Properties

Label 578.2.d.a.155.1
Level $578$
Weight $2$
Character 578.155
Analytic conductor $4.615$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [578,2,Mod(155,578)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(578, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("578.155"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 578 = 2 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 578.d (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,4,-8,0,4,0,8,0,0,0,-8,-4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(18)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.61535323683\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 155.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 578.155
Dual form 578.2.d.a.179.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +(-1.70711 + 0.707107i) q^{3} +1.00000i q^{4} +(1.41421 + 3.41421i) q^{5} +(1.70711 + 0.707107i) q^{6} +(-0.585786 + 1.41421i) q^{7} +(0.707107 - 0.707107i) q^{8} +(0.292893 - 0.292893i) q^{9} +(1.41421 - 3.41421i) q^{10} +(4.12132 + 1.70711i) q^{11} +(-0.707107 - 1.70711i) q^{12} +0.828427i q^{13} +(1.41421 - 0.585786i) q^{14} +(-4.82843 - 4.82843i) q^{15} -1.00000 q^{16} -0.414214 q^{18} +(-0.585786 - 0.585786i) q^{19} +(-3.41421 + 1.41421i) q^{20} -2.82843i q^{21} +(-1.70711 - 4.12132i) q^{22} +(-2.82843 - 1.17157i) q^{23} +(-0.707107 + 1.70711i) q^{24} +(-6.12132 + 6.12132i) q^{25} +(0.585786 - 0.585786i) q^{26} +(1.82843 - 4.41421i) q^{27} +(-1.41421 - 0.585786i) q^{28} +(0.585786 + 1.41421i) q^{29} +6.82843i q^{30} +(-3.41421 + 1.41421i) q^{31} +(0.707107 + 0.707107i) q^{32} -8.24264 q^{33} -5.65685 q^{35} +(0.292893 + 0.292893i) q^{36} +(2.00000 - 0.828427i) q^{37} +0.828427i q^{38} +(-0.585786 - 1.41421i) q^{39} +(3.41421 + 1.41421i) q^{40} +(-4.29289 + 10.3640i) q^{41} +(-2.00000 + 2.00000i) q^{42} +(1.24264 - 1.24264i) q^{43} +(-1.70711 + 4.12132i) q^{44} +(1.41421 + 0.585786i) q^{45} +(1.17157 + 2.82843i) q^{46} -9.65685i q^{47} +(1.70711 - 0.707107i) q^{48} +(3.29289 + 3.29289i) q^{49} +8.65685 q^{50} -0.828427 q^{52} +(-0.585786 - 0.585786i) q^{53} +(-4.41421 + 1.82843i) q^{54} +16.4853i q^{55} +(0.585786 + 1.41421i) q^{56} +(1.41421 + 0.585786i) q^{57} +(0.585786 - 1.41421i) q^{58} +(-0.414214 + 0.414214i) q^{59} +(4.82843 - 4.82843i) q^{60} +(-2.82843 + 6.82843i) q^{61} +(3.41421 + 1.41421i) q^{62} +(0.242641 + 0.585786i) q^{63} -1.00000i q^{64} +(-2.82843 + 1.17157i) q^{65} +(5.82843 + 5.82843i) q^{66} -7.41421 q^{67} +5.65685 q^{69} +(4.00000 + 4.00000i) q^{70} +(2.00000 - 0.828427i) q^{71} -0.414214i q^{72} +(2.05025 + 4.94975i) q^{73} +(-2.00000 - 0.828427i) q^{74} +(6.12132 - 14.7782i) q^{75} +(0.585786 - 0.585786i) q^{76} +(-4.82843 + 4.82843i) q^{77} +(-0.585786 + 1.41421i) q^{78} +(-4.82843 - 2.00000i) q^{79} +(-1.41421 - 3.41421i) q^{80} +10.0711i q^{81} +(10.3640 - 4.29289i) q^{82} +(-4.41421 - 4.41421i) q^{83} +2.82843 q^{84} -1.75736 q^{86} +(-2.00000 - 2.00000i) q^{87} +(4.12132 - 1.70711i) q^{88} -15.0711i q^{89} +(-0.585786 - 1.41421i) q^{90} +(-1.17157 - 0.485281i) q^{91} +(1.17157 - 2.82843i) q^{92} +(4.82843 - 4.82843i) q^{93} +(-6.82843 + 6.82843i) q^{94} +(1.17157 - 2.82843i) q^{95} +(-1.70711 - 0.707107i) q^{96} +(2.12132 + 5.12132i) q^{97} -4.65685i q^{98} +(1.70711 - 0.707107i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{6} - 8 q^{7} + 4 q^{9} + 8 q^{11} - 8 q^{15} - 4 q^{16} + 4 q^{18} - 8 q^{19} - 8 q^{20} - 4 q^{22} - 16 q^{25} + 8 q^{26} - 4 q^{27} + 8 q^{29} - 8 q^{31} - 16 q^{33} + 4 q^{36} + 8 q^{37}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/578\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) −1.70711 + 0.707107i −0.985599 + 0.408248i −0.816497 0.577350i \(-0.804087\pi\)
−0.169102 + 0.985599i \(0.554087\pi\)
\(4\) 1.00000i 0.500000i
\(5\) 1.41421 + 3.41421i 0.632456 + 1.52688i 0.836526 + 0.547927i \(0.184583\pi\)
−0.204071 + 0.978956i \(0.565417\pi\)
\(6\) 1.70711 + 0.707107i 0.696923 + 0.288675i
\(7\) −0.585786 + 1.41421i −0.221406 + 0.534522i −0.995081 0.0990602i \(-0.968416\pi\)
0.773675 + 0.633583i \(0.218416\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0.292893 0.292893i 0.0976311 0.0976311i
\(10\) 1.41421 3.41421i 0.447214 1.07967i
\(11\) 4.12132 + 1.70711i 1.24262 + 0.514712i 0.904534 0.426401i \(-0.140219\pi\)
0.338091 + 0.941113i \(0.390219\pi\)
\(12\) −0.707107 1.70711i −0.204124 0.492799i
\(13\) 0.828427i 0.229764i 0.993379 + 0.114882i \(0.0366490\pi\)
−0.993379 + 0.114882i \(0.963351\pi\)
\(14\) 1.41421 0.585786i 0.377964 0.156558i
\(15\) −4.82843 4.82843i −1.24669 1.24669i
\(16\) −1.00000 −0.250000
\(17\) 0 0
\(18\) −0.414214 −0.0976311
\(19\) −0.585786 0.585786i −0.134389 0.134389i 0.636713 0.771101i \(-0.280294\pi\)
−0.771101 + 0.636713i \(0.780294\pi\)
\(20\) −3.41421 + 1.41421i −0.763441 + 0.316228i
\(21\) 2.82843i 0.617213i
\(22\) −1.70711 4.12132i −0.363956 0.878668i
\(23\) −2.82843 1.17157i −0.589768 0.244290i 0.0677829 0.997700i \(-0.478407\pi\)
−0.657551 + 0.753410i \(0.728407\pi\)
\(24\) −0.707107 + 1.70711i −0.144338 + 0.348462i
\(25\) −6.12132 + 6.12132i −1.22426 + 1.22426i
\(26\) 0.585786 0.585786i 0.114882 0.114882i
\(27\) 1.82843 4.41421i 0.351881 0.849516i
\(28\) −1.41421 0.585786i −0.267261 0.110703i
\(29\) 0.585786 + 1.41421i 0.108778 + 0.262613i 0.968890 0.247492i \(-0.0796065\pi\)
−0.860112 + 0.510105i \(0.829606\pi\)
\(30\) 6.82843i 1.24669i
\(31\) −3.41421 + 1.41421i −0.613211 + 0.254000i −0.667601 0.744520i \(-0.732679\pi\)
0.0543898 + 0.998520i \(0.482679\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) −8.24264 −1.43486
\(34\) 0 0
\(35\) −5.65685 −0.956183
\(36\) 0.292893 + 0.292893i 0.0488155 + 0.0488155i
\(37\) 2.00000 0.828427i 0.328798 0.136193i −0.212177 0.977231i \(-0.568055\pi\)
0.540975 + 0.841039i \(0.318055\pi\)
\(38\) 0.828427i 0.134389i
\(39\) −0.585786 1.41421i −0.0938009 0.226455i
\(40\) 3.41421 + 1.41421i 0.539835 + 0.223607i
\(41\) −4.29289 + 10.3640i −0.670437 + 1.61858i 0.110432 + 0.993884i \(0.464777\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) −2.00000 + 2.00000i −0.308607 + 0.308607i
\(43\) 1.24264 1.24264i 0.189501 0.189501i −0.605979 0.795480i \(-0.707219\pi\)
0.795480 + 0.605979i \(0.207219\pi\)
\(44\) −1.70711 + 4.12132i −0.257356 + 0.621312i
\(45\) 1.41421 + 0.585786i 0.210819 + 0.0873239i
\(46\) 1.17157 + 2.82843i 0.172739 + 0.417029i
\(47\) 9.65685i 1.40860i −0.709904 0.704298i \(-0.751262\pi\)
0.709904 0.704298i \(-0.248738\pi\)
\(48\) 1.70711 0.707107i 0.246400 0.102062i
\(49\) 3.29289 + 3.29289i 0.470413 + 0.470413i
\(50\) 8.65685 1.22426
\(51\) 0 0
\(52\) −0.828427 −0.114882
\(53\) −0.585786 0.585786i −0.0804640 0.0804640i 0.665729 0.746193i \(-0.268121\pi\)
−0.746193 + 0.665729i \(0.768121\pi\)
\(54\) −4.41421 + 1.82843i −0.600698 + 0.248817i
\(55\) 16.4853i 2.22287i
\(56\) 0.585786 + 1.41421i 0.0782790 + 0.188982i
\(57\) 1.41421 + 0.585786i 0.187317 + 0.0775893i
\(58\) 0.585786 1.41421i 0.0769175 0.185695i
\(59\) −0.414214 + 0.414214i −0.0539260 + 0.0539260i −0.733556 0.679630i \(-0.762141\pi\)
0.679630 + 0.733556i \(0.262141\pi\)
\(60\) 4.82843 4.82843i 0.623347 0.623347i
\(61\) −2.82843 + 6.82843i −0.362143 + 0.874291i 0.632843 + 0.774280i \(0.281888\pi\)
−0.994986 + 0.100011i \(0.968112\pi\)
\(62\) 3.41421 + 1.41421i 0.433606 + 0.179605i
\(63\) 0.242641 + 0.585786i 0.0305699 + 0.0738022i
