.745727\pi\)
\(860\) 0 0
\(861\) 12.1421 + 29.3137i 0.413803 + 0.999009i
\(862\) 13.3137 + 5.51472i 0.453467 + 0.187832i
\(863\) 0.970563i 0.0330383i −0.999864 0.0165192i \(-0.994742\pi\)
0.999864 0.0165192i \(-0.00525845\pi\)
\(864\) 1.82843 4.41421i 0.0622044 0.150175i
\(865\) 0 0
\(866\) −12.9706 −0.440758
\(867\) 19.9497 + 24.2635i 0.677529 + 0.824030i
\(868\) −5.65685 −0.192006
\(869\) 16.4853 16.4853i 0.559225 0.559225i
\(870\) 0 0
\(871\) 6.14214i 0.208118i
\(872\) −9.07107 3.75736i −0.307185 0.127240i
\(873\) −0.878680 2.12132i −0.0297388 0.0717958i
\(874\) −2.34315 + 0.970563i −0.0792581 + 0.0328298i
\(875\) 0 0
\(876\) −7.00000 7.00000i −0.236508 0.236508i
\(877\) −9.89949 + 4.10051i −0.334282 + 0.138464i −0.543510 0.839403i \(-0.682905\pi\)
0.209228 + 0.977867i \(0.432905\pi\)
\(878\) −8.82843 21.3137i −0.297945 0.719303i
\(879\) 37.5563 + 15.5563i 1.26674 + 0.524703i
\(880\) 0 0
\(881\) −6.92031 + 16.7071i −0.233151 + 0.562877i −0.996545 0.0830568i \(-0.973532\pi\)
0.763394 + 0.645934i \(0.223532\pi\)
\(882\) −1.36396 + 1.36396i −0.0459270 + 0.0459270i
\(883\) −34.5269 −1.16192 −0.580962 0.813931i \(-0.697323\pi\)
−0.580962 + 0.813931i \(0.697323\pi\)
\(884\) 1.75736 + 2.92893i 0.0591064 + 0.0985106i
\(885\) 0 0
\(886\) −26.0711 + 26.0711i −0.875875 + 0.875875i
\(887\) 0.970563 2.34315i 0.0325883 0.0786751i −0.906748 0.421674i \(-0.861443\pi\)
0.939336 + 0.342999i \(0.111443\pi\)
\(888\) 4.00000i 0.134231i
\(889\) −18.3431 7.59798i −0.615209 0.254828i
\(890\) 0 0
\(891\) 41.5061 17.1924i 1.39051 0.575967i
\(892\) −17.3137 17.3137i −0.579706 0.579706i
\(893\) −5.65685 5.65685i −0.189299 0.189299i
\(894\) 26.7279 11.0711i 0.893915 0.370272i
\(895\) 0 0
\(896\) 1.41421 + 0.585786i 0.0472456 + 0.0195698i
\(897\) 4.68629i 0.156471i
\(898\) −2.12132 + 5.12132i −0.0707894 + 0.170901i
\(899\) 4.00000 4.00000i 0.133407 0.133407i
\(900\) 0 0
\(901\) −3.31371 0.828427i −0.110396 0.0275989i
\(902\) −50.0416 −1.66620
\(903\) −3.51472 + 3.51472i −0.116963 + 0.116963i
\(904\) −3.53553 + 8.53553i −0.117590 + 0.283888i
\(905\) 0 0
\(906\) −37.7990 15.6569i −1.25579 0.520164i
\(907\) −5.60660 13.5355i −0.186164 0.449440i 0.803051 0.595910i \(-0.203209\pi\)
−0.989215 + 0.146470i \(0.953209\pi\)
\(908\) −18.7782 + 7.77817i −0.623176 + 0.258128i
\(909\) −1.27208 1.27208i −0.0421922 0.0421922i
\(910\) 0 0
\(911\) −21.5563 + 8.92893i −0.714194 + 0.295829i −0.710039 0.704163i \(-0.751323\pi\)
−0.00415500 + 0.999991i \(0.501323\pi\)
\(912\) 0.585786 + 1.41421i 0.0193973 + 0.0468293i
\(913\) −25.7279 10.6569i −0.851470 0.352690i
\(914\) 4.97056i 0.164412i
\(915\) 0 0
\(916\) 13.0711 13.0711i 0.431880 0.431880i
\(917\) −0.201010 −0.00663794
\(918\) −19.4853 + 2.89949i −0.643110 + 0.0956976i
\(919\) −2.34315 −0.0772932 −0.0386466 0.999253i \(-0.512305\pi\)
−0.0386466 + 0.999253i \(0.512305\pi\)
\(920\) 0 0
