Properties

Label 850.2.o.a.49.1
Level $850$
Weight $2$
Character 850.49
Analytic conductor $6.787$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [850,2,Mod(49,850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(850, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("850.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.o (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 49.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 850.49
Dual form 850.2.o.a.399.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-1.70711 + 0.707107i) q^{3} -1.00000i q^{4} +(0.707107 - 1.70711i) q^{6} +(-0.585786 + 1.41421i) q^{7} +(0.707107 + 0.707107i) q^{8} +(0.292893 - 0.292893i) q^{9} +(1.70711 - 4.12132i) q^{11} +(0.707107 + 1.70711i) q^{12} +0.828427 q^{13} +(-0.585786 - 1.41421i) q^{14} -1.00000 q^{16} +(-3.53553 - 2.12132i) q^{17} +0.414214i q^{18} +(-0.585786 - 0.585786i) q^{19} -2.82843i q^{21} +(1.70711 + 4.12132i) q^{22} +(2.82843 + 1.17157i) q^{23} +(-1.70711 - 0.707107i) q^{24} +(-0.585786 + 0.585786i) q^{26} +(1.82843 - 4.41421i) q^{27} +(1.41421 + 0.585786i) q^{28} +(1.41421 - 0.585786i) q^{29} +(-1.41421 - 3.41421i) q^{31} +(0.707107 - 0.707107i) q^{32} +8.24264i q^{33} +(4.00000 - 1.00000i) q^{34} +(-0.292893 - 0.292893i) q^{36} +(-2.00000 + 0.828427i) q^{37} +0.828427 q^{38} +(-1.41421 + 0.585786i) q^{39} +(10.3640 + 4.29289i) q^{41} +(2.00000 + 2.00000i) q^{42} +(1.24264 + 1.24264i) q^{43} +(-4.12132 - 1.70711i) q^{44} +(-2.82843 + 1.17157i) q^{46} +9.65685 q^{47} +(1.70711 - 0.707107i) q^{48} +(3.29289 + 3.29289i) q^{49} +(7.53553 + 1.12132i) q^{51} -0.828427i q^{52} +(0.585786 - 0.585786i) q^{53} +(1.82843 + 4.41421i) q^{54} +(-1.41421 + 0.585786i) q^{56} +(1.41421 + 0.585786i) q^{57} +(-0.585786 + 1.41421i) q^{58} +(-0.414214 + 0.414214i) q^{59} +(6.82843 + 2.82843i) q^{61} +(3.41421 + 1.41421i) q^{62} +(0.242641 + 0.585786i) q^{63} +1.00000i q^{64} +(-5.82843 - 5.82843i) q^{66} -7.41421i q^{67} +(-2.12132 + 3.53553i) q^{68} -5.65685 q^{69} +(0.828427 + 2.00000i) q^{71} +0.414214 q^{72} +(2.05025 + 4.94975i) q^{73} +(0.828427 - 2.00000i) q^{74} +(-0.585786 + 0.585786i) q^{76} +(4.82843 + 4.82843i) q^{77} +(0.585786 - 1.41421i) q^{78} +(2.00000 - 4.82843i) q^{79} +10.0711i q^{81} +(-10.3640 + 4.29289i) q^{82} +(4.41421 - 4.41421i) q^{83} -2.82843 q^{84} -1.75736 q^{86} +(-2.00000 + 2.00000i) q^{87} +(4.12132 - 1.70711i) q^{88} +15.0711i q^{89} +(-0.485281 + 1.17157i) q^{91} +(1.17157 - 2.82843i) q^{92} +(4.82843 + 4.82843i) q^{93} +(-6.82843 + 6.82843i) q^{94} +(-0.707107 + 1.70711i) q^{96} +(-2.12132 - 5.12132i) q^{97} -4.65685 q^{98} +(-0.707107 - 1.70711i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 8 q^{7} + 4 q^{9} + 4 q^{11} - 8 q^{13} - 8 q^{14} - 4 q^{16} - 8 q^{19} + 4 q^{22} - 4 q^{24} - 8 q^{26} - 4 q^{27} + 16 q^{34} - 4 q^{36} - 8 q^{37} - 8 q^{38} + 16 q^{41} + 8 q^{42} - 12 q^{43}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −1.70711 + 0.707107i −0.985599 + 0.408248i −0.816497 0.577350i \(-0.804087\pi\)
−0.169102 + 0.985599i \(0.554087\pi\)
\(4\) 1.00000i 0.500000i
\(5\) 0 0
\(6\) 0.707107 1.70711i 0.288675 0.696923i
\(7\) −0.585786 + 1.41421i −0.221406 + 0.534522i −0.995081 0.0990602i \(-0.968416\pi\)
0.773675 + 0.633583i \(0.218416\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0.292893 0.292893i 0.0976311 0.0976311i
\(10\) 0 0
\(11\) 1.70711 4.12132i 0.514712 1.24262i −0.426401 0.904534i \(-0.640219\pi\)
0.941113 0.338091i \(-0.109781\pi\)
\(12\) 0.707107 + 1.70711i 0.204124 + 0.492799i
\(13\) 0.828427 0.229764 0.114882 0.993379i \(-0.463351\pi\)
0.114882 + 0.993379i \(0.463351\pi\)
\(14\) −0.585786 1.41421i −0.156558 0.377964i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −3.53553 2.12132i −0.857493 0.514496i
\(18\) 0.414214i 0.0976311i
\(19\) −0.585786 0.585786i −0.134389 0.134389i 0.636713 0.771101i \(-0.280294\pi\)
−0.771101 + 0.636713i \(0.780294\pi\)
\(20\) 0 0
\(21\) 2.82843i 0.617213i
\(22\) 1.70711 + 4.12132i 0.363956 + 0.878668i
\(23\) 2.82843 + 1.17157i 0.589768 + 0.244290i 0.657551 0.753410i \(-0.271593\pi\)
−0.0677829 + 0.997700i \(0.521593\pi\)
\(24\) −1.70711 0.707107i −0.348462 0.144338i
\(25\) 0 0
\(26\) −0.585786 + 0.585786i −0.114882 + 0.114882i
\(27\) 1.82843 4.41421i 0.351881 0.849516i
\(28\) 1.41421 + 0.585786i 0.267261 + 0.110703i
\(29\) 1.41421 0.585786i 0.262613 0.108778i −0.247492 0.968890i \(-0.579606\pi\)
0.510105 + 0.860112i \(0.329606\pi\)
\(30\) 0 0
\(31\) −1.41421 3.41421i −0.254000 0.613211i 0.744520 0.667601i \(-0.232679\pi\)
−0.998520 + 0.0543898i \(0.982679\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 8.24264i 1.43486i
\(34\) 4.00000 1.00000i 0.685994 0.171499i
\(35\) 0 0
\(36\) −0.292893 0.292893i −0.0488155 0.0488155i
\(37\) −2.00000 + 0.828427i −0.328798 + 0.136193i −0.540975 0.841039i \(-0.681945\pi\)
0.212177 + 0.977231i \(0.431945\pi\)
\(38\) 0.828427 0.134389
\(39\) −1.41421 + 0.585786i −0.226455 + 0.0938009i
\(40\) 0 0
\(41\) 10.3640 + 4.29289i 1.61858 + 0.670437i 0.993884 0.110432i \(-0.0352233\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 2.00000 + 2.00000i 0.308607 + 0.308607i
\(43\) 1.24264 + 1.24264i 0.189501 + 0.189501i 0.795480 0.605979i \(-0.207219\pi\)
−0.605979 + 0.795480i \(0.707219\pi\)
\(44\) −4.12132 1.70711i −0.621312 0.257356i
\(45\) 0 0
\(46\) −2.82843 + 1.17157i −0.417029 + 0.172739i
\(47\) 9.65685 1.40860 0.704298 0.709904i \(-0.251262\pi\)
0.704298 + 0.709904i \(0.251262\pi\)
\(48\) 1.70711 0.707107i 0.246400 0.102062i
\(49\) 3.29289 + 3.29289i 0.470413 + 0.470413i
\(50\) 0 0
\(51\) 7.53553 + 1.12132i 1.05519 + 0.157016i
\(52\) 0.828427i 0.114882i
\(53\) 0.585786 0.585786i 0.0804640 0.0804640i −0.665729 0.746193i \(-0.731879\pi\)
0.746193 + 0.665729i \(0.231879\pi\)
\(54\) 1.82843 + 4.41421i 0.248817 + 0.600698i
\(55\) 0 0
\(56\) −1.41421 + 0.585786i −0.188982 + 0.0782790i
\(57\) 1.41421 + 0.585786i 0.187317 + 0.0775893i
\(58\) −0.585786 + 1.41421i −0.0769175 + 0.185695i
\(59\) −0.414214 + 0.414214i −0.0539260 + 0.0539260i −0.733556 0.679630i \(-0.762141\pi\)
0.679630 + 0.733556i \(0.262141\pi\)
\(60\) 0 0
\(61\) 6.82843 + 2.82843i 0.874291 + 0.362143i 0.774280 0.632843i \(-0.218112\pi\)
0.100011 + 0.994986i \(0.468112\pi\)
\(62\) 3.41421 + 1.41421i 0.433606 + 0.179605i
\(63\) 0.242641 + 0.585786i 0.0305699 + 0.0738022i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) −5.82843 5.82843i −0.717430 0.717430i