\(64\) 1.00000i 0.125000i
\(65\) −2.82843 + 1.17157i −0.350823 + 0.145316i
\(66\) 5.82843 + 5.82843i 0.717430 + 0.717430i
\(67\) −7.41421 −0.905790 −0.452895 0.891564i \(-0.649609\pi\)
−0.452895 + 0.891564i \(0.649609\pi\)
\(68\) 0 0
\(69\) 5.65685 0.681005
\(70\) 4.00000 + 4.00000i 0.478091 + 0.478091i
\(71\) 2.00000 0.828427i 0.237356 0.0983162i −0.260835 0.965383i \(-0.583998\pi\)
0.498191 + 0.867067i \(0.333998\pi\)
\(72\) 0.414214i 0.0488155i
\(73\) 2.05025 + 4.94975i 0.239964 + 0.579324i 0.997279 0.0737261i \(-0.0234891\pi\)
−0.757315 + 0.653050i \(0.773489\pi\)
\(74\) −2.00000 0.828427i −0.232495 0.0963027i
\(75\) 6.12132 14.7782i 0.706829 1.70644i
\(76\) 0.585786 0.585786i 0.0671943 0.0671943i
\(77\) −4.82843 + 4.82843i −0.550250 + 0.550250i
\(78\) −0.585786 + 1.41421i −0.0663273 + 0.160128i
\(79\) −4.82843 2.00000i −0.543240 0.225018i 0.0941507 0.995558i \(-0.469986\pi\)
−0.637391 + 0.770540i \(0.719986\pi\)
\(80\) −1.41421 3.41421i −0.158114 0.381721i
\(81\) 10.0711i 1.11901i
\(82\) 10.3640 4.29289i 1.14451 0.474071i
\(83\) −4.41421 4.41421i −0.484523 0.484523i 0.422050 0.906573i \(-0.361311\pi\)
−0.906573 + 0.422050i \(0.861311\pi\)
\(84\) 2.82843 0.308607
\(85\) 0 0
\(86\) −1.75736 −0.189501
\(87\) −2.00000 2.00000i −0.214423 0.214423i
\(88\) 4.12132 1.70711i 0.439334 0.181978i
\(89\) 15.0711i 1.59753i −0.601643 0.798765i \(-0.705487\pi\)
0.601643 0.798765i \(-0.294513\pi\)
\(90\) −0.585786 1.41421i −0.0617473 0.149071i
\(91\) −1.17157 0.485281i −0.122814 0.0508713i
\(92\) 1.17157 2.82843i 0.122145 0.294884i
\(93\) 4.82843 4.82843i 0.500685 0.500685i
\(94\) −6.82843 + 6.82843i −0.704298 + 0.704298i
\(95\) 1.17157 2.82843i 0.120201 0.290191i
\(96\) −1.70711 0.707107i −0.174231 0.0721688i
\(97\) 2.12132 + 5.12132i 0.215387 + 0.519991i 0.994235 0.107222i \(-0.0341955\pi\)
−0.778848 + 0.627213i \(0.784196\pi\)
\(98\) 4.65685i 0.470413i
\(99\) 1.70711 0.707107i 0.171571 0.0710669i
\(100\) −6.12132 6.12132i −0.612132 0.612132i
\(101\) 4.34315 0.432159 0.216080 0.976376i \(-0.430673\pi\)
0.216080 + 0.976376i \(0.430673\pi\)
\(102\) 0 0
\(103\) 12.4853 1.23021 0.615106 0.788445i \(-0.289113\pi\)
0.615106 + 0.788445i \(0.289113\pi\)
\(104\) 0.585786 + 0.585786i 0.0574411 + 0.0574411i
\(105\) 9.65685 4.00000i 0.942412 0.390360i
\(106\) 0.828427i 0.0804640i
\(107\) −4.46447 10.7782i −0.431596 1.04197i −0.978773 0.204948i \(-0.934297\pi\)
0.547177 0.837017i \(-0.315703\pi\)
\(108\) 4.41421 + 1.82843i 0.424758 + 0.175940i
\(109\) 3.75736 9.07107i 0.359890 0.868851i −0.635425 0.772163i \(-0.719175\pi\)
0.995315 0.0966881i \(-0.0308249\pi\)
\(110\) 11.6569 11.6569i 1.11144 1.11144i
\(111\) −2.82843 + 2.82843i −0.268462 + 0.268462i
\(112\) 0.585786 1.41421i 0.0553516 0.133631i
\(113\) −8.53553 3.53553i −0.802955 0.332595i −0.0568160 0.998385i \(-0.518095\pi\)
−0.746140 + 0.665790i \(0.768095\pi\)
\(114\) −0.585786 1.41421i −0.0548639 0.132453i
\(115\) 11.3137i 1.05501i
\(116\) −1.41421 + 0.585786i −0.131306 + 0.0543889i
\(117\) 0.242641 + 0.242641i 0.0224321 + 0.0224321i
\(118\) 0.585786 0.0539260
\(119\) 0 0
\(120\) −6.82843 −0.623347
\(121\) 6.29289 + 6.29289i 0.572081 + 0.572081i
\(122\) 6.82843 2.82843i 0.618217 0.256074i
\(123\) 20.7279i 1.86897i
\(124\) −1.41421 3.41421i −0.127000 0.306605i
\(125\) −12.4853 5.17157i −1.11672 0.462560i
\(126\) 0.242641 0.585786i 0.0216162 0.0521860i
\(127\) 9.17157 9.17157i 0.813845 0.813845i −0.171363 0.985208i \(-0.554817\pi\)
0.985208 + 0.171363i \(0.0548169\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) −1.24264 + 3.00000i −0.109408 + 0.264135i
\(130\) 2.82843 + 1.17157i 0.248069 + 0.102754i
\(131\) −0.0502525 0.121320i −0.00439058 0.0105998i 0.921669 0.387977i \(-0.126826\pi\)
−0.926060 + 0.377377i \(0.876826\pi\)
\(132\) 8.24264i 0.717430i
\(133\) 1.17157 0.485281i 0.101588 0.0420792i
\(134\) 5.24264 + 5.24264i 0.452895 + 0.452895i
\(135\) 17.6569 1.51966
\(136\) 0 0
\(137\) −2.34315 −0.200188 −0.100094 0.994978i \(-0.531914\pi\)
−0.100094 + 0.994978i \(0.531914\pi\)
\(138\) −4.00000 4.00000i −0.340503 0.340503i
\(139\) −1.70711 + 0.707107i −0.144795 + 0.0599760i −0.453904 0.891051i \(-0.649969\pi\)
0.309109 + 0.951027i \(0.399969\pi\)
\(140\) 5.65685i 0.478091i
\(141\) 6.82843 + 16.4853i 0.575057 + 1.38831i
\(142\) −2.00000 0.828427i −0.167836 0.0695201i
\(143\) −1.41421 + 3.41421i −0.118262 + 0.285511i
\(144\) −0.292893 + 0.292893i −0.0244078 + 0.0244078i
\(145\) −4.00000 + 4.00000i −0.332182 + 0.332182i
\(146\) 2.05025 4.94975i 0.169680 0.409644i
\(147\) −7.94975 3.29289i −0.655684 0.271593i
\(148\) 0.828427 + 2.00000i 0.0680963 + 0.164399i
\(149\) 15.6569i 1.28266i 0.767265 + 0.641330i \(0.221617\pi\)
−0.767265 + 0.641330i \(0.778383\pi\)
\(150\) −14.7782 + 6.12132i −1.20663 + 0.499804i
\(151\) 15.6569 + 15.6569i 1.27414 + 1.27414i 0.943897 + 0.330240i \(0.107130\pi\)
0.330240 + 0.943897i \(0.392870\pi\)
\(152\) −0.828427 −0.0671943
\(153\) 0 0
\(154\) 6.82843 0.550250
\(155\) −9.65685 9.65685i −0.775657 0.775657i
\(156\) 1.41421 0.585786i 0.113228 0.0469005i
\(157\) 13.3137i 1.06255i 0.847200 + 0.531275i \(0.178287\pi\)
−0.847200 + 0.531275i \(0.821713\pi\)
\(158\) 2.00000 + 4.82843i 0.159111 + 0.384129i
\(159\) 1.41421 + 0.585786i 0.112154 + 0.0464559i
\(160\) −1.41421 + 3.41421i −0.111803 + 0.269917i
\(161\) 3.31371 3.31371i 0.261157 0.261157i
\(162\) 7.12132 7.12132i 0.559504 0.559504i
\(163\) −8.70711 + 21.0208i −0.681993 + 1.64648i 0.0783260 + 0.996928i \(0.475042\pi\)
−0.760319 + 0.649550i \(0.774958\pi\)
\(164\) −10.3640 4.29289i −0.809289 0.335219i
\(165\) −11.6569 28.1421i −0.907485 2.19086i
\(166\) 6.24264i 0.484523i
\(167\) −18.2426 + 7.55635i −1.41166 + 0.584728i −0.952750 0.303756i \(-0.901759\pi\)
−0.458908 + 0.888484i \(0.651759\pi\)
\(168\) −2.00000 2.00000i −0.154303 0.154303i
\(169\) 12.3137 0.947208
\(170\) 0 0
\(171\) −0.343146 −0.0262410
\(172\) 1.24264 + 1.24264i 0.0947505 + 0.0947505i
\(173\) −5.41421 + 2.24264i −0.411635 + 0.170505i −0.578884 0.815410i \(-0.696512\pi\)
0.167249 + 0.985915i \(0.446512\pi\)
\(174\) 2.82843i 0.214423i
\(175\) −5.07107 12.2426i −0.383337 0.925457i
\(176\) −4.12132 1.70711i −0.310656 0.128678i
\(177\) 0.414214 1.00000i 0.0311342 0.0751646i
\(178\) −10.6569 + 10.6569i −0.798765 + 0.798765i
\(179\) 18.2426 18.2426i 1.36352 1.36352i 0.494132 0.869387i \(-0.335486\pi\)
0.869387 0.494132i \(-0.164514\pi\)
\(180\) −0.585786 + 1.41421i −0.0436619 + 0.105409i
\(181\) 5.65685 + 2.34315i 0.420471 + 0.174165i 0.582879 0.812559i \(-0.301926\pi\)
−0.162408 + 0.986724i \(0.551926\pi\)
\(182\) 0.485281 + 1.17157i 0.0359714 + 0.0868428i
\(183\) 13.6569i 1.00954i
\(184\) −2.82843 + 1.17157i −0.208514 + 0.0863695i
\(185\) 5.65685 + 5.65685i 0.415900 + 0.415900i
\(186\) −6.82843 −0.500685
\(187\) 0 0
\(188\) 9.65685 0.704298
\(189\) 5.17157 + 5.17157i 0.376177 + 0.376177i
\(190\) −2.82843 + 1.17157i −0.205196 + 0.0849948i
\(191\) 2.82843i 0.204658i 0.994751 + 0.102329i \(0.0326294\pi\)
−0.994751 + 0.102329i \(0.967371\pi\)
\(192\) 0.707107 + 1.70711i 0.0510310 + 0.123200i
\(193\) 11.3640 + 4.70711i 0.817996 + 0.338825i 0.752139 0.659004i \(-0.229022\pi\)
0.0658565 + 0.997829i \(0.479022\pi\)
\(194\) 2.12132 5.12132i 0.152302 0.367689i
\(195\) 4.00000 4.00000i 0.286446 0.286446i
\(196\) −3.29289 + 3.29289i −0.235207 + 0.235207i