\(921\) −4.48528 + 10.8284i −0.147795 + 0.356809i
\(922\) 34.9706i 1.15169i
\(923\) 1.65685 + 0.686292i 0.0545360 + 0.0225896i
\(924\) 4.82843 + 11.6569i 0.158844 + 0.383482i
\(925\) 0 0
\(926\) 2.34315 + 2.34315i 0.0770005 + 0.0770005i
\(927\) 3.65685 + 3.65685i 0.120107 + 0.120107i
\(928\) −1.41421 + 0.585786i −0.0464238 + 0.0192294i
\(929\) −3.53553 8.53553i −0.115997 0.280042i 0.855209 0.518284i \(-0.173429\pi\)
−0.971206 + 0.238242i \(0.923429\pi\)
\(930\) 0 0
\(931\) 3.85786i 0.126436i
\(932\) −4.02082 + 9.70711i −0.131706 + 0.317967i
\(933\) −19.6569 + 19.6569i −0.643537 + 0.643537i
\(934\) −2.48528 −0.0813209
\(935\) 0 0
\(936\) 0.343146 0.0112161
\(937\) 3.75736 3.75736i 0.122748 0.122748i −0.643064 0.765812i \(-0.722337\pi\)
0.765812 + 0.643064i \(0.222337\pi\)
\(938\) 4.34315 10.4853i 0.141809 0.342357i
\(939\) 25.0711i 0.818163i
\(940\) 0 0
\(941\) 7.51472 + 18.1421i 0.244973 + 0.591417i 0.997763 0.0668433i \(-0.0212928\pi\)
−0.752791 + 0.658260i \(0.771293\pi\)
\(942\) −22.7279 + 9.41421i −0.740516 + 0.306732i
\(943\) 24.2843 + 24.2843i 0.790805 + 0.790805i
\(944\) −0.414214 0.414214i −0.0134815 0.0134815i
\(945\) 0 0
\(946\) −3.00000 7.24264i −0.0975384 0.235479i
\(947\) 48.3345 + 20.0208i 1.57066 + 0.650589i 0.986900 0.161336i \(-0.0515803\pi\)
0.583761 + 0.811925i \(0.301580\pi\)
\(948\) 9.65685i 0.313640i
\(949\) −1.69848 + 4.10051i −0.0551352 + 0.133108i
\(950\) 0 0
\(951\) −40.9706 −1.32856
\(952\) −0.928932 6.24264i −0.0301069 0.202325i
\(953\) 11.5563 0.374347 0.187173 0.982327i \(-0.440067\pi\)
0.187173 + 0.982327i \(0.440067\pi\)
\(954\) −0.242641 + 0.242641i −0.00785578 + 0.00785578i
\(955\) 0 0
\(956\) 21.1716i 0.684738i
\(957\) −11.6569 4.82843i −0.376813 0.156081i
\(958\) 9.51472 + 22.9706i 0.307407 + 0.742145i
\(959\) −3.31371 + 1.37258i −0.107005 + 0.0443230i
\(960\) 0 0
\(961\) 12.2635 + 12.2635i 0.395595 + 0.395595i
\(962\) 1.65685 0.686292i 0.0534191 0.0221269i
\(963\) 1.84924 + 4.46447i 0.0595910 + 0.143865i
\(964\) −18.3640 7.60660i −0.591463 0.244992i
\(965\) 0 0
\(966\) 3.31371 8.00000i 0.106617 0.257396i
\(967\) −9.65685 + 9.65685i −0.310543 + 0.310543i −0.845120 0.534577i \(-0.820471\pi\)
0.534577 + 0.845120i \(0.320471\pi\)
\(968\) −8.89949 −0.286041
\(969\) 3.75736 5.07107i 0.120704 0.162906i
\(970\) 0 0
\(971\) 15.0416 15.0416i 0.482709 0.482709i −0.423287 0.905996i \(-0.639124\pi\)
0.905996 + 0.423287i \(0.139124\pi\)
\(972\) −1.63604 + 3.94975i −0.0524760 + 0.126688i
\(973\) 2.82843i 0.0906752i
\(974\) 20.4853 + 8.48528i 0.656391 + 0.271886i
\(975\) 0 0
\(976\) −6.82843 + 2.82843i −0.218573 + 0.0905357i
\(977\) −20.1127 20.1127i −0.643462 0.643462i 0.307943 0.951405i \(-0.400359\pi\)
−0.951405 + 0.307943i \(0.900359\pi\)
\(978\) −29.7279 29.7279i −0.950594 0.950594i
\(979\) −62.1127 + 25.7279i −1.98513 + 0.822268i
\(980\) 0 0
\(981\) 3.75736 + 1.55635i 0.119963 + 0.0496904i