\(67\) 7.41421i 0.905790i −0.891564 0.452895i \(-0.850391\pi\)
0.891564 0.452895i \(-0.149609\pi\)
\(68\) −2.12132 + 3.53553i −0.257248 + 0.428746i
\(69\) −5.65685 −0.681005
\(70\) 0 0
\(71\) 0.828427 + 2.00000i 0.0983162 + 0.237356i 0.965383 0.260835i \(-0.0839978\pi\)
−0.867067 + 0.498191i \(0.833998\pi\)
\(72\) 0.414214 0.0488155
\(73\) 2.05025 + 4.94975i 0.239964 + 0.579324i 0.997279 0.0737261i \(-0.0234891\pi\)
−0.757315 + 0.653050i \(0.773489\pi\)
\(74\) 0.828427 2.00000i 0.0963027 0.232495i
\(75\) 0 0
\(76\) −0.585786 + 0.585786i −0.0671943 + 0.0671943i
\(77\) 4.82843 + 4.82843i 0.550250 + 0.550250i
\(78\) 0.585786 1.41421i 0.0663273 0.160128i
\(79\) 2.00000 4.82843i 0.225018 0.543240i −0.770540 0.637391i \(-0.780014\pi\)
0.995558 + 0.0941507i \(0.0300136\pi\)
\(80\) 0 0
\(81\) 10.0711i 1.11901i
\(82\) −10.3640 + 4.29289i −1.14451 + 0.474071i
\(83\) 4.41421 4.41421i 0.484523 0.484523i −0.422050 0.906573i \(-0.638689\pi\)
0.906573 + 0.422050i \(0.138689\pi\)
\(84\) −2.82843 −0.308607
\(85\) 0 0
\(86\) −1.75736 −0.189501
\(87\) −2.00000 + 2.00000i −0.214423 + 0.214423i
\(88\) 4.12132 1.70711i 0.439334 0.181978i
\(89\) 15.0711i 1.59753i 0.601643 + 0.798765i \(0.294513\pi\)
−0.601643 + 0.798765i \(0.705487\pi\)
\(90\) 0 0
\(91\) −0.485281 + 1.17157i −0.0508713 + 0.122814i
\(92\) 1.17157 2.82843i 0.122145 0.294884i
\(93\) 4.82843 + 4.82843i 0.500685 + 0.500685i
\(94\) −6.82843 + 6.82843i −0.704298 + 0.704298i
\(95\) 0 0
\(96\) −0.707107 + 1.70711i −0.0721688 + 0.174231i
\(97\) −2.12132 5.12132i −0.215387 0.519991i 0.778848 0.627213i \(-0.215804\pi\)
−0.994235 + 0.107222i \(0.965804\pi\)
\(98\) −4.65685 −0.470413
\(99\) −0.707107 1.70711i −0.0710669 0.171571i
\(100\) 0 0
\(101\) 4.34315 0.432159 0.216080 0.976376i \(-0.430673\pi\)
0.216080 + 0.976376i \(0.430673\pi\)
\(102\) −6.12132 + 4.53553i −0.606101 + 0.449085i
\(103\) 12.4853i 1.23021i −0.788445 0.615106i \(-0.789113\pi\)
0.788445 0.615106i \(-0.210887\pi\)
\(104\) 0.585786 + 0.585786i 0.0574411 + 0.0574411i
\(105\) 0 0
\(106\) 0.828427i 0.0804640i
\(107\) 4.46447 + 10.7782i 0.431596 + 1.04197i 0.978773 + 0.204948i \(0.0657026\pi\)
−0.547177 + 0.837017i \(0.684297\pi\)
\(108\) −4.41421 1.82843i −0.424758 0.175940i
\(109\) 9.07107 + 3.75736i 0.868851 + 0.359890i 0.772163 0.635425i \(-0.219175\pi\)
0.0966881 + 0.995315i \(0.469175\pi\)
\(110\) 0 0
\(111\) 2.82843 2.82843i 0.268462 0.268462i
\(112\) 0.585786 1.41421i 0.0553516 0.133631i
\(113\) 8.53553 + 3.53553i 0.802955 + 0.332595i 0.746140 0.665790i \(-0.231905\pi\)
0.0568160 + 0.998385i \(0.481905\pi\)
\(114\) −1.41421 + 0.585786i −0.132453 + 0.0548639i
\(115\) 0 0
\(116\) −0.585786 1.41421i −0.0543889 0.131306i
\(117\) 0.242641 0.242641i 0.0224321 0.0224321i
\(118\) 0.585786i 0.0539260i
\(119\) 5.07107 3.75736i 0.464864 0.344437i
\(120\) 0 0
\(121\) −6.29289 6.29289i −0.572081 0.572081i
\(122\) −6.82843 + 2.82843i −0.618217 + 0.256074i
\(123\) −20.7279 −1.86897
\(124\) −3.41421 + 1.41421i −0.306605 + 0.127000i
\(125\) 0 0
\(126\) −0.585786 0.242641i −0.0521860 0.0216162i
\(127\) −9.17157 9.17157i −0.813845 0.813845i 0.171363 0.985208i \(-0.445183\pi\)
−0.985208 + 0.171363i \(0.945183\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) −3.00000 1.24264i −0.264135 0.109408i
\(130\) 0 0
\(131\) 0.121320 0.0502525i 0.0105998 0.00439058i −0.377377 0.926060i \(-0.623174\pi\)
0.387977 + 0.921669i \(0.373174\pi\)
\(132\) 8.24264 0.717430
\(133\) 1.17157 0.485281i 0.101588 0.0420792i
\(134\) 5.24264 + 5.24264i 0.452895 + 0.452895i
\(135\) 0 0
\(136\) −1.00000 4.00000i −0.0857493 0.342997i
\(137\) 2.34315i 0.200188i −0.994978 0.100094i \(-0.968086\pi\)
0.994978 0.100094i \(-0.0319144\pi\)
\(138\) 4.00000 4.00000i 0.340503 0.340503i
\(139\) 0.707107 + 1.70711i 0.0599760 + 0.144795i 0.951027 0.309109i \(-0.100031\pi\)
−0.891051 + 0.453904i \(0.850031\pi\)
\(140\) 0 0
\(141\) −16.4853 + 6.82843i −1.38831 + 0.575057i
\(142\) −2.00000 0.828427i −0.167836 0.0695201i
\(143\) 1.41421 3.41421i 0.118262 0.285511i
\(144\) −0.292893 + 0.292893i −0.0244078 + 0.0244078i
\(145\) 0 0
\(146\) −4.94975 2.05025i −0.409644 0.169680i
\(147\) −7.94975 3.29289i −0.655684 0.271593i
\(148\) 0.828427 + 2.00000i 0.0680963 + 0.164399i
\(149\) 15.6569i 1.28266i −0.767265 0.641330i \(-0.778383\pi\)
0.767265 0.641330i \(-0.221617\pi\)
\(150\) 0 0
\(151\) −15.6569 15.6569i −1.27414 1.27414i −0.943897 0.330240i \(-0.892870\pi\)
−0.330240 0.943897i \(-0.607130\pi\)
\(152\) 0.828427i 0.0671943i
\(153\) −1.65685 + 0.414214i −0.133949 + 0.0334872i
\(154\) −6.82843 −0.550250
\(155\) 0 0
\(156\) 0.585786 + 1.41421i 0.0469005 + 0.113228i
\(157\) −13.3137 −1.06255 −0.531275 0.847200i \(-0.678287\pi\)
−0.531275 + 0.847200i \(0.678287\pi\)
\(158\) 2.00000 + 4.82843i 0.159111 + 0.384129i
\(159\) −0.585786 + 1.41421i −0.0464559 + 0.112154i
\(160\) 0 0
\(161\) −3.31371 + 3.31371i −0.261157 + 0.261157i
\(162\) −7.12132 7.12132i −0.559504 0.559504i
\(163\) 8.70711 21.0208i 0.681993 1.64648i −0.0783260 0.996928i \(-0.524958\pi\)
0.760319 0.649550i \(-0.225042\pi\)
\(164\) 4.29289 10.3640i 0.335219 0.809289i
\(165\) 0 0
\(166\) 6.24264i 0.484523i
\(167\) 18.2426 7.55635i 1.41166 0.584728i 0.458908 0.888484i \(-0.348241\pi\)
0.952750 + 0.303756i \(0.0982407\pi\)
\(168\) 2.00000 2.00000i 0.154303 0.154303i
\(169\) −12.3137 −0.947208
\(170\) 0 0
\(171\) −0.343146 −0.0262410
\(172\) 1.24264 1.24264i 0.0947505 0.0947505i
\(173\) −5.41421 + 2.24264i −0.411635 + 0.170505i −0.578884 0.815410i \(-0.696512\pi\)
0.167249 + 0.985915i \(0.446512\pi\)
\(174\) 2.82843i 0.214423i
\(175\) 0 0
\(176\) −1.70711 + 4.12132i −0.128678 + 0.310656i
\(177\) 0.414214 1.00000i 0.0311342 0.0751646i
\(178\) −10.6569 10.6569i −0.798765 0.798765i
\(179\) 18.2426 18.2426i 1.36352 1.36352i 0.494132 0.869387i \(-0.335486\pi\)
0.869387 0.494132i \(-0.164514\pi\)
\(180\) 0 0
\(181\) 2.34315 5.65685i 0.174165 0.420471i −0.812559 0.582879i \(-0.801926\pi\)
0.986724 + 0.162408i \(0.0519262\pi\)
\(182\) −0.485281 1.17157i −0.0359714 0.0868428i
\(183\) −13.6569 −1.00954
\(184\) 1.17157 + 2.82843i 0.0863695 + 0.208514i
\(185\) 0 0
\(186\) −6.82843 −0.500685
\(187\) −14.7782 + 10.9497i −1.08069 + 0.800725i
\(188\) 9.65685i 0.704298i
\(189\) 5.17157 + 5.17157i 0.376177 + 0.376177i
\(190\) 0 0
\(191\) 2.82843i 0.204658i 0.994751 + 0.102329i \(0.0326294\pi\)
−0.994751 + 0.102329i \(0.967371\pi\)