\(197\) 7.65685 18.4853i 0.545528 1.31702i −0.375246 0.926925i \(-0.622442\pi\)
0.920774 0.390096i \(-0.127558\pi\)
\(198\) −1.70711 0.707107i −0.121319 0.0502519i
\(199\) 8.00000 + 19.3137i 0.567105 + 1.36911i 0.903985 + 0.427565i \(0.140628\pi\)
−0.336880 + 0.941548i \(0.609372\pi\)
\(200\) 8.65685i 0.612132i
\(201\) 12.6569 5.24264i 0.892746 0.369787i
\(202\) −3.07107 3.07107i −0.216080 0.216080i
\(203\) −2.34315 −0.164457
\(204\) 0 0
\(205\) −41.4558 −2.89540
\(206\) −8.82843 8.82843i −0.615106 0.615106i
\(207\) −1.17157 + 0.485281i −0.0814299 + 0.0337294i
\(208\) 0.828427i 0.0574411i
\(209\) −1.41421 3.41421i −0.0978232 0.236166i
\(210\) −9.65685 4.00000i −0.666386 0.276026i
\(211\) 0.0502525 0.121320i 0.00345953 0.00835204i −0.922140 0.386856i \(-0.873561\pi\)
0.925600 + 0.378504i \(0.123561\pi\)
\(212\) 0.585786 0.585786i 0.0402320 0.0402320i
\(213\) −2.82843 + 2.82843i −0.193801 + 0.193801i
\(214\) −4.46447 + 10.7782i −0.305185 + 0.736781i
\(215\) 6.00000 + 2.48528i 0.409197 + 0.169495i
\(216\) −1.82843 4.41421i −0.124409 0.300349i
\(217\) 5.65685i 0.384012i
\(218\) −9.07107 + 3.75736i −0.614370 + 0.254480i
\(219\) −7.00000 7.00000i −0.473016 0.473016i
\(220\) −16.4853 −1.11144
\(221\) 0 0
\(222\) 4.00000 0.268462
\(223\) 17.3137 + 17.3137i 1.15941 + 1.15941i 0.984602 + 0.174809i \(0.0559309\pi\)
0.174809 + 0.984602i \(0.444069\pi\)
\(224\) −1.41421 + 0.585786i −0.0944911 + 0.0391395i
\(225\) 3.58579i 0.239052i
\(226\) 3.53553 + 8.53553i 0.235180 + 0.567775i
\(227\) 18.7782 + 7.77817i 1.24635 + 0.516256i 0.905694 0.423932i \(-0.139350\pi\)
0.340657 + 0.940188i \(0.389350\pi\)
\(228\) −0.585786 + 1.41421i −0.0387947 + 0.0936586i
\(229\) −13.0711 + 13.0711i −0.863760 + 0.863760i −0.991773 0.128012i \(-0.959140\pi\)
0.128012 + 0.991773i \(0.459140\pi\)
\(230\) −8.00000 + 8.00000i −0.527504 + 0.527504i
\(231\) 4.82843 11.6569i 0.317687 0.766965i
\(232\) 1.41421 + 0.585786i 0.0928477 + 0.0384588i
\(233\) −4.02082 9.70711i −0.263412 0.635934i 0.735733 0.677272i \(-0.236838\pi\)
−0.999145 + 0.0413382i \(0.986838\pi\)
\(234\) 0.343146i 0.0224321i
\(235\) 32.9706 13.6569i 2.15076 0.890875i
\(236\) −0.414214 0.414214i −0.0269630 0.0269630i
\(237\) 9.65685 0.627280
\(238\) 0 0
\(239\) 21.1716 1.36948 0.684738 0.728790i \(-0.259917\pi\)
0.684738 + 0.728790i \(0.259917\pi\)
\(240\) 4.82843 + 4.82843i 0.311674 + 0.311674i
\(241\) 18.3640 7.60660i 1.18293 0.489984i 0.297481 0.954728i \(-0.403853\pi\)
0.885445 + 0.464743i \(0.153853\pi\)
\(242\) 8.89949i 0.572081i
\(243\) −1.63604 3.94975i −0.104952 0.253376i
\(244\) −6.82843 2.82843i −0.437145 0.181071i
\(245\) −6.58579 + 15.8995i −0.420750 + 1.01578i
\(246\) −14.6569 + 14.6569i −0.934487 + 0.934487i
\(247\) 0.485281 0.485281i 0.0308777 0.0308777i
\(248\) −1.41421 + 3.41421i −0.0898027 + 0.216803i
\(249\) 10.6569 + 4.41421i 0.675351 + 0.279739i
\(250\) 5.17157 + 12.4853i 0.327079 + 0.789639i
\(251\) 18.7279i 1.18210i 0.806636 + 0.591048i \(0.201286\pi\)
−0.806636 + 0.591048i \(0.798714\pi\)
\(252\) −0.585786 + 0.242641i −0.0369011 + 0.0152849i
\(253\) −9.65685 9.65685i −0.607121 0.607121i
\(254\) −12.9706 −0.813845
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.82843 5.82843i −0.363567 0.363567i 0.501557 0.865124i \(-0.332761\pi\)
−0.865124 + 0.501557i \(0.832761\pi\)
\(258\) 3.00000 1.24264i 0.186772 0.0773634i
\(259\) 3.31371i 0.205904i
\(260\) −1.17157 2.82843i −0.0726579 0.175412i
\(261\) 0.585786 + 0.242641i 0.0362593 + 0.0150191i
\(262\) −0.0502525 + 0.121320i −0.00310461 + 0.00749520i
\(263\) −5.65685 + 5.65685i −0.348817 + 0.348817i −0.859669 0.510852i \(-0.829330\pi\)
0.510852 + 0.859669i \(0.329330\pi\)
\(264\) −5.82843 + 5.82843i −0.358715 + 0.358715i
\(265\) 1.17157 2.82843i 0.0719691 0.173749i
\(266\) −1.17157 0.485281i −0.0718337 0.0297545i
\(267\) 10.6569 + 25.7279i 0.652189 + 1.57452i
\(268\) 7.41421i 0.452895i
\(269\) 7.07107 2.92893i 0.431131 0.178580i −0.156555 0.987669i \(-0.550039\pi\)
0.587686 + 0.809089i \(0.300039\pi\)
\(270\) −12.4853 12.4853i −0.759830 0.759830i
\(271\) −14.8284 −0.900763 −0.450381 0.892836i \(-0.648712\pi\)
−0.450381 + 0.892836i \(0.648712\pi\)
\(272\) 0 0
\(273\) 2.34315 0.141814
\(274\) 1.65685 + 1.65685i 0.100094 + 0.100094i
\(275\) −35.6777 + 14.7782i −2.15144 + 0.891157i
\(276\) 5.65685i 0.340503i
\(277\) −9.07107 21.8995i −0.545028 1.31581i −0.921137 0.389238i \(-0.872738\pi\)
0.376110 0.926575i \(-0.377262\pi\)
\(278\) 1.70711 + 0.707107i 0.102385 + 0.0424094i
\(279\) −0.585786 + 1.41421i −0.0350701 + 0.0846668i
\(280\) −4.00000 + 4.00000i −0.239046 + 0.239046i
\(281\) −10.1421 + 10.1421i −0.605029 + 0.605029i −0.941643 0.336614i \(-0.890718\pi\)
0.336614 + 0.941643i \(0.390718\pi\)
\(282\) 6.82843 16.4853i 0.406627 0.981684i
\(283\) 1.05025 + 0.435029i 0.0624310 + 0.0258598i 0.413680 0.910422i \(-0.364243\pi\)
−0.351249 + 0.936282i \(0.614243\pi\)
\(284\) 0.828427 + 2.00000i 0.0491581 + 0.118678i
\(285\) 5.65685i 0.335083i
\(286\) 3.41421 1.41421i 0.201887 0.0836242i
\(287\) −12.1421 12.1421i −0.716728 0.716728i
\(288\) 0.414214 0.0244078
\(289\) 0 0
\(290\) 5.65685 0.332182
\(291\) −7.24264 7.24264i −0.424571 0.424571i
\(292\) −4.94975 + 2.05025i −0.289662 + 0.119982i
\(293\) 22.0000i 1.28525i 0.766179 + 0.642627i \(0.222155\pi\)
−0.766179 + 0.642627i \(0.777845\pi\)
\(294\) 3.29289 + 7.94975i 0.192045 + 0.463639i
\(295\) −2.00000 0.828427i −0.116445 0.0482329i
\(296\) 0.828427 2.00000i 0.0481513 0.116248i
\(297\) 15.0711 15.0711i 0.874512 0.874512i
\(298\) 11.0711 11.0711i 0.641330 0.641330i
\(299\) 0.970563 2.34315i 0.0561291 0.135508i
\(300\) 14.7782 + 6.12132i 0.853218 + 0.353415i
\(301\) 1.02944 + 2.48528i 0.0593358 + 0.143249i
\(302\) 22.1421i 1.27414i
\(303\) −7.41421 + 3.07107i −0.425935 + 0.176428i
\(304\) 0.585786 + 0.585786i 0.0335972 + 0.0335972i
\(305\) −27.3137 −1.56398
\(306\) 0 0
\(307\) 6.34315 0.362022 0.181011 0.983481i \(-0.442063\pi\)
0.181011 + 0.983481i \(0.442063\pi\)
\(308\) −4.82843 4.82843i −0.275125 0.275125i
\(309\) −21.3137 + 8.82843i −1.21249 + 0.502232i
\(310\) 13.6569i 0.775657i
\(311\) 5.75736 + 13.8995i 0.326470 + 0.788168i 0.998849 + 0.0479613i \(0.0152724\pi\)
−0.672379 + 0.740207i \(0.734728\pi\)
\(312\) −1.41421 0.585786i −0.0800641 0.0331636i
\(313\) −5.19239 + 12.5355i −0.293491 + 0.708550i 0.706509 + 0.707705i \(0.250269\pi\)
−1.00000 0.000845724i \(0.999731\pi\)
\(314\) 9.41421 9.41421i 0.531275 0.531275i
\(315\) −1.65685 + 1.65685i −0.0933532 + 0.0933532i
\(316\) 2.00000 4.82843i 0.112509 0.271620i
\(317\) 20.4853 + 8.48528i 1.15057 + 0.476581i 0.874724 0.484622i \(-0.161043\pi\)
0.275844 + 0.961202i \(0.411043\pi\)
\(318\) −0.585786 1.41421i −0.0328493 0.0793052i
\(319\) 6.82843i 0.382319i
\(320\) 3.41421 1.41421i 0.190860 0.0790569i
\(321\) 15.2426 + 15.2426i 0.850761 + 0.850761i
\(322\) −4.68629 −0.261157
\(323\) 0 0
\(324\) −10.0711 −0.559504
\(325\) −5.07107 5.07107i −0.281292 0.281292i
\(326\) 21.0208 8.70711i 1.16424 0.482242i
\(327\) 18.1421i 1.00326i
\(328\) 4.29289 + 10.3640i 0.237035 + 0.572254i
\(329\) 13.6569 + 5.65685i 0.752927 + 0.311872i
\(330\) −11.6569 + 28.1421i −0.641689 + 1.54917i
\(331\) −19.5858 + 19.5858i −1.07653 + 1.07653i −0.0797144 + 0.996818i \(0.525401\pi\)
−0.996818 + 0.0797144i \(0.974599\pi\)
\(332\) 4.41421 4.41421i 0.242261 0.242261i
\(333\) 0.343146 0.828427i 0.0188043 0.0453975i