\(982\) 15.4558i 0.493216i
\(983\) −10.3431 + 24.9706i −0.329895 + 0.796437i 0.668704 + 0.743529i \(0.266849\pi\)
−0.998599 + 0.0529088i \(0.983151\pi\)
\(984\) 14.6569 14.6569i 0.467243 0.467243i
\(985\) 0 0
\(986\) 5.07107 + 3.75736i 0.161496 + 0.119659i
\(987\) 27.3137 0.869405
\(988\) 0.485281 0.485281i 0.0154389 0.0154389i
\(989\) −2.05887 + 4.97056i −0.0654684 + 0.158055i
\(990\) 0 0
\(991\) −42.2843 17.5147i −1.34320 0.556373i −0.408812 0.912619i \(-0.634057\pi\)
−0.934392 + 0.356245i \(0.884057\pi\)
\(992\) 1.41421 + 3.41421i 0.0449013 + 0.108401i
\(993\) 47.2843 19.5858i 1.50052 0.621536i
\(994\) −2.34315 2.34315i −0.0743201 0.0743201i
\(995\) 0 0
\(996\) 10.6569 4.41421i 0.337675 0.139870i
\(997\) 4.54416 + 10.9706i 0.143915 + 0.347441i 0.979357 0.202137i \(-0.0647885\pi\)
−0.835442 + 0.549578i \(0.814789\pi\)
\(998\) 34.0208 + 14.0919i 1.07691 + 0.446071i
\(999\) 10.3431i 0.327243i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.l.a.501.1 4
5.2 odd 4 850.2.o.a.399.1 4
5.3 odd 4 850.2.o.b.399.1 4
5.4 even 2 34.2.d.a.25.1 yes 4
15.14 odd 2 306.2.l.c.127.1 4
17.15 even 8 inner 850.2.l.a.151.1 4
20.19 odd 2 272.2.v.b.161.1 4
85.4 even 4 578.2.d.c.179.1 4
85.9 even 8 578.2.d.a.155.1 4
85.14 odd 16 578.2.c.f.327.4 8
85.19 even 8 578.2.d.b.423.1 4
85.24 odd 16 578.2.a.i.1.4 4
85.29 odd 16 578.2.c.f.251.4 8
85.32 odd 8 850.2.o.b.49.1 4
85.39 odd 16 578.2.c.f.251.1 8
85.44 odd 16 578.2.a.i.1.1 4
85.49 even 8 34.2.d.a.15.1 4
85.54 odd 16 578.2.c.f.327.1 8
85.59 even 8 578.2.d.c.155.1 4
85.64 even 4 578.2.d.a.179.1 4
85.74 odd 16 578.2.b.d.577.4 4
85.79 odd 16 578.2.b.d.577.1 4
85.83 odd 8 850.2.o.a.49.1 4
85.84 even 2 578.2.d.b.399.1 4
255.44 even 16 5202.2.a.bw.1.4 4
255.134 odd 8 306.2.l.c.253.1 4
255.194 even 16 5202.2.a.bw.1.1 4
340.219 odd 8 272.2.v.b.49.1 4
340.279 even 16 4624.2.a.bn.1.1 4
340.299 even 16 4624.2.a.bn.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.d.a.15.1 4 85.49 even 8
34.2.d.a.25.1 yes 4 5.4 even 2
272.2.v.b.49.1 4 340.219 odd 8
272.2.v.b.161.1 4 20.19 odd 2
306.2.l.c.127.1 4 15.14 odd 2
306.2.l.c.253.1 4 255.134 odd 8
578.2.a.i.1.1 4 85.44 odd 16
578.2.a.i.1.4 4 85.24 odd 16
578.2.b.d.577.1 4 85.79 odd 16
578.2.b.d.577.4 4 85.74 odd 16
578.2.c.f.251.1 8 85.39 odd 16
578.2.c.f.251.4 8 85.29 odd 16
578.2.c.f.327.1 8 85.54 odd 16
578.2.c.f.327.4 8 85.14 odd 16
578.2.d.a.155.1 4 85.9 even 8
578.2.d.a.179.1 4 85.64 even 4
578.2.d.b.399.1 4 85.84 even 2
578.2.d.b.423.1 4 85.19 even 8
578.2.d.c.155.1 4 85.59 even 8
578.2.d.c.179.1 4 85.4 even 4
850.2.l.a.151.1 4 17.15 even 8 inner
850.2.l.a.501.1 4 1.1 even 1 trivial
850.2.o.a.49.1 4 85.83 odd 8
850.2.o.a.399.1 4 5.2 odd 4
850.2.o.b.49.1 4 85.32 odd 8
850.2.o.b.399.1 4 5.3 odd 4
4624.2.a.bn.1.1 4 340.279 even 16
4624.2.a.bn.1.4 4 340.299 even 16
5202.2.a.bw.1.1 4 255.194 even 16
5202.2.a.bw.1.4 4 255.44 even 16