\(192\) −0.707107 1.70711i −0.0510310 0.123200i
\(193\) −11.3640 4.70711i −0.817996 0.338825i −0.0658565 0.997829i \(-0.520978\pi\)
−0.752139 + 0.659004i \(0.770978\pi\)
\(194\) 5.12132 + 2.12132i 0.367689 + 0.152302i
\(195\) 0 0
\(196\) 3.29289 3.29289i 0.235207 0.235207i
\(197\) 7.65685 18.4853i 0.545528 1.31702i −0.375246 0.926925i \(-0.622442\pi\)
0.920774 0.390096i \(-0.127558\pi\)
\(198\) 1.70711 + 0.707107i 0.121319 + 0.0502519i
\(199\) 19.3137 8.00000i 1.36911 0.567105i 0.427565 0.903985i \(-0.359372\pi\)
0.941548 + 0.336880i \(0.109372\pi\)
\(200\) 0 0
\(201\) 5.24264 + 12.6569i 0.369787 + 0.892746i
\(202\) −3.07107 + 3.07107i −0.216080 + 0.216080i
\(203\) 2.34315i 0.164457i
\(204\) 1.12132 7.53553i 0.0785081 0.527593i
\(205\) 0 0
\(206\) 8.82843 + 8.82843i 0.615106 + 0.615106i
\(207\) 1.17157 0.485281i 0.0814299 0.0337294i
\(208\) −0.828427 −0.0574411
\(209\) −3.41421 + 1.41421i −0.236166 + 0.0978232i
\(210\) 0 0
\(211\) −0.121320 0.0502525i −0.00835204 0.00345953i 0.378504 0.925600i \(-0.376439\pi\)
−0.386856 + 0.922140i \(0.626439\pi\)
\(212\) −0.585786 0.585786i −0.0402320 0.0402320i
\(213\) −2.82843 2.82843i −0.193801 0.193801i
\(214\) −10.7782 4.46447i −0.736781 0.305185i
\(215\) 0 0
\(216\) 4.41421 1.82843i 0.300349 0.124409i
\(217\) 5.65685 0.384012
\(218\) −9.07107 + 3.75736i −0.614370 + 0.254480i
\(219\) −7.00000 7.00000i −0.473016 0.473016i
\(220\) 0 0
\(221\) −2.92893 1.75736i −0.197021 0.118213i
\(222\) 4.00000i 0.268462i
\(223\) −17.3137 + 17.3137i −1.15941 + 1.15941i −0.174809 + 0.984602i \(0.555931\pi\)
−0.984602 + 0.174809i \(0.944069\pi\)
\(224\) 0.585786 + 1.41421i 0.0391395 + 0.0944911i
\(225\) 0 0
\(226\) −8.53553 + 3.53553i −0.567775 + 0.235180i
\(227\) 18.7782 + 7.77817i 1.24635 + 0.516256i 0.905694 0.423932i \(-0.139350\pi\)
0.340657 + 0.940188i \(0.389350\pi\)
\(228\) 0.585786 1.41421i 0.0387947 0.0936586i
\(229\) −13.0711 + 13.0711i −0.863760 + 0.863760i −0.991773 0.128012i \(-0.959140\pi\)
0.128012 + 0.991773i \(0.459140\pi\)
\(230\) 0 0
\(231\) −11.6569 4.82843i −0.766965 0.317687i
\(232\) 1.41421 + 0.585786i 0.0928477 + 0.0384588i
\(233\) −4.02082 9.70711i −0.263412 0.635934i 0.735733 0.677272i \(-0.236838\pi\)
−0.999145 + 0.0413382i \(0.986838\pi\)
\(234\) 0.343146i 0.0224321i
\(235\) 0 0
\(236\) 0.414214 + 0.414214i 0.0269630 + 0.0269630i
\(237\) 9.65685i 0.627280i
\(238\) −0.928932 + 6.24264i −0.0602137 + 0.404650i
\(239\) −21.1716 −1.36948 −0.684738 0.728790i \(-0.740083\pi\)
−0.684738 + 0.728790i \(0.740083\pi\)
\(240\) 0 0
\(241\) 7.60660 + 18.3640i 0.489984 + 1.18293i 0.954728 + 0.297481i \(0.0961466\pi\)
−0.464743 + 0.885445i \(0.653853\pi\)
\(242\) 8.89949 0.572081
\(243\) −1.63604 3.94975i −0.104952 0.253376i
\(244\) 2.82843 6.82843i 0.181071 0.437145i
\(245\) 0 0
\(246\) 14.6569 14.6569i 0.934487 0.934487i
\(247\) −0.485281 0.485281i −0.0308777 0.0308777i
\(248\) 1.41421 3.41421i 0.0898027 0.216803i
\(249\) −4.41421 + 10.6569i −0.279739 + 0.675351i
\(250\) 0 0
\(251\) 18.7279i 1.18210i 0.806636 + 0.591048i \(0.201286\pi\)
−0.806636 + 0.591048i \(0.798714\pi\)
\(252\) 0.585786 0.242641i 0.0369011 0.0152849i
\(253\) 9.65685 9.65685i 0.607121 0.607121i
\(254\) 12.9706 0.813845
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −5.82843 + 5.82843i −0.363567 + 0.363567i −0.865124 0.501557i \(-0.832761\pi\)
0.501557 + 0.865124i \(0.332761\pi\)
\(258\) 3.00000 1.24264i 0.186772 0.0773634i
\(259\) 3.31371i 0.205904i
\(260\) 0 0
\(261\) 0.242641 0.585786i 0.0150191 0.0362593i
\(262\) −0.0502525 + 0.121320i −0.00310461 + 0.00749520i
\(263\) −5.65685 5.65685i −0.348817 0.348817i 0.510852 0.859669i \(-0.329330\pi\)
−0.859669 + 0.510852i \(0.829330\pi\)
\(264\) −5.82843 + 5.82843i −0.358715 + 0.358715i
\(265\) 0 0
\(266\) −0.485281 + 1.17157i −0.0297545 + 0.0718337i
\(267\) −10.6569 25.7279i −0.652189 1.57452i
\(268\) −7.41421 −0.452895
\(269\) −2.92893 7.07107i −0.178580 0.431131i 0.809089 0.587686i \(-0.199961\pi\)
−0.987669 + 0.156555i \(0.949961\pi\)
\(270\) 0 0
\(271\) −14.8284 −0.900763 −0.450381 0.892836i \(-0.648712\pi\)
−0.450381 + 0.892836i \(0.648712\pi\)
\(272\) 3.53553 + 2.12132i 0.214373 + 0.128624i
\(273\) 2.34315i 0.141814i
\(274\) 1.65685 + 1.65685i 0.100094 + 0.100094i
\(275\) 0 0
\(276\) 5.65685i 0.340503i
\(277\) 9.07107 + 21.8995i 0.545028 + 1.31581i 0.921137 + 0.389238i \(0.127262\pi\)
−0.376110 + 0.926575i \(0.622738\pi\)
\(278\) −1.70711 0.707107i −0.102385 0.0424094i
\(279\) −1.41421 0.585786i −0.0846668 0.0350701i
\(280\) 0 0
\(281\) 10.1421 10.1421i 0.605029 0.605029i −0.336614 0.941643i \(-0.609282\pi\)
0.941643 + 0.336614i \(0.109282\pi\)
\(282\) 6.82843 16.4853i 0.406627 0.981684i
\(283\) −1.05025 0.435029i −0.0624310 0.0258598i 0.351249 0.936282i \(-0.385757\pi\)
−0.413680 + 0.910422i \(0.635757\pi\)
\(284\) 2.00000 0.828427i 0.118678 0.0491581i
\(285\) 0 0
\(286\) 1.41421 + 3.41421i 0.0836242 + 0.201887i
\(287\) −12.1421 + 12.1421i −0.716728 + 0.716728i
\(288\) 0.414214i 0.0244078i
\(289\) 8.00000 + 15.0000i 0.470588 + 0.882353i
\(290\) 0 0
\(291\) 7.24264 + 7.24264i 0.424571 + 0.424571i
\(292\) 4.94975 2.05025i 0.289662 0.119982i
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) 7.94975 3.29289i 0.463639 0.192045i
\(295\) 0 0
\(296\) −2.00000 0.828427i −0.116248 0.0481513i
\(297\) −15.0711 15.0711i −0.874512 0.874512i
\(298\) 11.0711 + 11.0711i 0.641330 + 0.641330i
\(299\) 2.34315 + 0.970563i 0.135508 + 0.0561291i
\(300\) 0 0
\(301\) −2.48528 + 1.02944i −0.143249 + 0.0593358i
\(302\) 22.1421 1.27414
\(303\) −7.41421 + 3.07107i −0.425935 + 0.176428i
\(304\) 0.585786 + 0.585786i 0.0335972 + 0.0335972i
\(305\) 0 0
\(306\) 0.878680 1.46447i 0.0502308 0.0837180i
\(307\) 6.34315i 0.362022i 0.983481 + 0.181011i \(0.0579370\pi\)
−0.983481 + 0.181011i \(0.942063\pi\)
\(308\) 4.82843 4.82843i 0.275125 0.275125i
\(309\) 8.82843 + 21.3137i 0.502232 + 1.21249i
\(310\) 0 0
\(311\) −13.8995 + 5.75736i −0.788168 + 0.326470i −0.740207 0.672379i \(-0.765272\pi\)
−0.0479613 + 0.998849i \(0.515272\pi\)
\(312\) −1.41421 0.585786i −0.0800641 0.0331636i
\(313\) 5.19239 12.5355i 0.293491 0.708550i −0.706509 0.707705i \(-0.749731\pi\)
1.00000 0.000845724i \(-0.000269202\pi\)
\(314\) 9.41421 9.41421i 0.531275 0.531275i
\(315\) 0 0
\(316\) −4.82843 2.00000i −0.271620 0.112509i
\(317\) 20.4853 + 8.48528i 1.15057 + 0.476581i 0.874724 0.484622i \(-0.161043\pi\)
0.275844 + 0.961202i \(0.411043\pi\)