\(334\) 18.2426 + 7.55635i 0.998193 + 0.413465i
\(335\) −10.4853 25.3137i −0.572872 1.38304i
\(336\) 2.82843i 0.154303i
\(337\) 10.7782 4.46447i 0.587125 0.243195i −0.0692885 0.997597i \(-0.522073\pi\)
0.656413 + 0.754402i \(0.272073\pi\)
\(338\) −8.70711 8.70711i −0.473604 0.473604i
\(339\) 17.0711 0.927173
\(340\) 0 0
\(341\) −16.4853 −0.892728
\(342\) 0.242641 + 0.242641i 0.0131205 + 0.0131205i
\(343\) −16.4853 + 6.82843i −0.890122 + 0.368700i
\(344\) 1.75736i 0.0947505i
\(345\) 8.00000 + 19.3137i 0.430706 + 1.03982i
\(346\) 5.41421 + 2.24264i 0.291070 + 0.120565i
\(347\) 6.19239 14.9497i 0.332425 0.802544i −0.665974 0.745975i \(-0.731984\pi\)
0.998399 0.0565694i \(-0.0180162\pi\)
\(348\) 2.00000 2.00000i 0.107211 0.107211i
\(349\) 13.8995 13.8995i 0.744023 0.744023i −0.229327 0.973350i \(-0.573652\pi\)
0.973350 + 0.229327i \(0.0736524\pi\)
\(350\) −5.07107 + 12.2426i −0.271060 + 0.654397i
\(351\) 3.65685 + 1.51472i 0.195188 + 0.0808497i
\(352\) 1.70711 + 4.12132i 0.0909891 + 0.219667i
\(353\) 14.3848i 0.765624i 0.923826 + 0.382812i \(0.125044\pi\)
−0.923826 + 0.382812i \(0.874956\pi\)
\(354\) −1.00000 + 0.414214i −0.0531494 + 0.0220152i
\(355\) 5.65685 + 5.65685i 0.300235 + 0.300235i
\(356\) 15.0711 0.798765
\(357\) 0 0
\(358\) −25.7990 −1.36352
\(359\) −8.00000 8.00000i −0.422224 0.422224i 0.463745 0.885969i \(-0.346505\pi\)
−0.885969 + 0.463745i \(0.846505\pi\)
\(360\) 1.41421 0.585786i 0.0745356 0.0308737i
\(361\) 18.3137i 0.963879i
\(362\) −2.34315 5.65685i −0.123153 0.297318i
\(363\) −15.1924 6.29289i −0.797394 0.330291i
\(364\) 0.485281 1.17157i 0.0254357 0.0614071i
\(365\) −14.0000 + 14.0000i −0.732793 + 0.732793i
\(366\) −9.65685 + 9.65685i −0.504772 + 0.504772i
\(367\) −7.17157 + 17.3137i −0.374353 + 0.903768i 0.618649 + 0.785668i \(0.287680\pi\)
−0.993002 + 0.118100i \(0.962320\pi\)
\(368\) 2.82843 + 1.17157i 0.147442 + 0.0610725i
\(369\) 1.77817 + 4.29289i 0.0925681 + 0.223479i
\(370\) 8.00000i 0.415900i
\(371\) 1.17157 0.485281i 0.0608250 0.0251946i
\(372\) 4.82843 + 4.82843i 0.250342 + 0.250342i
\(373\) −10.4853 −0.542907 −0.271454 0.962452i \(-0.587504\pi\)
−0.271454 + 0.962452i \(0.587504\pi\)
\(374\) 0 0
\(375\) 24.9706 1.28947
\(376\) −6.82843 6.82843i −0.352149 0.352149i
\(377\) −1.17157 + 0.485281i −0.0603391 + 0.0249933i
\(378\) 7.31371i 0.376177i
\(379\) −3.56497 8.60660i −0.183120 0.442091i 0.805486 0.592614i \(-0.201904\pi\)
−0.988606 + 0.150523i \(0.951904\pi\)
\(380\) 2.82843 + 1.17157i 0.145095 + 0.0601004i
\(381\) −9.17157 + 22.1421i −0.469874 + 1.13438i
\(382\) 2.00000 2.00000i 0.102329 0.102329i
\(383\) 21.3137 21.3137i 1.08908 1.08908i 0.0934562 0.995623i \(-0.470208\pi\)
0.995623 0.0934562i \(-0.0297915\pi\)
\(384\) 0.707107 1.70711i 0.0360844 0.0871154i
\(385\) −23.3137 9.65685i −1.18818 0.492159i
\(386\) −4.70711 11.3640i −0.239585 0.578410i
\(387\) 0.727922i 0.0370024i
\(388\) −5.12132 + 2.12132i −0.259996 + 0.107694i
\(389\) −2.24264 2.24264i −0.113706 0.113706i 0.647964 0.761671i \(-0.275621\pi\)
−0.761671 + 0.647964i \(0.775621\pi\)
\(390\) −5.65685 −0.286446
\(391\) 0 0
\(392\) 4.65685 0.235207
\(393\) 0.171573 + 0.171573i 0.00865471 + 0.00865471i
\(394\) −18.4853 + 7.65685i −0.931275 + 0.385747i
\(395\) 19.3137i 0.971778i
\(396\) 0.707107 + 1.70711i 0.0355335 + 0.0857853i
\(397\) 7.65685 + 3.17157i 0.384286 + 0.159177i 0.566459 0.824090i \(-0.308313\pi\)
−0.182173 + 0.983267i \(0.558313\pi\)
\(398\) 8.00000 19.3137i 0.401004 0.968109i
\(399\) −1.65685 + 1.65685i −0.0829465 + 0.0829465i
\(400\) 6.12132 6.12132i 0.306066 0.306066i
\(401\) 9.19239 22.1924i 0.459046 1.10823i −0.509738 0.860330i \(-0.670258\pi\)
0.968784 0.247905i \(-0.0797422\pi\)
\(402\) −12.6569 5.24264i −0.631267 0.261479i
\(403\) −1.17157 2.82843i −0.0583602 0.140894i
\(404\) 4.34315i 0.216080i
\(405\) −34.3848 + 14.2426i −1.70859 + 0.707723i
\(406\) 1.65685 + 1.65685i 0.0822283 + 0.0822283i
\(407\) 9.65685 0.478672
\(408\) 0 0
\(409\) 15.5563 0.769212 0.384606 0.923081i \(-0.374337\pi\)
0.384606 + 0.923081i \(0.374337\pi\)
\(410\) 29.3137 + 29.3137i 1.44770 + 1.44770i
\(411\) 4.00000 1.65685i 0.197305 0.0817266i
\(412\) 12.4853i 0.615106i
\(413\) −0.343146 0.828427i −0.0168851 0.0407642i
\(414\) 1.17157 + 0.485281i 0.0575797 + 0.0238503i
\(415\) 8.82843 21.3137i 0.433370 1.04625i
\(416\) −0.585786 + 0.585786i −0.0287205 + 0.0287205i
\(417\) 2.41421 2.41421i 0.118225 0.118225i
\(418\) −1.41421 + 3.41421i −0.0691714 + 0.166995i
\(419\) −15.9497 6.60660i −0.779196 0.322754i −0.0426051 0.999092i \(-0.513566\pi\)
−0.736591 + 0.676338i \(0.763566\pi\)
\(420\) 4.00000 + 9.65685i 0.195180 + 0.471206i
\(421\) 15.6569i 0.763068i 0.924355 + 0.381534i \(0.124604\pi\)
−0.924355 + 0.381534i \(0.875396\pi\)
\(422\) −0.121320 + 0.0502525i −0.00590578 + 0.00244625i
\(423\) −2.82843 2.82843i −0.137523 0.137523i
\(424\) −0.828427 −0.0402320
\(425\) 0 0
\(426\) 4.00000 0.193801
\(427\) −8.00000 8.00000i −0.387147 0.387147i
\(428\) 10.7782 4.46447i 0.520983 0.215798i
\(429\) 6.82843i 0.329680i
\(430\) −2.48528 6.00000i −0.119851 0.289346i
\(431\) −13.3137 5.51472i −0.641299 0.265635i 0.0382464 0.999268i \(-0.487823\pi\)
−0.679545 + 0.733634i \(0.737823\pi\)
\(432\) −1.82843 + 4.41421i −0.0879702 + 0.212379i
\(433\) 9.17157 9.17157i 0.440758 0.440758i −0.451509 0.892267i \(-0.649114\pi\)
0.892267 + 0.451509i \(0.149114\pi\)
\(434\) −4.00000 + 4.00000i −0.192006 + 0.192006i
\(435\) 4.00000 9.65685i 0.191785 0.463011i
\(436\) 9.07107 + 3.75736i 0.434425 + 0.179945i
\(437\) 0.970563 + 2.34315i 0.0464283 + 0.112088i
\(438\) 9.89949i 0.473016i
\(439\) −21.3137 + 8.82843i −1.01725 + 0.421358i −0.828094 0.560590i \(-0.810575\pi\)
−0.189154 + 0.981947i \(0.560575\pi\)
\(440\) 11.6569 + 11.6569i 0.555719 + 0.555719i
\(441\) 1.92893 0.0918539
\(442\) 0 0
\(443\) −36.8701 −1.75175 −0.875875 0.482539i \(-0.839715\pi\)
−0.875875 + 0.482539i \(0.839715\pi\)
\(444\) −2.82843 2.82843i −0.134231 0.134231i
\(445\) 51.4558 21.3137i 2.43924 1.01037i
\(446\) 24.4853i 1.15941i
\(447\) −11.0711 26.7279i −0.523644 1.26419i
\(448\) 1.41421 + 0.585786i 0.0668153 + 0.0276758i
\(449\) −2.12132 + 5.12132i −0.100111 + 0.241690i −0.965998 0.258551i \(-0.916755\pi\)
0.865886 + 0.500241i \(0.166755\pi\)
\(450\) 2.53553 2.53553i 0.119526 0.119526i
\(451\) −35.3848 + 35.3848i −1.66620 + 1.66620i
\(452\) 3.53553 8.53553i 0.166298 0.401478i
\(453\) −37.7990 15.6569i −1.77595 0.735623i
\(454\) −7.77817 18.7782i −0.365048 0.881303i
\(455\) 4.68629i 0.219697i
\(456\) 1.41421 0.585786i 0.0662266 0.0274320i
\(457\) −3.51472 3.51472i −0.164412 0.164412i 0.620106 0.784518i \(-0.287089\pi\)
−0.784518 + 0.620106i \(0.787089\pi\)
\(458\) 18.4853 0.863760
\(459\) 0 0
\(460\) 11.3137 0.527504
\(461\) 24.7279 + 24.7279i 1.15169 + 1.15169i 0.986213 + 0.165481i \(0.0529177\pi\)
0.165481 + 0.986213i \(0.447082\pi\)
\(462\) −11.6569 + 4.82843i −0.542326 + 0.224639i
\(463\) 3.31371i 0.154001i −0.997031 0.0770005i \(-0.975466\pi\)
0.997031 0.0770005i \(-0.0245343\pi\)
\(464\) −0.585786 1.41421i −0.0271945 0.0656532i
\(465\) 23.3137 + 9.65685i 1.08115 + 0.447826i
\(466\) −4.02082 + 9.70711i −0.186261 + 0.449673i
\(467\) 1.75736 1.75736i 0.0813209 0.0813209i −0.665276 0.746597i \(-0.731686\pi\)
0.746597 + 0.665276i \(0.231686\pi\)
\(468\) −0.242641 + 0.242641i −0.0112161 + 0.0112161i
\(469\) 4.34315 10.4853i 0.200548 0.484165i
\(470\) −32.9706 13.6569i −1.52082 0.629944i
\(471\) −9.41421 22.7279i −0.433784 1.04725i
\(472\) 0.585786i 0.0269630i
\(473\) 7.24264 3.00000i 0.333017 0.137940i
\(474\) −6.82843 6.82843i −0.313640 0.313640i
\(475\) 7.17157 0.329054
\(476\) 0 0
\(477\) −0.343146 −0.0157116
\(478\) −14.9706 14.9706i −0.684738 0.684738i
\(479\) 22.9706 9.51472i 1.04955 0.434739i 0.209820 0.977740i \(-0.432712\pi\)
0.839732 + 0.543001i \(0.182712\pi\)
\(480\) 6.82843i 0.311674i
\(481\) 0.686292 + 1.65685i 0.0312922 + 0.0755461i
\(482\) −18.3640 7.60660i −0.836456 0.346471i
\(483\) −3.31371 + 8.00000i −0.150779 + 0.364013i
\(484\) −6.29289 + 6.29289i −0.286041 + 0.286041i
\(485\) −14.4853 + 14.4853i −0.657743 + 0.657743i
\(486\) −1.63604 + 3.94975i −0.0742122 + 0.179164i
\(487\) 20.4853 + 8.48528i 0.928277 + 0.384505i 0.795024 0.606577i \(-0.207458\pi\)
0.133252 + 0.991082i \(0.457458\pi\)
\(488\) 2.82843 + 6.82843i 0.128037 + 0.309108i
\(489\) 42.0416i 1.90119i
\(490\) 15.8995 6.58579i 0.718266 0.297516i
\(491\) −10.9289 10.9289i −0.493216 0.493216i 0.416102 0.909318i \(-0.363396\pi\)
−0.909318 + 0.416102i \(0.863396\pi\)
\(492\) 20.7279 0.934487
\(493\) 0 0
\(494\) −0.686292 −0.0308777
\(495\) 4.82843 + 4.82843i 0.217022 + 0.217022i
\(496\) 3.41421 1.41421i 0.153303 0.0635001i
\(497\) 3.31371i 0.148640i
\(498\) −4.41421 10.6569i −0.197806 0.477545i
\(499\) −34.0208 14.0919i −1.52298 0.630839i −0.544795 0.838569i \(-0.683392\pi\)
−0.978186 + 0.207730i \(0.933392\pi\)
\(500\) 5.17157 12.4853i 0.231280 0.558359i
\(501\) 25.7990 25.7990i 1.15261 1.15261i
\(502\) 13.2426 13.2426i 0.591048 0.591048i
\(503\) −4.62742 + 11.1716i −0.206326 + 0.498116i −0.992839 0.119458i \(-0.961884\pi\)
0.786513 + 0.617574i \(0.211884\pi\)
\(504\) 0.585786 + 0.242641i 0.0260930 + 0.0108081i
\(505\) 6.14214 + 14.8284i 0.273321 + 0.659856i
\(506\) 13.6569i 0.607121i
\(507\) −21.0208 + 8.70711i −0.933567 + 0.386696i
\(508\) 9.17157 + 9.17157i 0.406923 + 0.406923i
\(509\) 16.6274 0.736997 0.368499 0.929628i \(-0.379872\pi\)
0.368499 + 0.929628i \(0.379872\pi\)
\(510\) 0 0
\(511\) −8.20101 −0.362791
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) −3.65685 + 1.51472i −0.161454 + 0.0668765i
\(514\) 8.24264i 0.363567i
\(515\) 17.6569 + 42.6274i 0.778054 + 1.87839i
\(516\) −3.00000 1.24264i −0.132068 0.0547042i
\(517\) 16.4853 39.7990i 0.725022 1.75036i
\(518\) 2.34315 2.34315i 0.102952 0.102952i
\(519\) 7.65685 7.65685i 0.336099 0.336099i
\(520\) −1.17157 + 2.82843i −0.0513769 + 0.124035i
\(521\) 32.5061 + 13.4645i 1.42412 + 0.589889i 0.955892 0.293720i \(-0.0948932\pi\)
0.468226 + 0.883609i \(0.344893\pi\)
\(522\) −0.242641 0.585786i −0.0106201 0.0256392i
\(523\) 23.2132i 1.01504i −0.861639 0.507521i \(-0.830562\pi\)
0.861639 0.507521i \(-0.169438\pi\)
\(524\) 0.121320 0.0502525i 0.00529990 0.00219529i
\(525\) 17.3137 + 17.3137i 0.755632 + 0.755632i
\(526\) 8.00000 0.348817
\(527\) 0 0
\(528\) 8.24264 0.358715
\(529\) −9.63604 9.63604i −0.418958 0.418958i
\(530\) −2.82843 + 1.17157i −0.122859 + 0.0508899i
\(531\) 0.242641i 0.0105297i
\(532\) 0.485281 + 1.17157i 0.0210396 + 0.0507941i
\(533\) −8.58579 3.55635i −0.371892 0.154043i
\(534\) 10.6569 25.7279i 0.461167 1.11336i
\(535\) 30.4853 30.4853i 1.31799 1.31799i
\(536\) −5.24264 + 5.24264i −0.226448 + 0.226448i
\(537\) −18.2426 + 44.0416i −0.787228 + 1.90054i
\(538\) −7.07107 2.92893i −0.304855 0.126275i
\(539\) 7.94975 + 19.1924i 0.342420 + 0.826675i
\(540\) 17.6569i 0.759830i
\(541\) 18.8284 7.79899i 0.809497 0.335305i 0.0607439 0.998153i \(-0.480653\pi\)
0.748753 + 0.662849i \(0.230653\pi\)
\(542\) 10.4853 + 10.4853i 0.450381 + 0.450381i
\(543\) −11.3137 −0.485518
\(544\) 0 0
\(545\) 36.2843 1.55425
\(546\) −1.65685 1.65685i −0.0709068 0.0709068i
\(547\) −22.6777 + 9.39340i −0.969627 + 0.401633i −0.810573 0.585637i \(-0.800844\pi\)
−0.159054 + 0.987270i \(0.550844\pi\)
\(548\) 2.34315i 0.100094i
\(549\) 1.17157 + 2.82843i 0.0500015 + 0.120714i
\(550\) 35.6777 + 14.7782i 1.52130 + 0.630143i
\(551\) 0.485281 1.17157i 0.0206737 0.0499107i
\(552\) 4.00000 4.00000i 0.170251 0.170251i
\(553\) 5.65685 5.65685i 0.240554 0.240554i
\(554\) −9.07107 + 21.8995i −0.385393 + 0.930420i
\(555\) −13.6569 5.65685i −0.579701 0.240120i
\(556\) −0.707107 1.70711i −0.0299880 0.0723975i
\(557\) 41.1127i 1.74200i −0.491282 0.871000i \(-0.663472\pi\)
0.491282 0.871000i \(-0.336528\pi\)
\(558\) 1.41421 0.585786i 0.0598684 0.0247983i
\(559\) 1.02944 + 1.02944i 0.0435406 + 0.0435406i
\(560\) 5.65685 0.239046
\(561\) 0 0
\(562\) 14.3431 0.605029
\(563\) 5.92893 + 5.92893i 0.249875 + 0.249875i 0.820919 0.571044i \(-0.193462\pi\)
−0.571044 + 0.820919i \(0.693462\pi\)
\(564\) −16.4853 + 6.82843i −0.694156 + 0.287529i
\(565\) 34.1421i 1.43637i
\(566\) −0.435029 1.05025i −0.0182856 0.0441454i
\(567\) −14.2426 5.89949i −0.598135 0.247755i
\(568\) 0.828427 2.00000i 0.0347600 0.0839181i
\(569\) −3.48528 + 3.48528i −0.146111 + 0.146111i −0.776378 0.630267i \(-0.782945\pi\)
0.630267 + 0.776378i \(0.282945\pi\)
\(570\) 4.00000 4.00000i 0.167542 0.167542i
\(571\) −0.920310 + 2.22183i −0.0385138 + 0.0929805i −0.941966 0.335708i \(-0.891024\pi\)
0.903452 + 0.428689i \(0.141024\pi\)
\(572\) −3.41421 1.41421i −0.142755 0.0591312i
\(573\) −2.00000 4.82843i −0.0835512 0.201710i
\(574\) 17.1716i 0.716728i
\(575\) 24.4853 10.1421i 1.02111 0.422956i
\(576\) −0.292893 0.292893i −0.0122039 0.0122039i
\(577\) −16.6274 −0.692208 −0.346104 0.938196i \(-0.612496\pi\)
−0.346104 + 0.938196i \(0.612496\pi\)
\(578\) 0 0
\(579\) −22.7279 −0.944540
\(580\) −4.00000 4.00000i −0.166091 0.166091i
\(581\) 8.82843 3.65685i 0.366265 0.151712i
\(582\) 10.2426i 0.424571i
\(583\) −1.41421 3.41421i −0.0585707 0.141402i
\(584\) 4.94975 + 2.05025i 0.204822 + 0.0848401i
\(585\) −0.485281 + 1.17157i −0.0200639 + 0.0484386i
\(586\) 15.5563 15.5563i 0.642627 0.642627i
\(587\) 2.14214 2.14214i 0.0884154 0.0884154i −0.661516 0.749931i \(-0.730087\pi\)
0.749931 + 0.661516i \(0.230087\pi\)
\(588\) 3.29289 7.94975i 0.135797 0.327842i
\(589\) 2.82843 + 1.17157i 0.116543 + 0.0482738i
\(590\) 0.828427 + 2.00000i 0.0341058 + 0.0823387i
\(591\) 36.9706i 1.52077i
\(592\) −2.00000 + 0.828427i −0.0821995 + 0.0340481i
\(593\) 3.00000 + 3.00000i 0.123195 + 0.123195i 0.766016 0.642821i \(-0.222236\pi\)
−0.642821 + 0.766016i \(0.722236\pi\)
\(594\) −21.3137 −0.874512
\(595\) 0 0
\(596\) −15.6569 −0.641330
\(597\) −27.3137 27.3137i −1.11788 1.11788i
\(598\) −2.34315 + 0.970563i −0.0958184 + 0.0396893i
\(599\) 26.3431i 1.07635i 0.842833 + 0.538176i \(0.180886\pi\)
−0.842833 + 0.538176i \(0.819114\pi\)
\(600\) −6.12132 14.7782i −0.249902 0.603316i
\(601\) −17.0208 7.05025i −0.694294 0.287586i 0.00749419 0.999972i \(-0.497615\pi\)
−0.701788 + 0.712386i \(0.747615\pi\)
\(602\) 1.02944 2.48528i 0.0419567 0.101293i
\(603\) −2.17157 + 2.17157i −0.0884333 + 0.0884333i
\(604\) −15.6569 + 15.6569i −0.637068 + 0.637068i
\(605\) −12.5858 + 30.3848i −0.511685 + 1.23532i
\(606\) 7.41421 + 3.07107i 0.301182 + 0.124754i
\(607\) −3.75736 9.07107i −0.152507 0.368183i 0.829100 0.559101i \(-0.188854\pi\)
−0.981606 + 0.190918i \(0.938854\pi\)
\(608\) 0.828427i 0.0335972i
\(609\) 4.00000 1.65685i 0.162088 0.0671391i
\(610\) 19.3137 + 19.3137i 0.781989 + 0.781989i
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) 37.7990 1.52669 0.763343 0.645993i \(-0.223556\pi\)