\(318\) −0.585786 1.41421i −0.0328493 0.0793052i
\(319\) 6.82843i 0.382319i
\(320\) 0 0
\(321\) −15.2426 15.2426i −0.850761 0.850761i
\(322\) 4.68629i 0.261157i
\(323\) 0.828427 + 3.31371i 0.0460949 + 0.184380i
\(324\) 10.0711 0.559504
\(325\) 0 0
\(326\) 8.70711 + 21.0208i 0.482242 + 1.16424i
\(327\) −18.1421 −1.00326
\(328\) 4.29289 + 10.3640i 0.237035 + 0.572254i
\(329\) −5.65685 + 13.6569i −0.311872 + 0.752927i
\(330\) 0 0
\(331\) 19.5858 19.5858i 1.07653 1.07653i 0.0797144 0.996818i \(-0.474599\pi\)
0.996818 0.0797144i \(-0.0254008\pi\)
\(332\) −4.41421 4.41421i −0.242261 0.242261i
\(333\) −0.343146 + 0.828427i −0.0188043 + 0.0453975i
\(334\) −7.55635 + 18.2426i −0.413465 + 0.998193i
\(335\) 0 0
\(336\) 2.82843i 0.154303i
\(337\) −10.7782 + 4.46447i −0.587125 + 0.243195i −0.656413 0.754402i \(-0.727927\pi\)
0.0692885 + 0.997597i \(0.477927\pi\)
\(338\) 8.70711 8.70711i 0.473604 0.473604i
\(339\) −17.0711 −0.927173
\(340\) 0 0
\(341\) −16.4853 −0.892728
\(342\) 0.242641 0.242641i 0.0131205 0.0131205i
\(343\) −16.4853 + 6.82843i −0.890122 + 0.368700i
\(344\) 1.75736i 0.0947505i
\(345\) 0 0
\(346\) 2.24264 5.41421i 0.120565 0.291070i
\(347\) 6.19239 14.9497i 0.332425 0.802544i −0.665974 0.745975i \(-0.731984\pi\)
0.998399 0.0565694i \(-0.0180162\pi\)
\(348\) 2.00000 + 2.00000i 0.107211 + 0.107211i
\(349\) 13.8995 13.8995i 0.744023 0.744023i −0.229327 0.973350i \(-0.573652\pi\)
0.973350 + 0.229327i \(0.0736524\pi\)
\(350\) 0 0
\(351\) 1.51472 3.65685i 0.0808497 0.195188i
\(352\) −1.70711 4.12132i −0.0909891 0.219667i
\(353\) 14.3848 0.765624 0.382812 0.923826i \(-0.374956\pi\)
0.382812 + 0.923826i \(0.374956\pi\)
\(354\) 0.414214 + 1.00000i 0.0220152 + 0.0531494i
\(355\) 0 0
\(356\) 15.0711 0.798765
\(357\) −6.00000 + 10.0000i −0.317554 + 0.529256i
\(358\) 25.7990i 1.36352i
\(359\) −8.00000 8.00000i −0.422224 0.422224i 0.463745 0.885969i \(-0.346505\pi\)
−0.885969 + 0.463745i \(0.846505\pi\)
\(360\) 0 0
\(361\) 18.3137i 0.963879i
\(362\) 2.34315 + 5.65685i 0.123153 + 0.297318i
\(363\) 15.1924 + 6.29289i 0.797394 + 0.330291i
\(364\) 1.17157 + 0.485281i 0.0614071 + 0.0254357i
\(365\) 0 0
\(366\) 9.65685 9.65685i 0.504772 0.504772i
\(367\) −7.17157 + 17.3137i −0.374353 + 0.903768i 0.618649 + 0.785668i \(0.287680\pi\)
−0.993002 + 0.118100i \(0.962320\pi\)
\(368\) −2.82843 1.17157i −0.147442 0.0610725i
\(369\) 4.29289 1.77817i 0.223479 0.0925681i
\(370\) 0 0
\(371\) 0.485281 + 1.17157i 0.0251946 + 0.0608250i
\(372\) 4.82843 4.82843i 0.250342 0.250342i
\(373\) 10.4853i 0.542907i 0.962452 + 0.271454i \(0.0875044\pi\)
−0.962452 + 0.271454i \(0.912496\pi\)
\(374\) 2.70711 18.1924i 0.139981 0.940706i
\(375\) 0 0
\(376\) 6.82843 + 6.82843i 0.352149 + 0.352149i
\(377\) 1.17157 0.485281i 0.0603391 0.0249933i
\(378\) −7.31371 −0.376177
\(379\) −8.60660 + 3.56497i −0.442091 + 0.183120i −0.592614 0.805486i \(-0.701904\pi\)
0.150523 + 0.988606i \(0.451904\pi\)
\(380\) 0 0
\(381\) 22.1421 + 9.17157i 1.13438 + 0.469874i
\(382\) −2.00000 2.00000i −0.102329 0.102329i
\(383\) 21.3137 + 21.3137i 1.08908 + 1.08908i 0.995623 + 0.0934562i \(0.0297915\pi\)
0.0934562 + 0.995623i \(0.470208\pi\)
\(384\) 1.70711 + 0.707107i 0.0871154 + 0.0360844i
\(385\) 0 0
\(386\) 11.3640 4.70711i 0.578410 0.239585i
\(387\) 0.727922 0.0370024
\(388\) −5.12132 + 2.12132i −0.259996 + 0.107694i
\(389\) −2.24264 2.24264i −0.113706 0.113706i 0.647964 0.761671i \(-0.275621\pi\)
−0.761671 + 0.647964i \(0.775621\pi\)
\(390\) 0 0
\(391\) −7.51472 10.1421i −0.380036 0.512910i
\(392\) 4.65685i 0.235207i
\(393\) −0.171573 + 0.171573i −0.00865471 + 0.00865471i
\(394\) 7.65685 + 18.4853i 0.385747 + 0.931275i
\(395\) 0 0
\(396\) −1.70711 + 0.707107i −0.0857853 + 0.0355335i
\(397\) 7.65685 + 3.17157i 0.384286 + 0.159177i 0.566459 0.824090i \(-0.308313\pi\)
−0.182173 + 0.983267i \(0.558313\pi\)
\(398\) −8.00000 + 19.3137i −0.401004 + 0.968109i
\(399\) −1.65685 + 1.65685i −0.0829465 + 0.0829465i
\(400\) 0 0
\(401\) −22.1924 9.19239i −1.10823 0.459046i −0.247905 0.968784i \(-0.579742\pi\)
−0.860330 + 0.509738i \(0.829742\pi\)
\(402\) −12.6569 5.24264i −0.631267 0.261479i
\(403\) −1.17157 2.82843i −0.0583602 0.140894i
\(404\) 4.34315i 0.216080i
\(405\) 0 0
\(406\) −1.65685 1.65685i −0.0822283 0.0822283i
\(407\) 9.65685i 0.478672i
\(408\) 4.53553 + 6.12132i 0.224542 + 0.303051i
\(409\) −15.5563 −0.769212 −0.384606 0.923081i \(-0.625663\pi\)
−0.384606 + 0.923081i \(0.625663\pi\)
\(410\) 0 0
\(411\) 1.65685 + 4.00000i 0.0817266 + 0.197305i
\(412\) −12.4853 −0.615106
\(413\) −0.343146 0.828427i −0.0168851 0.0407642i
\(414\) −0.485281 + 1.17157i −0.0238503 + 0.0575797i
\(415\) 0 0
\(416\) 0.585786 0.585786i 0.0287205 0.0287205i
\(417\) −2.41421 2.41421i −0.118225 0.118225i
\(418\) 1.41421 3.41421i 0.0691714 0.166995i
\(419\) 6.60660 15.9497i 0.322754 0.779196i −0.676338 0.736591i \(-0.736434\pi\)
0.999092 0.0426051i \(-0.0135657\pi\)
\(420\) 0 0
\(421\) 15.6569i 0.763068i 0.924355 + 0.381534i \(0.124604\pi\)
−0.924355 + 0.381534i \(0.875396\pi\)
\(422\) 0.121320 0.0502525i 0.00590578 0.00244625i
\(423\) 2.82843 2.82843i 0.137523 0.137523i
\(424\) 0.828427 0.0402320
\(425\) 0 0
\(426\) 4.00000 0.193801
\(427\) −8.00000 + 8.00000i −0.387147 + 0.387147i
\(428\) 10.7782 4.46447i 0.520983 0.215798i
\(429\) 6.82843i 0.329680i
\(430\) 0 0
\(431\) −5.51472 + 13.3137i −0.265635 + 0.641299i −0.999268 0.0382464i \(-0.987823\pi\)
0.733634 + 0.679545i \(0.237823\pi\)
\(432\) −1.82843 + 4.41421i −0.0879702 + 0.212379i
\(433\) 9.17157 + 9.17157i 0.440758 + 0.440758i 0.892267 0.451509i \(-0.149114\pi\)
−0.451509 + 0.892267i \(0.649114\pi\)
\(434\) −4.00000 + 4.00000i −0.192006 + 0.192006i
\(435\) 0 0
\(436\) 3.75736 9.07107i 0.179945 0.434425i
\(437\) −0.970563 2.34315i −0.0464283 0.112088i
\(438\) 9.89949 0.473016
\(439\) 8.82843 + 21.3137i 0.421358 + 1.01725i 0.981947 + 0.189154i \(0.0605745\pi\)
−0.560590 + 0.828094i \(0.689425\pi\)
\(440\) 0 0
\(441\) 1.92893 0.0918539
\(442\) 3.31371 0.828427i 0.157617 0.0394043i
\(443\) 36.8701i 1.75175i 0.482539 + 0.875875i \(0.339715\pi\)
−0.482539 + 0.875875i \(0.660285\pi\)
\(444\) −2.82843 2.82843i −0.134231 0.134231i
\(445\) 0 0
\(446\) 24.4853i 1.15941i
\(447\) 11.0711 + 26.7279i 0.523644 + 1.26419i
\(448\) −1.41421 0.585786i −0.0668153 0.0276758i
\(449\) −5.12132 2.12132i −0.241690 0.100111i 0.258551 0.965998i \(-0.416755\pi\)
−0.500241 + 0.865886i \(0.666755\pi\)