0.763343 + 0.645993i \(0.223556\pi\)
\(614\) −4.48528 4.48528i −0.181011 0.181011i
\(615\) 70.7696 29.3137i 2.85370 1.18204i
\(616\) 6.82843i 0.275125i
\(617\) 6.92031 + 16.7071i 0.278601 + 0.672603i 0.999797 0.0201281i \(-0.00640739\pi\)
−0.721196 + 0.692731i \(0.756407\pi\)
\(618\) 21.3137 + 8.82843i 0.857363 + 0.355131i
\(619\) −2.12132 + 5.12132i −0.0852631 + 0.205843i −0.960760 0.277380i \(-0.910534\pi\)
0.875497 + 0.483223i \(0.160534\pi\)
\(620\) 9.65685 9.65685i 0.387829 0.387829i
\(621\) −10.3431 + 10.3431i −0.415056 + 0.415056i
\(622\) 5.75736 13.8995i 0.230849 0.557319i
\(623\) 21.3137 + 8.82843i 0.853916 + 0.353703i
\(624\) 0.585786 + 1.41421i 0.0234502 + 0.0566139i
\(625\) 6.65685i 0.266274i
\(626\) 12.5355 5.19239i 0.501021 0.207530i
\(627\) 4.82843 + 4.82843i 0.192829 + 0.192829i
\(628\) −13.3137 −0.531275
\(629\) 0 0
\(630\) 2.34315 0.0933532
\(631\) 21.6569 + 21.6569i 0.862146 + 0.862146i 0.991587 0.129441i \(-0.0413184\pi\)
−0.129441 + 0.991587i \(0.541318\pi\)
\(632\) −4.82843 + 2.00000i −0.192065 + 0.0795557i
\(633\) 0.242641i 0.00964410i
\(634\) −8.48528 20.4853i −0.336994 0.813574i
\(635\) 44.2843 + 18.3431i 1.75737 + 0.727926i
\(636\) −0.585786 + 1.41421i −0.0232279 + 0.0560772i
\(637\) −2.72792 + 2.72792i −0.108084 + 0.108084i
\(638\) 4.82843 4.82843i 0.191159 0.191159i
\(639\) 0.343146 0.828427i 0.0135746 0.0327721i
\(640\) −3.41421 1.41421i −0.134959 0.0559017i
\(641\) 5.56497 + 13.4350i 0.219803 + 0.530652i 0.994862 0.101237i \(-0.0322800\pi\)
−0.775059 + 0.631889i \(0.782280\pi\)
\(642\) 21.5563i 0.850761i
\(643\) −12.3640 + 5.12132i −0.487587 + 0.201965i −0.612913 0.790150i \(-0.710002\pi\)
0.125326 + 0.992116i \(0.460002\pi\)
\(644\) 3.31371 + 3.31371i 0.130578 + 0.130578i
\(645\) −12.0000 −0.472500
\(646\) 0 0
\(647\) 12.4853 0.490847 0.245424 0.969416i \(-0.421073\pi\)
0.245424 + 0.969416i \(0.421073\pi\)
\(648\) 7.12132 + 7.12132i 0.279752 + 0.279752i
\(649\) −2.41421 + 1.00000i −0.0947662 + 0.0392534i
\(650\) 7.17157i 0.281292i
\(651\) 4.00000 + 9.65685i 0.156772 + 0.378482i
\(652\) −21.0208 8.70711i −0.823239 0.340997i
\(653\) 9.89949 23.8995i 0.387397 0.935260i −0.603092 0.797671i \(-0.706065\pi\)
0.990490 0.137588i \(-0.0439350\pi\)
\(654\) 12.8284 12.8284i 0.501631 0.501631i
\(655\) 0.343146 0.343146i 0.0134078 0.0134078i
\(656\) 4.29289 10.3640i 0.167609 0.404645i
\(657\) 2.05025 + 0.849242i 0.0799880 + 0.0331321i
\(658\) −5.65685 13.6569i −0.220527 0.532400i
\(659\) 39.3137i 1.53144i −0.643171 0.765722i \(-0.722382\pi\)
0.643171 0.765722i \(-0.277618\pi\)
\(660\) 28.1421 11.6569i 1.09543 0.453742i
\(661\) −12.7279 12.7279i −0.495059 0.495059i 0.414837 0.909896i \(-0.363839\pi\)
−0.909896 + 0.414837i \(0.863839\pi\)
\(662\) 27.6985 1.07653
\(663\) 0 0
\(664\) −6.24264 −0.242261
\(665\) 3.31371 + 3.31371i 0.128500 + 0.128500i
\(666\) −0.828427 + 0.343146i −0.0321009 + 0.0132966i
\(667\) 4.68629i 0.181454i
\(668\) −7.55635 18.2426i −0.292364 0.705829i
\(669\) −41.7990 17.3137i −1.61604 0.669387i
\(670\) −10.4853 + 25.3137i −0.405082 + 0.977954i
\(671\) −23.3137 + 23.3137i −0.900016 + 0.900016i
\(672\) 2.00000 2.00000i 0.0771517 0.0771517i
\(673\) −0.393398 + 0.949747i −0.0151644 + 0.0366101i −0.931280 0.364303i \(-0.881307\pi\)
0.916116 + 0.400913i \(0.131307\pi\)
\(674\) −10.7782 4.46447i −0.415160 0.171965i
\(675\) 15.8284 + 38.2132i 0.609236 + 1.47083i
\(676\) 12.3137i 0.473604i
\(677\) −10.8284 + 4.48528i −0.416170 + 0.172383i −0.580936 0.813949i \(-0.697313\pi\)
0.164766 + 0.986333i \(0.447313\pi\)
\(678\) −12.0711 12.0711i −0.463587 0.463587i
\(679\) −8.48528 −0.325635
\(680\) 0 0
\(681\) −37.5563 −1.43916
\(682\) 11.6569 + 11.6569i 0.446364 + 0.446364i
\(683\) −10.0208 + 4.15076i −0.383436 + 0.158824i −0.566071 0.824356i \(-0.691537\pi\)
0.182635 + 0.983181i \(0.441537\pi\)
\(684\) 0.343146i 0.0131205i
\(685\) −3.31371 8.00000i −0.126610 0.305664i
\(686\) 16.4853 + 6.82843i 0.629411 + 0.260711i
\(687\) 13.0711 31.5563i 0.498692 1.20395i
\(688\) −1.24264 + 1.24264i −0.0473752 + 0.0473752i
\(689\) 0.485281 0.485281i 0.0184877 0.0184877i
\(690\) 8.00000 19.3137i 0.304555 0.735260i
\(691\) −43.4350 17.9914i −1.65235 0.684424i −0.654891 0.755723i \(-0.727286\pi\)
−0.997455 + 0.0712988i \(0.977286\pi\)
\(692\) −2.24264 5.41421i −0.0852524 0.205818i
\(693\) 2.82843i 0.107443i
\(694\) −14.9497 + 6.19239i −0.567485 + 0.235060i
\(695\) −4.82843 4.82843i −0.183153 0.183153i
\(696\) −2.82843 −0.107211
\(697\) 0 0
\(698\) −19.6569 −0.744023
\(699\) 13.7279 + 13.7279i 0.519238 + 0.519238i
\(700\) 12.2426 5.07107i 0.462728 0.191668i
\(701\) 1.51472i 0.0572101i −0.999591 0.0286051i \(-0.990893\pi\)
0.999591 0.0286051i \(-0.00910652\pi\)
\(702\) −1.51472 3.65685i −0.0571694 0.138019i
\(703\) −1.65685 0.686292i −0.0624894 0.0258840i
\(704\) 1.70711 4.12132i 0.0643390 0.155328i
\(705\) −46.6274 + 46.6274i −1.75609 + 1.75609i
\(706\) 10.1716 10.1716i 0.382812 0.382812i
\(707\) −2.54416 + 6.14214i −0.0956828 + 0.230999i
\(708\) 1.00000 + 0.414214i 0.0375823 + 0.0155671i
\(709\) 2.38478 + 5.75736i 0.0895622 + 0.216222i 0.962313 0.271943i \(-0.0876663\pi\)
−0.872751 + 0.488165i \(0.837666\pi\)
\(710\) 8.00000i 0.300235i
\(711\) −2.00000 + 0.828427i −0.0750059 + 0.0310684i
\(712\) −10.6569 10.6569i −0.399382 0.399382i
\(713\) 11.3137 0.423702
\(714\) 0 0
\(715\) −13.6569 −0.510737
\(716\) 18.2426 + 18.2426i 0.681759 + 0.681759i
\(717\) −36.1421 + 14.9706i −1.34975 + 0.559086i
\(718\) 11.3137i 0.422224i
\(719\) −1.65685 4.00000i −0.0617902 0.149175i 0.889969 0.456022i \(-0.150726\pi\)
−0.951759 + 0.306847i \(0.900726\pi\)
\(720\) −1.41421 0.585786i −0.0527046 0.0218310i
\(721\) −7.31371 + 17.6569i −0.272377 + 0.657576i
\(722\) −12.9497 + 12.9497i −0.481940 + 0.481940i
\(723\) −25.9706 + 25.9706i −0.965856 + 0.965856i
\(724\) −2.34315 + 5.65685i −0.0870823 + 0.210235i
\(725\) −12.2426 5.07107i −0.454680 0.188335i
\(726\) 6.29289 + 15.1924i 0.233551 + 0.563842i
\(727\) 32.2843i 1.19736i 0.800989 + 0.598679i \(0.204307\pi\)
−0.800989 + 0.598679i \(0.795693\pi\)
\(728\) −1.17157 + 0.485281i −0.0434214 + 0.0179857i
\(729\) −15.7782 15.7782i −0.584377 0.584377i
\(730\) 19.7990 0.732793
\(731\) 0 0
\(732\) 13.6569 0.504772
\(733\) 9.89949 + 9.89949i 0.365646 + 0.365646i 0.865887 0.500240i \(-0.166755\pi\)
−0.500240 + 0.865887i \(0.666755\pi\)
\(734\) 17.3137 7.17157i 0.639061 0.264708i
\(735\) 31.7990i 1.17292i
\(736\) −1.17157 2.82843i −0.0431847 0.104257i
\(737\) −30.5563 12.6569i −1.12556 0.466221i
\(738\) 1.77817 4.29289i 0.0654555 0.158024i
\(739\) 0.485281 0.485281i 0.0178514 0.0178514i −0.698125 0.715976i \(-0.745982\pi\)
0.715976 + 0.698125i \(0.245982\pi\)
\(740\) −5.65685 + 5.65685i −0.207950 + 0.207950i
\(741\) −0.485281 + 1.17157i −0.0178273 + 0.0430388i
\(742\) −1.17157 0.485281i −0.0430098 0.0178152i
\(743\) −9.89949 23.8995i −0.363177 0.876787i −0.994832 0.101537i \(-0.967624\pi\)
0.631654 0.775250i \(-0.282376\pi\)
\(744\) 6.82843i 0.250342i
\(745\) −53.4558 + 22.1421i −1.95847 + 0.811225i
\(746\) 7.41421 + 7.41421i 0.271454 + 0.271454i
\(747\) −2.58579 −0.0946090
\(748\) 0 0
\(749\) 17.8579 0.652512
\(750\) −17.6569 17.6569i −0.644737 0.644737i
\(751\) 22.9706 9.51472i 0.838208 0.347197i 0.0780611 0.996949i \(-0.475127\pi\)
0.760147 + 0.649752i \(0.225127\pi\)
\(752\) 9.65685i 0.352149i
\(753\) −13.2426 31.9706i −0.482589 1.16507i
\(754\) 1.17157 + 0.485281i 0.0426662 + 0.0176729i
\(755\) −31.3137 + 75.5980i −1.13962 + 2.75129i
\(756\) −5.17157 + 5.17157i −0.188088 + 0.188088i
\(757\) 7.75736 7.75736i 0.281946 0.281946i −0.551939 0.833885i \(-0.686112\pi\)
0.833885 + 0.551939i \(0.186112\pi\)
\(758\) −3.56497 + 8.60660i −0.129486 + 0.312606i
\(759\) 23.3137 + 9.65685i 0.846234 + 0.350522i
\(760\) −1.17157 2.82843i −0.0424974 0.102598i
\(761\) 53.2548i 1.93049i 0.261354 + 0.965243i \(0.415831\pi\)
−0.261354 + 0.965243i \(0.584169\pi\)
\(762\) 22.1421 9.17157i 0.802125 0.332251i
\(763\) 10.6274 + 10.6274i 0.384738 + 0.384738i
\(764\) −2.82843 −0.102329
\(765\) 0 0
\(766\) −30.1421 −1.08908
\(767\) −0.343146 0.343146i −0.0123903 0.0123903i
\(768\) −1.70711 + 0.707107i −0.0615999 + 0.0255155i
\(769\) 26.3431i 0.949958i 0.879997 + 0.474979i \(0.157544\pi\)
−0.879997 + 0.474979i \(0.842456\pi\)
\(770\) 9.65685 + 23.3137i 0.348009 + 0.840168i
\(771\) 14.0711 + 5.82843i 0.506757 + 0.209906i
\(772\) −4.70711 + 11.3640i −0.169412 + 0.408998i
\(773\) −2.58579 + 2.58579i −0.0930043 + 0.0930043i −0.752078 0.659074i \(-0.770948\pi\)
0.659074 + 0.752078i \(0.270948\pi\)
\(774\) −0.514719 + 0.514719i −0.0185012 + 0.0185012i
\(775\) 12.2426 29.5563i 0.439769 1.06170i
\(776\) 5.12132 + 2.12132i 0.183845 + 0.0761510i
\(777\) −2.34315 5.65685i −0.0840599 0.202939i
\(778\) 3.17157i 0.113706i
\(779\) 8.58579 3.55635i 0.307618 0.127419i
\(780\) 4.00000 + 4.00000i 0.143223 + 0.143223i
\(781\) 9.65685 0.345549
\(782\) 0 0
\(783\) 7.31371 0.261371
\(784\) −3.29289 3.29289i −0.117603 0.117603i
\(785\) −45.4558 + 18.8284i −1.62239 + 0.672015i
\(786\) 0.242641i 0.00865471i
\(787\) 7.29289 + 17.6066i 0.259964 + 0.627608i 0.998936 0.0461286i \(-0.0146884\pi\)
−0.738972 + 0.673736i \(0.764688\pi\)
\(788\) 18.4853 + 7.65685i 0.658511 + 0.272764i
\(789\) 5.65685 13.6569i 0.201389 0.486197i
\(790\) −13.6569 + 13.6569i −0.485889 + 0.485889i
\(791\) 10.0000 10.0000i 0.355559 0.355559i
\(792\) 0.707107 1.70711i 0.0251259 0.0606594i
\(793\) −5.65685 2.34315i −0.200881 0.0832075i
\(794\) −3.17157 7.65685i −0.112555 0.271732i
\(795\) 5.65685i 0.200628i
\(796\) −19.3137 + 8.00000i −0.684556 + 0.283552i
\(797\) −18.8701 18.8701i −0.668412 0.668412i 0.288937 0.957348i \(-0.406698\pi\)
−0.957348 + 0.288937i \(0.906698\pi\)
\(798\) 2.34315 0.0829465
\(799\) 0 0
\(800\) −8.65685 −0.306066
\(801\) −4.41421 4.41421i −0.155969 0.155969i
\(802\) −22.1924 + 9.19239i −0.783640 + 0.324595i
\(803\) 23.8995i 0.843395i
\(804\) 5.24264 + 12.6569i 0.184894 + 0.446373i
\(805\) 16.0000 + 6.62742i 0.563926 + 0.233586i
\(806\) −1.17157 + 2.82843i −0.0412669 + 0.0996271i
\(807\) −10.0000 + 10.0000i −0.352017 + 0.352017i
\(808\) 3.07107 3.07107i 0.108040 0.108040i
\(809\) 17.8787 43.1630i 0.628581 1.51753i −0.212806 0.977095i \(-0.568260\pi\)
0.841386 0.540434i \(-0.181740\pi\)
\(810\) 34.3848 + 14.2426i 1.20816 + 0.500435i
\(811\) −18.8492 45.5061i −0.661886 1.59794i −0.794844 0.606813i \(-0.792447\pi\)
0.132958 0.991122i \(-0.457553\pi\)
\(812\) 2.34315i 0.0822283i
\(813\) 25.3137 10.4853i 0.887791 0.367735i
\(814\) −6.82843 6.82843i −0.239336 0.239336i
\(815\) −84.0833 −2.94531
\(816\) 0 0
\(817\) −1.45584 −0.0509335
\(818\) −11.0000 11.0000i −0.384606 0.384606i
\(819\) −0.485281 + 0.201010i −0.0169571 + 0.00702386i
\(820\) 41.4558i 1.44770i
\(821\) 0.142136 + 0.343146i 0.00496057 + 0.0119759i 0.926340 0.376687i \(-0.122937\pi\)
−0.921380 + 0.388663i \(0.872937\pi\)
\(822\) −4.00000 1.65685i −0.139516 0.0577894i
\(823\) −16.6863 + 40.2843i −0.581648 + 1.40422i 0.309671 + 0.950844i \(0.399781\pi\)
−0.891319 + 0.453378i \(0.850219\pi\)
\(824\) 8.82843 8.82843i 0.307553 0.307553i
\(825\) 50.4558 50.4558i 1.75665 1.75665i
\(826\) −0.343146 + 0.828427i −0.0119396 + 0.0288247i
\(827\) −22.0919 9.15076i −0.768210 0.318203i −0.0360629 0.999350i \(-0.511482\pi\)
−0.732147 + 0.681147i \(0.761482\pi\)
\(828\) −0.485281 1.17157i −0.0168647 0.0407150i
\(829\) 20.1421i 0.699565i −0.936831 0.349783i \(-0.886255\pi\)
0.936831 0.349783i \(-0.113745\pi\)
\(830\) −21.3137 + 8.82843i −0.739810 + 0.306439i
\(831\) 30.9706 + 30.9706i 1.07436 + 1.07436i
\(832\) 0.828427 0.0287205
\(833\) 0 0
\(834\) −3.41421 −0.118225
\(835\) −51.5980 51.5980i −1.78562 1.78562i
\(836\) 3.41421 1.41421i 0.118083 0.0489116i
\(837\) 17.6569i 0.610310i
\(838\) 6.60660 + 15.9497i 0.228221 + 0.550975i
\(839\) 44.7279 + 18.5269i 1.54418 + 0.639620i 0.982252 0.187566i \(-0.0600600\pi\)
0.561927 + 0.827187i \(0.310060\pi\)
\(840\) 4.00000 9.65685i 0.138013 0.333193i
\(841\) 18.8492 18.8492i 0.649974 0.649974i
\(842\) 11.0711 11.0711i 0.381534 0.381534i
\(843\) 10.1421 24.4853i 0.349314 0.843318i
\(844\) 0.121320 + 0.0502525i 0.00417602 + 0.00172976i
\(845\) 17.4142 + 42.0416i 0.599067 + 1.44628i
\(846\) 4.00000i 0.137523i
\(847\) −12.5858 + 5.21320i −0.432453 + 0.179128i
\(848\) 0.585786 + 0.585786i 0.0201160 + 0.0201160i
\(849\) −2.10051 −0.0720891
\(850\) 0 0
\(851\) −6.62742 −0.227185
\(852\) −2.82843 2.82843i −0.0969003 0.0969003i
\(853\) −35.0711 + 14.5269i −1.20081 + 0.497392i −0.891261 0.453491i \(-0.850178\pi\)
−0.309550 + 0.950883i \(0.600178\pi\)
\(854\) 11.3137i 0.387147i
\(855\) −0.485281 1.17157i −0.0165963 0.0400669i
\(856\) −10.7782 4.46447i −0.368390 0.152592i
\(857\) 15.4056 37.1924i 0.526245 1.27047i −0.407721 0.913106i \(-0.633676\pi\)
0.933966 0.357361i \(-0.116324\pi\)
\(858\) −4.82843 + 4.82843i −0.164840 + 0.164840i
\(859\) −0.556349 + 0.556349i −0.0189824 + 0.0189824i −0.716534 0.697552i \(-0.754273\pi\)
0.697552 + 0.716534i \(0.254273\pi\)
\(860\) −2.48528 + 6.00000i −0.0847474 + 0.204598i
\(861\) 29.3137 + 12.1421i 0.999009 + 0.413803i
\(862\) 5.51472 + 13.3137i 0.187832 + 0.453467i
\(863\) 0.970563i 0.0330383i −0.999864 0.0165192i \(-0.994742\pi\)
0.999864 0.0165192i \(-0.00525845\pi\)
\(864\) 4.41421 1.82843i 0.150175 0.0622044i
\(865\) −15.3137 15.3137i −0.520682 0.520682i
\(866\) −12.9706 −0.440758
\(867\) 0 0
\(868\) 5.65685 0.192006
\(869\) −16.4853 16.4853i −0.559225 0.559225i
\(870\) −9.65685 + 4.00000i −0.327398 + 0.135613i
\(871\) 6.14214i 0.208118i
\(872\) −3.75736 9.07107i −0.127240 0.307185i
\(873\) 2.12132 + 0.878680i 0.0717958 + 0.0297388i
\(874\) 0.970563 2.34315i 0.0328298 0.0792581i
\(875\) 14.6274 14.6274i 0.494497 0.494497i
\(876\) 7.00000 7.00000i 0.236508 0.236508i
\(877\) −4.10051 + 9.89949i −0.138464 + 0.334282i −0.977867 0.209228i \(-0.932905\pi\)
0.839403 + 0.543510i \(0.182905\pi\)
\(878\) 21.3137 + 8.82843i 0.719303 + 0.297945i
\(879\) −15.5563 37.5563i −0.524703 1.26674i
\(880\) 16.4853i 0.555719i
\(881\) −16.7071 + 6.92031i −0.562877 + 0.233151i −0.645934 0.763394i \(-0.723532\pi\)
0.0830568 + 0.996545i \(0.473532\pi\)
\(882\) −1.36396 1.36396i −0.0459270 0.0459270i
\(883\) 34.5269 1.16192 0.580962 0.813931i \(-0.302677\pi\)
0.580962 + 0.813931i \(0.302677\pi\)
\(884\) 0 0
\(885\) 4.00000 0.134459
\(886\) 26.0711 + 26.0711i 0.875875 + 0.875875i
\(887\) −2.34315 + 0.970563i −0.0786751 + 0.0325883i −0.421674 0.906748i \(-0.638557\pi\)
0.342999 + 0.939336i \(0.388557\pi\)
\(888\) 4.00000i 0.134231i
\(889\) 7.59798 + 18.3431i 0.254828 + 0.615209i
\(890\) −51.4558 21.3137i −1.72480 0.714437i
\(891\) −17.1924 + 41.5061i −0.575967 + 1.39051i
\(892\) −17.3137 + 17.3137i −0.579706 + 0.579706i