\(450\) 0 0
\(451\) 35.3848 35.3848i 1.66620 1.66620i
\(452\) 3.53553 8.53553i 0.166298 0.401478i
\(453\) 37.7990 + 15.6569i 1.77595 + 0.735623i
\(454\) −18.7782 + 7.77817i −0.881303 + 0.365048i
\(455\) 0 0
\(456\) 0.585786 + 1.41421i 0.0274320 + 0.0662266i
\(457\) −3.51472 + 3.51472i −0.164412 + 0.164412i −0.784518 0.620106i \(-0.787089\pi\)
0.620106 + 0.784518i \(0.287089\pi\)
\(458\) 18.4853i 0.863760i
\(459\) −15.8284 + 11.7279i −0.738808 + 0.547413i
\(460\) 0 0
\(461\) −24.7279 24.7279i −1.15169 1.15169i −0.986213 0.165481i \(-0.947082\pi\)
−0.165481 0.986213i \(-0.552918\pi\)
\(462\) 11.6569 4.82843i 0.542326 0.224639i
\(463\) −3.31371 −0.154001 −0.0770005 0.997031i \(-0.524534\pi\)
−0.0770005 + 0.997031i \(0.524534\pi\)
\(464\) −1.41421 + 0.585786i −0.0656532 + 0.0271945i
\(465\) 0 0
\(466\) 9.70711 + 4.02082i 0.449673 + 0.186261i
\(467\) −1.75736 1.75736i −0.0813209 0.0813209i 0.665276 0.746597i \(-0.268314\pi\)
−0.746597 + 0.665276i \(0.768314\pi\)
\(468\) −0.242641 0.242641i −0.0112161 0.0112161i
\(469\) 10.4853 + 4.34315i 0.484165 + 0.200548i
\(470\) 0 0
\(471\) 22.7279 9.41421i 1.04725 0.433784i
\(472\) −0.585786 −0.0269630
\(473\) 7.24264 3.00000i 0.333017 0.137940i
\(474\) −6.82843 6.82843i −0.313640 0.313640i
\(475\) 0 0
\(476\) −3.75736 5.07107i −0.172218 0.232432i
\(477\) 0.343146i 0.0157116i
\(478\) 14.9706 14.9706i 0.684738 0.684738i
\(479\) −9.51472 22.9706i −0.434739 1.04955i −0.977740 0.209820i \(-0.932712\pi\)
0.543001 0.839732i \(-0.317288\pi\)
\(480\) 0 0
\(481\) −1.65685 + 0.686292i −0.0755461 + 0.0312922i
\(482\) −18.3640 7.60660i −0.836456 0.346471i
\(483\) 3.31371 8.00000i 0.150779 0.364013i
\(484\) −6.29289 + 6.29289i −0.286041 + 0.286041i
\(485\) 0 0
\(486\) 3.94975 + 1.63604i 0.179164 + 0.0742122i
\(487\) 20.4853 + 8.48528i 0.928277 + 0.384505i 0.795024 0.606577i \(-0.207458\pi\)
0.133252 + 0.991082i \(0.457458\pi\)
\(488\) 2.82843 + 6.82843i 0.128037 + 0.309108i
\(489\) 42.0416i 1.90119i
\(490\) 0 0
\(491\) 10.9289 + 10.9289i 0.493216 + 0.493216i 0.909318 0.416102i \(-0.136604\pi\)
−0.416102 + 0.909318i \(0.636604\pi\)
\(492\) 20.7279i 0.934487i
\(493\) −6.24264 0.928932i −0.281154 0.0418370i
\(494\) 0.686292 0.0308777
\(495\) 0 0
\(496\) 1.41421 + 3.41421i 0.0635001 + 0.153303i
\(497\) −3.31371 −0.148640
\(498\) −4.41421 10.6569i −0.197806 0.477545i
\(499\) 14.0919 34.0208i 0.630839 1.52298i −0.207730 0.978186i \(-0.566608\pi\)
0.838569 0.544795i \(-0.183392\pi\)
\(500\) 0 0
\(501\) −25.7990 + 25.7990i −1.15261 + 1.15261i
\(502\) −13.2426 13.2426i −0.591048 0.591048i
\(503\) 4.62742 11.1716i 0.206326 0.498116i −0.786513 0.617574i \(-0.788116\pi\)
0.992839 + 0.119458i \(0.0381157\pi\)
\(504\) −0.242641 + 0.585786i −0.0108081 + 0.0260930i
\(505\) 0 0
\(506\) 13.6569i 0.607121i
\(507\) 21.0208 8.70711i 0.933567 0.386696i
\(508\) −9.17157 + 9.17157i −0.406923 + 0.406923i
\(509\) −16.6274 −0.736997 −0.368499 0.929628i \(-0.620128\pi\)
−0.368499 + 0.929628i \(0.620128\pi\)
\(510\) 0 0
\(511\) −8.20101 −0.362791
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −3.65685 + 1.51472i −0.161454 + 0.0668765i
\(514\) 8.24264i 0.363567i
\(515\) 0 0
\(516\) −1.24264 + 3.00000i −0.0547042 + 0.132068i
\(517\) 16.4853 39.7990i 0.725022 1.75036i
\(518\) 2.34315 + 2.34315i 0.102952 + 0.102952i
\(519\) 7.65685 7.65685i 0.336099 0.336099i
\(520\) 0 0
\(521\) 13.4645 32.5061i 0.589889 1.42412i −0.293720 0.955892i \(-0.594893\pi\)
0.883609 0.468226i \(-0.155107\pi\)
\(522\) 0.242641 + 0.585786i 0.0106201 + 0.0256392i
\(523\) −23.2132 −1.01504 −0.507521 0.861639i \(-0.669438\pi\)
−0.507521 + 0.861639i \(0.669438\pi\)
\(524\) −0.0502525 0.121320i −0.00219529 0.00529990i
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) −2.24264 + 15.0711i −0.0976910 + 0.656506i
\(528\) 8.24264i 0.358715i
\(529\) −9.63604 9.63604i −0.418958 0.418958i
\(530\) 0 0
\(531\) 0.242641i 0.0105297i
\(532\) −0.485281 1.17157i −0.0210396 0.0507941i
\(533\) 8.58579 + 3.55635i 0.371892 + 0.154043i
\(534\) 25.7279 + 10.6569i 1.11336 + 0.461167i
\(535\) 0 0
\(536\) 5.24264 5.24264i 0.226448 0.226448i
\(537\) −18.2426 + 44.0416i −0.787228 + 1.90054i
\(538\) 7.07107 + 2.92893i 0.304855 + 0.126275i
\(539\) 19.1924 7.94975i 0.826675 0.342420i
\(540\) 0 0
\(541\) 7.79899 + 18.8284i 0.335305 + 0.809497i 0.998153 + 0.0607439i \(0.0193473\pi\)
−0.662849 + 0.748753i \(0.730653\pi\)
\(542\) 10.4853 10.4853i 0.450381 0.450381i
\(543\) 11.3137i 0.485518i
\(544\) −4.00000 + 1.00000i −0.171499 + 0.0428746i
\(545\) 0 0
\(546\) 1.65685 + 1.65685i 0.0709068 + 0.0709068i
\(547\) 22.6777 9.39340i 0.969627 0.401633i 0.159054 0.987270i \(-0.449156\pi\)
0.810573 + 0.585637i \(0.199156\pi\)
\(548\) −2.34315 −0.100094
\(549\) 2.82843 1.17157i 0.120714 0.0500015i
\(550\) 0 0
\(551\) −1.17157 0.485281i −0.0499107 0.0206737i
\(552\) −4.00000 4.00000i −0.170251 0.170251i
\(553\) 5.65685 + 5.65685i 0.240554 + 0.240554i
\(554\) −21.8995 9.07107i −0.930420 0.385393i
\(555\) 0 0
\(556\) 1.70711 0.707107i 0.0723975 0.0299880i
\(557\) 41.1127 1.74200 0.871000 0.491282i \(-0.163472\pi\)
0.871000 + 0.491282i \(0.163472\pi\)
\(558\) 1.41421 0.585786i 0.0598684 0.0247983i
\(559\) 1.02944 + 1.02944i 0.0435406 + 0.0435406i
\(560\) 0 0
\(561\) 17.4853 29.1421i 0.738229 1.23038i
\(562\) 14.3431i 0.605029i
\(563\) −5.92893 + 5.92893i −0.249875 + 0.249875i −0.820919 0.571044i \(-0.806538\pi\)
0.571044 + 0.820919i \(0.306538\pi\)
\(564\) 6.82843 + 16.4853i 0.287529 + 0.694156i
\(565\) 0 0
\(566\) 1.05025 0.435029i 0.0441454 0.0182856i
\(567\) −14.2426 5.89949i −0.598135 0.247755i
\(568\) −0.828427 + 2.00000i −0.0347600 + 0.0839181i
\(569\) −3.48528 + 3.48528i −0.146111 + 0.146111i −0.776378 0.630267i \(-0.782945\pi\)
0.630267 + 0.776378i \(0.282945\pi\)
\(570\) 0 0
\(571\) 2.22183 + 0.920310i 0.0929805 + 0.0385138i 0.428689 0.903452i \(-0.358976\pi\)
−0.335708 + 0.941966i \(0.608976\pi\)
\(572\) −3.41421 1.41421i −0.142755 0.0591312i
\(573\) −2.00000 4.82843i −0.0835512 0.201710i
\(574\) 17.1716i 0.716728i
\(575\) 0 0
\(576\) 0.292893 + 0.292893i 0.0122039 + 0.0122039i
\(577\) 16.6274i 0.692208i −0.938196 0.346104i \(-0.887504\pi\)
0.938196 0.346104i \(-0.112496\pi\)
\(578\) −16.2635 4.94975i −0.676471 0.205882i
\(579\) 22.7279 0.944540
\(580\) 0 0
\(581\) 3.65685 + 8.82843i 0.151712 + 0.366265i
\(582\) −10.2426 −0.424571
\(583\) −1.41421 3.41421i −0.0585707 0.141402i