\(893\) −5.65685 + 5.65685i −0.189299 + 0.189299i
\(894\) −11.0711 + 26.7279i −0.370272 + 0.893915i
\(895\) 88.0833 + 36.4853i 2.94430 + 1.21957i
\(896\) −0.585786 1.41421i −0.0195698 0.0472456i
\(897\) 4.68629i 0.156471i
\(898\) 5.12132 2.12132i 0.170901 0.0707894i
\(899\) −4.00000 4.00000i −0.133407 0.133407i
\(900\) −3.58579 −0.119526
\(901\) 0 0
\(902\) 50.0416 1.66620
\(903\) −3.51472 3.51472i −0.116963 0.116963i
\(904\) −8.53553 + 3.53553i −0.283888 + 0.117590i
\(905\) 22.6274i 0.752161i
\(906\) 15.6569 + 37.7990i 0.520164 + 1.25579i
\(907\) 13.5355 + 5.60660i 0.449440 + 0.186164i 0.595910 0.803051i \(-0.296791\pi\)
−0.146470 + 0.989215i \(0.546791\pi\)
\(908\) −7.77817 + 18.7782i −0.258128 + 0.623176i
\(909\) 1.27208 1.27208i 0.0421922 0.0421922i
\(910\) −3.31371 + 3.31371i −0.109848 + 0.109848i
\(911\) 8.92893 21.5563i 0.295829 0.714194i −0.704163 0.710039i \(-0.748677\pi\)
0.999991 0.00415500i \(-0.00132258\pi\)
\(912\) −1.41421 0.585786i −0.0468293 0.0193973i
\(913\) −10.6569 25.7279i −0.352690 0.851470i
\(914\) 4.97056i 0.164412i
\(915\) 46.6274 19.3137i 1.54145 0.638492i
\(916\) −13.0711 13.0711i −0.431880 0.431880i
\(917\) 0.201010 0.00663794
\(918\) 0 0
\(919\) −2.34315 −0.0772932 −0.0386466 0.999253i \(-0.512305\pi\)
−0.0386466 + 0.999253i \(0.512305\pi\)
\(920\) −8.00000 8.00000i −0.263752 0.263752i
\(921\) −10.8284 + 4.48528i −0.356809 + 0.147795i
\(922\) 34.9706i 1.15169i
\(923\) 0.686292 + 1.65685i 0.0225896 + 0.0545360i
\(924\) 11.6569 + 4.82843i 0.383482 + 0.158844i
\(925\) −7.17157 + 17.3137i −0.235800 + 0.569271i
\(926\) −2.34315 + 2.34315i −0.0770005 + 0.0770005i
\(927\) 3.65685 3.65685i 0.120107 0.120107i
\(928\) −0.585786 + 1.41421i −0.0192294 + 0.0464238i
\(929\) −8.53553 3.53553i −0.280042 0.115997i 0.238242 0.971206i \(-0.423429\pi\)
−0.518284 + 0.855209i \(0.673429\pi\)
\(930\) −9.65685 23.3137i −0.316661 0.764487i
\(931\) 3.85786i 0.126436i
\(932\) 9.70711 4.02082i 0.317967 0.131706i
\(933\) −19.6569 19.6569i −0.643537 0.643537i
\(934\) −2.48528 −0.0813209
\(935\) 0 0
\(936\) 0.343146 0.0112161
\(937\) 3.75736 + 3.75736i 0.122748 + 0.122748i 0.765812 0.643064i \(-0.222337\pi\)
−0.643064 + 0.765812i \(0.722337\pi\)
\(938\) −10.4853 + 4.34315i −0.342357 + 0.141809i
\(939\) 25.0711i 0.818163i
\(940\) 13.6569 + 32.9706i 0.445437 + 1.07538i
\(941\) 18.1421 + 7.51472i 0.591417 + 0.244973i 0.658260 0.752791i \(-0.271293\pi\)
−0.0668433 + 0.997763i \(0.521293\pi\)
\(942\) −9.41421 + 22.7279i −0.306732 + 0.740516i
\(943\) 24.2843 24.2843i 0.790805 0.790805i
\(944\) 0.414214 0.414214i 0.0134815 0.0134815i
\(945\) −10.3431 + 24.9706i −0.336463 + 0.812292i
\(946\) −7.24264 3.00000i −0.235479 0.0975384i
\(947\) 20.0208 + 48.3345i 0.650589 + 1.57066i 0.811925 + 0.583761i \(0.198420\pi\)
−0.161336 + 0.986900i \(0.551580\pi\)
\(948\) 9.65685i 0.313640i
\(949\) −4.10051 + 1.69848i −0.133108 + 0.0551352i
\(950\) −5.07107 5.07107i −0.164527 0.164527i
\(951\) −40.9706 −1.32856
\(952\) 0 0
\(953\) −11.5563 −0.374347 −0.187173 0.982327i \(-0.559933\pi\)
−0.187173 + 0.982327i \(0.559933\pi\)
\(954\) 0.242641 + 0.242641i 0.00785578 + 0.00785578i
\(955\) −9.65685 + 4.00000i −0.312488 + 0.129437i
\(956\) 21.1716i 0.684738i
\(957\) −4.82843 11.6569i −0.156081 0.376813i
\(958\) −22.9706 9.51472i −0.742145 0.307407i
\(959\) 1.37258 3.31371i 0.0443230 0.107005i
\(960\) −4.82843 + 4.82843i −0.155837 + 0.155837i
\(961\) −12.2635 + 12.2635i −0.395595 + 0.395595i
\(962\) 0.686292 1.65685i 0.0221269 0.0534191i
\(963\) −4.46447 1.84924i −0.143865 0.0595910i
\(964\) 7.60660 + 18.3640i 0.244992 + 0.591463i
\(965\) 45.4558i 1.46328i
\(966\) 8.00000 3.31371i 0.257396 0.106617i
\(967\) −9.65685 9.65685i −0.310543 0.310543i 0.534577 0.845120i \(-0.320471\pi\)
−0.845120 + 0.534577i \(0.820471\pi\)
\(968\) 8.89949 0.286041
\(969\) 0 0
\(970\) 20.4853 0.657743
\(971\) −15.0416 15.0416i −0.482709 0.482709i 0.423287 0.905996i \(-0.360876\pi\)
−0.905996 + 0.423287i \(0.860876\pi\)
\(972\) 3.94975 1.63604i 0.126688 0.0524760i
\(973\) 2.82843i 0.0906752i
\(974\) −8.48528 20.4853i −0.271886 0.656391i
\(975\) 12.2426 + 5.07107i 0.392078 + 0.162404i
\(976\) 2.82843 6.82843i 0.0905357 0.218573i
\(977\) −20.1127 + 20.1127i −0.643462 + 0.643462i −0.951405 0.307943i \(-0.900359\pi\)
0.307943 + 0.951405i \(0.400359\pi\)
\(978\) −29.7279 + 29.7279i −0.950594 + 0.950594i
\(979\) 25.7279 62.1127i 0.822268 1.98513i
\(980\) −15.8995 6.58579i −0.507891 0.210375i
\(981\) −1.55635 3.75736i −0.0496904 0.119963i
\(982\) 15.4558i 0.493216i
\(983\) 24.9706 10.3431i 0.796437 0.329895i 0.0529088 0.998599i \(-0.483151\pi\)
0.743529 + 0.668704i \(0.233151\pi\)
\(984\) −14.6569 14.6569i −0.467243 0.467243i
\(985\) 73.9411 2.35596
\(986\) 0 0
\(987\) −27.3137 −0.869405
\(988\) 0.485281 + 0.485281i 0.0154389 + 0.0154389i
\(989\) −4.97056 + 2.05887i −0.158055 + 0.0654684i
\(990\) 6.82843i 0.217022i
\(991\) 17.5147 + 42.2843i 0.556373 + 1.34320i 0.912619 + 0.408812i \(0.134057\pi\)
−0.356245 + 0.934392i \(0.615943\pi\)
\(992\) −3.41421 1.41421i −0.108401 0.0449013i
\(993\) 19.5858 47.2843i 0.621536 1.50052i
\(994\) 2.34315 2.34315i 0.0743201 0.0743201i
\(995\) −54.6274 + 54.6274i −1.73181 + 1.73181i
\(996\) −4.41421 + 10.6569i −0.139870 + 0.337675i
\(997\) −10.9706 4.54416i −0.347441 0.143915i 0.202137 0.979357i \(-0.435211\pi\)
−0.549578 + 0.835442i \(0.685211\pi\)
\(998\) 14.0919 + 34.0208i 0.446071 + 1.07691i
\(999\) 10.3431i 0.327243i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 578.2.d.a.155.1 4
17.2 even 8 34.2.d.a.25.1 yes 4
17.3 odd 16 578.2.a.i.1.1 4
17.4 even 4 578.2.d.b.423.1 4
17.5 odd 16 578.2.b.d.577.1 4
17.6 odd 16 578.2.c.f.327.1 8
17.7 odd 16 578.2.c.f.251.4 8
17.8 even 8 578.2.d.c.179.1 4
17.9 even 8 inner 578.2.d.a.179.1 4
17.10 odd 16 578.2.c.f.251.1 8
17.11 odd 16 578.2.c.f.327.4 8
17.12 odd 16 578.2.b.d.577.4 4
17.13 even 4 34.2.d.a.15.1 4
17.14 odd 16 578.2.a.i.1.4 4
17.15 even 8 578.2.d.b.399.1 4
17.16 even 2 578.2.d.c.155.1 4
51.2 odd 8 306.2.l.c.127.1 4
51.14 even 16 5202.2.a.bw.1.1 4
51.20 even 16 5202.2.a.bw.1.4 4
51.47 odd 4 306.2.l.c.253.1 4
68.3 even 16 4624.2.a.bn.1.4 4
68.19 odd 8 272.2.v.b.161.1 4
68.31 even 16 4624.2.a.bn.1.1 4
68.47 odd 4 272.2.v.b.49.1 4
85.2 odd 8 850.2.o.b.399.1 4
85.13 odd 4 850.2.o.b.49.1 4
85.19 even 8 850.2.l.a.501.1 4
85.47 odd 4 850.2.o.a.49.1 4
85.53 odd 8 850.2.o.a.399.1 4
85.64 even 4 850.2.l.a.151.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.d.a.15.1 4 17.13 even 4
34.2.d.a.25.1 yes 4 17.2 even 8
272.2.v.b.49.1 4 68.47 odd 4
272.2.v.b.161.1 4 68.19 odd 8
306.2.l.c.127.1 4 51.2 odd 8
306.2.l.c.253.1 4 51.47 odd 4
578.2.a.i.1.1 4 17.3 odd 16
578.2.a.i.1.4 4 17.14 odd 16
578.2.b.d.577.1 4 17.5 odd 16
578.2.b.d.577.4 4 17.12 odd 16
578.2.c.f.251.1 8 17.10 odd 16
578.2.c.f.251.4 8 17.7 odd 16
578.2.c.f.327.1 8 17.6 odd 16
578.2.c.f.327.4 8 17.11 odd 16
578.2.d.a.155.1 4 1.1 even 1 trivial
578.2.d.a.179.1 4 17.9 even 8 inner
578.2.d.b.399.1 4 17.15 even 8
578.2.d.b.423.1 4 17.4 even 4
578.2.d.c.155.1 4 17.16 even 2
578.2.d.c.179.1 4 17.8 even 8
850.2.l.a.151.1 4 85.64 even 4
850.2.l.a.501.1 4 85.19 even 8
850.2.o.a.49.1 4 85.47 odd 4
850.2.o.a.399.1 4 85.53 odd 8
850.2.o.b.49.1 4 85.13 odd 4
850.2.o.b.399.1 4 85.2 odd 8
4624.2.a.bn.1.1 4 68.31 even 16
4624.2.a.bn.1.4 4 68.3 even 16
5202.2.a.bw.1.1 4 51.14 even 16
5202.2.a.bw.1.4 4 51.20 even 16