\(584\) −2.05025 + 4.94975i −0.0848401 + 0.204822i
\(585\) 0 0
\(586\) −15.5563 + 15.5563i −0.642627 + 0.642627i
\(587\) −2.14214 2.14214i −0.0884154 0.0884154i 0.661516 0.749931i \(-0.269913\pi\)
−0.749931 + 0.661516i \(0.769913\pi\)
\(588\) −3.29289 + 7.94975i −0.135797 + 0.327842i
\(589\) −1.17157 + 2.82843i −0.0482738 + 0.116543i
\(590\) 0 0
\(591\) 36.9706i 1.52077i
\(592\) 2.00000 0.828427i 0.0821995 0.0340481i
\(593\) −3.00000 + 3.00000i −0.123195 + 0.123195i −0.766016 0.642821i \(-0.777764\pi\)
0.642821 + 0.766016i \(0.277764\pi\)
\(594\) 21.3137 0.874512
\(595\) 0 0
\(596\) −15.6569 −0.641330
\(597\) −27.3137 + 27.3137i −1.11788 + 1.11788i
\(598\) −2.34315 + 0.970563i −0.0958184 + 0.0396893i
\(599\) 26.3431i 1.07635i −0.842833 0.538176i \(-0.819114\pi\)
0.842833 0.538176i \(-0.180886\pi\)
\(600\) 0 0
\(601\) −7.05025 + 17.0208i −0.287586 + 0.694294i −0.999972 0.00749419i \(-0.997615\pi\)
0.712386 + 0.701788i \(0.247615\pi\)
\(602\) 1.02944 2.48528i 0.0419567 0.101293i
\(603\) −2.17157 2.17157i −0.0884333 0.0884333i
\(604\) −15.6569 + 15.6569i −0.637068 + 0.637068i
\(605\) 0 0
\(606\) 3.07107 7.41421i 0.124754 0.301182i
\(607\) 3.75736 + 9.07107i 0.152507 + 0.368183i 0.981606 0.190918i \(-0.0611464\pi\)
−0.829100 + 0.559101i \(0.811146\pi\)
\(608\) −0.828427 −0.0335972
\(609\) −1.65685 4.00000i −0.0671391 0.162088i
\(610\) 0 0
\(611\) 8.00000 0.323645
\(612\) 0.414214 + 1.65685i 0.0167436 + 0.0669744i
\(613\) 37.7990i 1.52669i −0.645993 0.763343i \(-0.723556\pi\)
0.645993 0.763343i \(-0.276444\pi\)
\(614\) −4.48528 4.48528i −0.181011 0.181011i
\(615\) 0 0
\(616\) 6.82843i 0.275125i
\(617\) −6.92031 16.7071i −0.278601 0.672603i 0.721196 0.692731i \(-0.243593\pi\)
−0.999797 + 0.0201281i \(0.993593\pi\)
\(618\) −21.3137 8.82843i −0.857363 0.355131i
\(619\) −5.12132 2.12132i −0.205843 0.0852631i 0.277380 0.960760i \(-0.410534\pi\)
−0.483223 + 0.875497i \(0.660534\pi\)
\(620\) 0 0
\(621\) 10.3431 10.3431i 0.415056 0.415056i
\(622\) 5.75736 13.8995i 0.230849 0.557319i
\(623\) −21.3137 8.82843i −0.853916 0.353703i
\(624\) 1.41421 0.585786i 0.0566139 0.0234502i
\(625\) 0 0
\(626\) 5.19239 + 12.5355i 0.207530 + 0.501021i
\(627\) 4.82843 4.82843i 0.192829 0.192829i
\(628\) 13.3137i 0.531275i
\(629\) 8.82843 + 1.31371i 0.352012 + 0.0523810i
\(630\) 0 0
\(631\) −21.6569 21.6569i −0.862146 0.862146i 0.129441 0.991587i \(-0.458682\pi\)
−0.991587 + 0.129441i \(0.958682\pi\)
\(632\) 4.82843 2.00000i 0.192065 0.0795557i
\(633\) 0.242641 0.00964410
\(634\) −20.4853 + 8.48528i −0.813574 + 0.336994i
\(635\) 0 0
\(636\) 1.41421 + 0.585786i 0.0560772 + 0.0232279i
\(637\) 2.72792 + 2.72792i 0.108084 + 0.108084i
\(638\) 4.82843 + 4.82843i 0.191159 + 0.191159i
\(639\) 0.828427 + 0.343146i 0.0327721 + 0.0135746i
\(640\) 0 0
\(641\) −13.4350 + 5.56497i −0.530652 + 0.219803i −0.631889 0.775059i \(-0.717720\pi\)
0.101237 + 0.994862i \(0.467720\pi\)
\(642\) 21.5563 0.850761
\(643\) −12.3640 + 5.12132i −0.487587 + 0.201965i −0.612913 0.790150i \(-0.710002\pi\)
0.125326 + 0.992116i \(0.460002\pi\)
\(644\) 3.31371 + 3.31371i 0.130578 + 0.130578i
\(645\) 0 0
\(646\) −2.92893 1.75736i −0.115237 0.0691424i
\(647\) 12.4853i 0.490847i 0.969416 + 0.245424i \(0.0789270\pi\)
−0.969416 + 0.245424i \(0.921073\pi\)
\(648\) −7.12132 + 7.12132i −0.279752 + 0.279752i
\(649\) 1.00000 + 2.41421i 0.0392534 + 0.0947662i
\(650\) 0 0
\(651\) −9.65685 + 4.00000i −0.378482 + 0.156772i
\(652\) −21.0208 8.70711i −0.823239 0.340997i
\(653\) −9.89949 + 23.8995i −0.387397 + 0.935260i 0.603092 + 0.797671i \(0.293935\pi\)
−0.990490 + 0.137588i \(0.956065\pi\)
\(654\) 12.8284 12.8284i 0.501631 0.501631i
\(655\) 0 0
\(656\) −10.3640 4.29289i −0.404645 0.167609i
\(657\) 2.05025 + 0.849242i 0.0799880 + 0.0331321i
\(658\) −5.65685 13.6569i −0.220527 0.532400i
\(659\) 39.3137i 1.53144i 0.643171 + 0.765722i \(0.277618\pi\)
−0.643171 + 0.765722i \(0.722382\pi\)
\(660\) 0 0
\(661\) 12.7279 + 12.7279i 0.495059 + 0.495059i 0.909896 0.414837i \(-0.136161\pi\)
−0.414837 + 0.909896i \(0.636161\pi\)
\(662\) 27.6985i 1.07653i
\(663\) 6.24264 + 0.928932i 0.242444 + 0.0360767i
\(664\) 6.24264 0.242261
\(665\) 0 0
\(666\) −0.343146 0.828427i −0.0132966 0.0321009i
\(667\) 4.68629 0.181454
\(668\) −7.55635 18.2426i −0.292364 0.705829i
\(669\) 17.3137 41.7990i 0.669387 1.61604i
\(670\) 0 0
\(671\) 23.3137 23.3137i 0.900016 0.900016i
\(672\) −2.00000 2.00000i −0.0771517 0.0771517i
\(673\) 0.393398 0.949747i 0.0151644 0.0366101i −0.916116 0.400913i \(-0.868693\pi\)
0.931280 + 0.364303i \(0.118693\pi\)
\(674\) 4.46447 10.7782i 0.171965 0.415160i
\(675\) 0 0
\(676\) 12.3137i 0.473604i
\(677\) 10.8284 4.48528i 0.416170 0.172383i −0.164766 0.986333i \(-0.552687\pi\)
0.580936 + 0.813949i \(0.302687\pi\)
\(678\) 12.0711 12.0711i 0.463587 0.463587i
\(679\) 8.48528 0.325635
\(680\) 0 0
\(681\) −37.5563 −1.43916
\(682\) 11.6569 11.6569i 0.446364 0.446364i
\(683\) −10.0208 + 4.15076i −0.383436 + 0.158824i −0.566071 0.824356i \(-0.691537\pi\)
0.182635 + 0.983181i \(0.441537\pi\)
\(684\) 0.343146i 0.0131205i
\(685\) 0 0
\(686\) 6.82843 16.4853i 0.260711 0.629411i
\(687\) 13.0711 31.5563i 0.498692 1.20395i
\(688\) −1.24264 1.24264i −0.0473752 0.0473752i
\(689\) 0.485281 0.485281i 0.0184877 0.0184877i
\(690\) 0 0
\(691\) −17.9914 + 43.4350i −0.684424 + 1.65235i 0.0712988 + 0.997455i \(0.477286\pi\)
−0.755723 + 0.654891i \(0.772714\pi\)
\(692\) 2.24264 + 5.41421i 0.0852524 + 0.205818i
\(693\) 2.82843 0.107443
\(694\) 6.19239 + 14.9497i 0.235060 + 0.567485i
\(695\) 0 0
\(696\) −2.82843 −0.107211
\(697\) −27.5355 37.1630i −1.04298 1.40765i
\(698\) 19.6569i 0.744023i
\(699\) 13.7279 + 13.7279i 0.519238 + 0.519238i
\(700\) 0 0
\(701\) 1.51472i 0.0572101i −0.999591 0.0286051i \(-0.990893\pi\)
0.999591 0.0286051i \(-0.00910652\pi\)
\(702\) 1.51472 + 3.65685i 0.0571694 + 0.138019i
\(703\) 1.65685 + 0.686292i 0.0624894 + 0.0258840i
\(704\) 4.12132 + 1.70711i 0.155328 + 0.0643390i
\(705\) 0 0
\(706\) −10.1716 + 10.1716i −0.382812 + 0.382812i
\(707\) −2.54416 + 6.14214i −0.0956828 + 0.230999i
\(708\) −1.00000 0.414214i −0.0375823 0.0155671i
\(709\) 5.75736 2.38478i 0.216222 0.0895622i −0.271943 0.962313i \(-0.587666\pi\)
0.488165 + 0.872751i \(0.337666\pi\)
\(710\) 0 0
\(711\) −0.828427 2.00000i −0.0310684 0.0750059i
\(712\) −10.6569 + 10.6569i −0.399382 + 0.399382i
\(713\) 11.3137i 0.423702i
\(714\) −2.82843 11.3137i −0.105851 0.423405i
\(715\) 0 0
\(716\) −18.2426 18.2426i −0.681759 0.681759i
\(717\) 36.1421 14.9706i 1.34975 0.559086i
\(718\) 11.3137 0.422224
\(719\) −4.00000 + 1.65685i −0.149175 + 0.0617902i −0.456022 0.889969i \(-0.650726\pi\)
0.306847 + 0.951759i \(0.400726\pi\)
\(720\) 0 0
\(721\) 17.6569 + 7.31371i 0.657576 + 0.272377i
\(722\) 12.9497 + 12.9497i 0.481940 + 0.481940i
\(723\) −25.9706 25.9706i −0.965856 0.965856i
\(724\) −5.65685 2.34315i −0.210235 0.0870823i
\(725\) 0 0
\(726\) −15.1924 + 6.29289i −0.563842 + 0.233551i
\(727\) −32.2843 −1.19736 −0.598679 0.800989i \(-0.704307\pi\)
−0.598679 + 0.800989i \(0.704307\pi\)
\(728\) −1.17157 + 0.485281i −0.0434214 + 0.0179857i
\(729\) −15.7782 15.7782i −0.584377 0.584377i
\(730\) 0 0
\(731\) −1.75736 7.02944i −0.0649983 0.259993i
\(732\) 13.6569i 0.504772i
\(733\) −9.89949 + 9.89949i −0.365646 + 0.365646i −0.865887 0.500240i \(-0.833245\pi\)
0.500240 + 0.865887i \(0.333245\pi\)
\(734\) −7.17157 17.3137i −0.264708 0.639061i
\(735\) 0 0
\(736\) 2.82843 1.17157i 0.104257 0.0431847i
\(737\) −30.5563 12.6569i −1.12556 0.466221i
\(738\) −1.77817 + 4.29289i −0.0654555 + 0.158024i
\(739\) 0.485281 0.485281i 0.0178514 0.0178514i −0.698125 0.715976i \(-0.745982\pi\)
0.715976 + 0.698125i \(0.245982\pi\)
\(740\) 0 0
\(741\) 1.17157 + 0.485281i 0.0430388 + 0.0178273i
\(742\) −1.17157 0.485281i −0.0430098 0.0178152i
\(743\) −9.89949 23.8995i −0.363177 0.876787i −0.994832 0.101537i \(-0.967624\pi\)
0.631654 0.775250i \(-0.282376\pi\)
\(744\) 6.82843i 0.250342i
\(745\) 0 0
\(746\) −7.41421 7.41421i −0.271454 0.271454i
\(747\) 2.58579i 0.0946090i
\(748\) 10.9497 + 14.7782i 0.400362 + 0.540344i
\(749\) −17.8579 −0.652512
\(750\) 0 0
\(751\) 9.51472 + 22.9706i 0.347197 + 0.838208i 0.996949 + 0.0780611i \(0.0248729\pi\)
−0.649752 + 0.760147i \(0.725127\pi\)
\(752\) −9.65685 −0.352149
\(753\) −13.2426 31.9706i −0.482589 1.16507i
\(754\) −0.485281 + 1.17157i −0.0176729 + 0.0426662i
\(755\) 0 0
\(756\) 5.17157 5.17157i 0.188088 0.188088i
\(757\) −7.75736 7.75736i −0.281946 0.281946i 0.551939 0.833885i \(-0.313888\pi\)
−0.833885 + 0.551939i \(0.813888\pi\)
\(758\) 3.56497 8.60660i 0.129486 0.312606i
\(759\) −9.65685 + 23.3137i −0.350522 + 0.846234i
\(760\) 0 0
\(761\) 53.2548i 1.93049i 0.261354 + 0.965243i \(0.415831\pi\)
−0.261354 + 0.965243i \(0.584169\pi\)
\(762\) −22.1421 + 9.17157i −0.802125 + 0.332251i
\(763\) −10.6274 + 10.6274i −0.384738 + 0.384738i
\(764\) 2.82843 0.102329
\(765\) 0 0
\(766\) −30.1421 −1.08908
\(767\) −0.343146 + 0.343146i −0.0123903 + 0.0123903i
\(768\) −1.70711 + 0.707107i −0.0615999 + 0.0255155i
\(769\) 26.3431i 0.949958i −0.879997 0.474979i \(-0.842456\pi\)
0.879997 0.474979i \(-0.157544\pi\)
\(770\) 0 0
\(771\) 5.82843 14.0711i 0.209906 0.506757i
\(772\) −4.70711 + 11.3640i −0.169412 + 0.408998i
\(773\) −2.58579 2.58579i −0.0930043 0.0930043i 0.659074 0.752078i \(-0.270948\pi\)
−0.752078 + 0.659074i \(0.770948\pi\)
\(774\) −0.514719 + 0.514719i −0.0185012 + 0.0185012i
\(775\) 0 0
\(776\) 2.12132 5.12132i 0.0761510 0.183845i
\(777\) 2.34315 + 5.65685i 0.0840599 + 0.202939i
\(778\) 3.17157 0.113706
\(779\) −3.55635 8.58579i −0.127419 0.307618i
\(780\) 0 0
\(781\) 9.65685 0.345549
\(782\) 12.4853 + 1.85786i 0.446473 + 0.0664371i
\(783\) 7.31371i 0.261371i
\(784\) −3.29289 3.29289i −0.117603 0.117603i
\(785\) 0 0
\(786\) 0.242641i 0.00865471i
\(787\) −7.29289 17.6066i −0.259964 0.627608i 0.738972 0.673736i \(-0.235312\pi\)
−0.998936 + 0.0461286i \(0.985312\pi\)
\(788\) −18.4853 7.65685i −0.658511 0.272764i
\(789\) 13.6569 + 5.65685i 0.486197 + 0.201389i
\(790\) 0 0
\(791\) −10.0000 + 10.0000i −0.355559 + 0.355559i
\(792\) 0.707107 1.70711i 0.0251259 0.0606594i
\(793\) 5.65685 + 2.34315i 0.200881 + 0.0832075i
\(794\) −7.65685 + 3.17157i −0.271732 + 0.112555i
\(795\) 0 0
\(796\) −8.00000 19.3137i −0.283552 0.684556i
\(797\) −18.8701 + 18.8701i −0.668412 + 0.668412i −0.957348 0.288937i \(-0.906698\pi\)
0.288937 + 0.957348i \(0.406698\pi\)
\(798\) 2.34315i 0.0829465i
\(799\) −34.1421 20.4853i −1.20786 0.724717i
\(800\) 0 0
\(801\) 4.41421 + 4.41421i 0.155969 + 0.155969i
\(802\) 22.1924 9.19239i 0.783640 0.324595i
\(803\) 23.8995 0.843395
\(804\) 12.6569 5.24264i 0.446373 0.184894i
\(805\) 0 0
\(806\) 2.82843 + 1.17157i 0.0996271 + 0.0412669i
\(807\) 10.0000 + 10.0000i 0.352017 + 0.352017i
\(808\) 3.07107 + 3.07107i 0.108040 + 0.108040i
\(809\) 43.1630 + 17.8787i 1.51753 + 0.628581i 0.977095 0.212806i \(-0.0682601\pi\)
0.540434 + 0.841386i \(0.318260\pi\)
\(810\) 0 0
\(811\) 45.5061 18.8492i 1.59794 0.661886i 0.606813 0.794844i \(-0.292447\pi\)
0.991122 + 0.132958i \(0.0424475\pi\)
\(812\) 2.34315 0.0822283
\(813\) 25.3137 10.4853i 0.887791 0.367735i
\(814\) −6.82843 6.82843i −0.239336 0.239336i
\(815\) 0 0
\(816\) −7.53553 1.12132i −0.263796 0.0392541i
\(817\) 1.45584i 0.0509335i
\(818\) 11.0000 11.0000i 0.384606 0.384606i
\(819\) 0.201010 + 0.485281i 0.00702386 + 0.0169571i
\(820\) 0 0
\(821\) −0.343146 + 0.142136i −0.0119759 + 0.00496057i −0.388663 0.921380i \(-0.627063\pi\)
0.376687 + 0.926340i \(0.377063\pi\)
\(822\) −4.00000 1.65685i −0.139516 0.0577894i
\(823\) 16.6863 40.2843i 0.581648 1.40422i −0.309671 0.950844i \(-0.600219\pi\)
0.891319 0.453378i \(-0.149781\pi\)
\(824\) 8.82843 8.82843i 0.307553 0.307553i
\(825\) 0 0
\(826\) 0.828427 + 0.343146i 0.0288247 + 0.0119396i
\(827\) −22.0919 9.15076i −0.768210 0.318203i −0.0360629 0.999350i \(-0.511482\pi\)
−0.732147 + 0.681147i \(0.761482\pi\)
\(828\) −0.485281 1.17157i −0.0168647 0.0407150i
\(829\) 20.1421i 0.699565i 0.936831 + 0.349783i \(0.113745\pi\)
−0.936831 + 0.349783i \(0.886255\pi\)
\(830\) 0 0
\(831\) −30.9706 30.9706i −1.07436 1.07436i
\(832\) 0.828427i 0.0287205i
\(833\) −4.65685 18.6274i −0.161350 0.645402i
\(834\) 3.41421 0.118225
\(835\) 0 0
\(836\) 1.41421 + 3.41421i 0.0489116 + 0.118083i
\(837\) −17.6569 −0.610310
\(838\) 6.60660 + 15.9497i 0.228221 + 0.550975i
\(839\) −18.5269 + 44.7279i −0.639620 + 1.54418i 0.187566 + 0.982252i \(0.439940\pi\)
−0.827187 + 0.561927i \(0.810060\pi\)
\(840\) 0 0
\(841\) −18.8492 + 18.8492i −0.649974 + 0.649974i
\(842\) −11.0711 11.0711i −0.381534 0.381534i
\(843\) −10.1421 + 24.4853i −0.349314 + 0.843318i
\(844\) −0.0502525 + 0.121320i −0.00172976 + 0.00417602i
\(845\) 0 0
\(846\) 4.00000i 0.137523i
\(847\) 12.5858 5.21320i 0.432453 0.179128i
\(848\) −0.585786 + 0.585786i −0.0201160 + 0.0201160i
\(849\) 2.10051 0.0720891
\(850\) 0 0
\(851\) −6.62742 −0.227185
\(852\) −2.82843 + 2.82843i −0.0969003 + 0.0969003i
\(853\) −35.0711 + 14.5269i −1.20081 + 0.497392i −0.891261 0.453491i \(-0.850178\pi\)
−0.309550 + 0.950883i \(0.600178\pi\)
\(854\) 11.3137i 0.387147i
\(855\) 0 0
\(856\) −4.46447 + 10.7782i −0.152592 + 0.368390i
\(857\) 15.4056 37.1924i 0.526245 1.27047i −0.407721 0.913106i \(-0.633676\pi\)
0.933966 0.357361i \(-0.116324\pi\)
\(858\) −4.82843 4.82843i −0.164840 0.164840i
\(859\) −0.556349 + 0.556349i −0.0189824 + 0.0189824i −0.716534 0.697552i \(-0.754273\pi\)
0.697552 + 0.716534i \(0.254273\pi\)
\(860\) 0 0
\(861\) 12.1421 29.3137i 0.413803 0.999009i
\(862\) −5.51472 13.3137i −0.187832 0.453467i
\(863\) −0.970563 −0.0330383 −0.0165192 0.999864i \(-0.505258\pi\)
−0.0165192 + 0.999864i \(0.505258\pi\)
\(864\) −1.82843 4.41421i −0.0622044 0.150175i
\(865\) 0 0
\(866\) −12.9706 −0.440758
\(867\) −24.2635 19.9497i −0.824030 0.677529i
\(868\) 5.65685i 0.192006i
\(869\) −16.4853 16.4853i −0.559225 0.559225i
\(870\) 0 0
\(871\) 6.14214i 0.208118i
\(872\) 3.75736 + 9.07107i 0.127240 + 0.307185i
\(873\) −2.12132 0.878680i −0.0717958 0.0297388i
\(874\) 2.34315 + 0.970563i 0.0792581 + 0.0328298i
\(875\) 0 0
\(876\) −7.00000 + 7.00000i −0.236508 + 0.236508i
\(877\) −4.10051 + 9.89949i −0.138464 + 0.334282i −0.977867 0.209228i \(-0.932905\pi\)
0.839403 + 0.543510i \(0.182905\pi\)
\(878\) −21.3137 8.82843i −0.719303 0.297945i
\(879\) −37.5563 + 15.5563i −1.26674 + 0.524703i
\(880\) 0 0
\(881\) −6.92031 16.7071i −0.233151 0.562877i 0.763394 0.645934i \(-0.223532\pi\)
−0.996545 + 0.0830568i \(0.973532\pi\)
\(882\) −1.36396 + 1.36396i −0.0459270 + 0.0459270i
\(883\) 34.5269i 1.16192i −0.813931 0.580962i \(-0.802677\pi\)
0.813931 0.580962i \(-0.197323\pi\)
\(884\) −1.75736 + 2.92893i −0.0591064 + 0.0985106i
\(885\) 0 0
\(886\) −26.0711 26.0711i −0.875875 0.875875i
\(887\) 2.34315 0.970563i 0.0786751 0.0325883i −0.342999 0.939336i \(-0.611443\pi\)
0.421674 + 0.906748i \(0.361443\pi\)
\(888\) 4.00000 0.134231
\(889\) 18.3431 7.59798i 0.615209 0.254828i
\(890\) 0 0
\(891\) 41.5061 + 17.1924i 1.39051 + 0.575967i
\(892\) 17.3137 + 17.3137i 0.579706 + 0.579706i
\(893\) −5.65685 5.65685i −0.189299 0.189299i
\(894\) −26.7279 11.0711i −0.893915 0.370272i
\(895\) 0 0
\(896\) 1.41421 0.585786i 0.0472456 0.0195698i
\(897\) −4.68629 −0.156471
\(898\) 5.12132 2.12132i 0.170901 0.0707894i
\(899\) −4.00000 4.00000i −0.133407 0.133407i
\(900\) 0 0
\(901\) −3.31371 + 0.828427i −0.110396 + 0.0275989i
\(902\) 50.0416i 1.66620i
\(903\) 3.51472 3.51472i 0.116963 0.116963i
\(904\) 3.53553 + 8.53553i 0.117590 + 0.283888i
\(905\) 0 0
\(906\) −37.7990 + 15.6569i −1.25579 + 0.520164i
\(907\) 13.5355 + 5.60660i 0.449440 + 0.186164i 0.595910 0.803051i \(-0.296791\pi\)
−0.146470 + 0.989215i \(0.546791\pi\)
\(908\) 7.77817 18.7782i 0.258128 0.623176i
\(909\) 1.27208 1.27208i 0.0421922 0.0421922i
\(910\) 0 0
\(911\) −21.5563 8.92893i −0.714194 0.295829i −0.00415500 0.999991i \(-0.501323\pi\)
−0.710039 + 0.704163i \(0.751323\pi\)
\(912\) −1.41421 0.585786i −0.0468293 0.0193973i
\(913\) −10.6569 25.7279i −0.352690 0.851470i
\(914\) 4.97056i 0.164412i
\(915\) 0 0
\(916\) 13.0711 + 13.0711i 0.431880 + 0.431880i
\(917\) 0.201010i 0.00663794i
\(918\) 2.89949 19.4853i 0.0956976 0.643110i
\(919\) 2.34315 0.0772932 0.0386466 0.999253i \(-0.487695\pi\)
0.0386466 + 0.999253i \(0.487695\pi\)
\(920\) 0 0
\(921\) −4.48528 10.8284i −0.147795 0.356809i
\(922\) 34.9706 1.15169
\(923\) 0.686292 + 1.65685i 0.0225896 + 0.0545360i
\(924\) −4.82843 + 11.6569i −0.158844 + 0.383482i
\(925\) 0 0
\(926\) 2.34315 2.34315i 0.0770005 0.0770005i
\(927\) −3.65685 3.65685i −0.120107 0.120107i
\(928\) 0.585786 1.41421i 0.0192294 0.0464238i
\(929\) 3.53553 8.53553i 0.115997 0.280042i −0.855209 0.518284i \(-0.826571\pi\)
0.971206 + 0.238242i \(0.0765711\pi\)
\(930\) 0 0
\(931\) 3.85786i 0.126436i
\(932\) −9.70711 + 4.02082i −0.317967 + 0.131706i
\(933\) 19.6569 19.6569i 0.643537 0.643537i
\(934\) 2.48528 0.0813209
\(935\) 0 0
\(936\) 0.343146 0.0112161
\(937\) 3.75736 3.75736i 0.122748 0.122748i −0.643064 0.765812i \(-0.722337\pi\)
0.765812 + 0.643064i \(0.222337\pi\)
\(938\) −10.4853 + 4.34315i −0.342357 + 0.141809i
\(939\) 25.0711i 0.818163i
\(940\) 0 0
\(941\) 7.51472 18.1421i 0.244973 0.591417i −0.752791 0.658260i \(-0.771293\pi\)
0.997763 + 0.0668433i \(0.0212928\pi\)
\(942\) −9.41421 + 22.7279i −0.306732 + 0.740516i
\(943\) 24.2843 + 24.2843i 0.790805 + 0.790805i
\(944\) 0.414214 0.414214i 0.0134815 0.0134815i
\(945\) 0 0
\(946\) −3.00000 + 7.24264i −0.0975384 + 0.235479i
\(947\) −20.0208 48.3345i −0.650589 1.57066i −0.811925 0.583761i \(-0.801580\pi\)
0.161336 0.986900i \(-0.448420\pi\)
\(948\) 9.65685 0.313640
\(949\) 1.69848 + 4.10051i 0.0551352 + 0.133108i
\(950\) 0 0
\(951\) −40.9706 −1.32856
\(952\) 6.24264 + 0.928932i 0.202325 + 0.0301069i
\(953\) 11.5563i 0.374347i 0.982327 + 0.187173i \(0.0599326\pi\)
−0.982327 + 0.187173i \(0.940067\pi\)
\(954\) 0.242641 + 0.242641i 0.00785578 + 0.00785578i
\(955\) 0 0
\(956\) 21.1716i 0.684738i
\(957\) 4.82843 + 11.6569i 0.156081 + 0.376813i
\(958\) 22.9706 + 9.51472i 0.742145 + 0.307407i
\(959\) 3.31371 + 1.37258i 0.107005 + 0.0443230i
\(960\) 0 0
\(961\) 12.2635 12.2635i 0.395595 0.395595i
\(962\) 0.686292 1.65685i 0.0221269 0.0534191i
\(963\) 4.46447 + 1.84924i 0.143865 + 0.0595910i
\(964\) 18.3640 7.60660i 0.591463 0.244992i
\(965\) 0 0
\(966\) 3.31371 + 8.00000i 0.106617 + 0.257396i
\(967\) −9.65685 + 9.65685i −0.310543 + 0.310543i −0.845120 0.534577i \(-0.820471\pi\)
0.534577 + 0.845120i \(0.320471\pi\)
\(968\) 8.89949i 0.286041i
\(969\) −3.75736 5.07107i −0.120704 0.162906i
\(970\) 0 0
\(971\) 15.0416 + 15.0416i 0.482709 + 0.482709i 0.905996 0.423287i \(-0.139124\pi\)
−0.423287 + 0.905996i \(0.639124\pi\)
\(972\) −3.94975 + 1.63604i −0.126688 + 0.0524760i
\(973\) −2.82843 −0.0906752
\(974\) −20.4853 + 8.48528i −0.656391 + 0.271886i
\(975\) 0 0
\(976\) −6.82843 2.82843i −0.218573 0.0905357i
\(977\) 20.1127 + 20.1127i 0.643462 + 0.643462i 0.951405 0.307943i \(-0.0996405\pi\)
−0.307943 + 0.951405i \(0.599641\pi\)
\(978\) −29.7279 29.7279i −0.950594 0.950594i
\(979\) 62.1127 + 25.7279i 1.98513 + 0.822268i
\(980\) 0 0
\(981\) 3.75736 1.55635i 0.119963 0.0496904i
\(982\) −15.4558 −0.493216
\(983\) 24.9706 10.3431i 0.796437 0.329895i 0.0529088 0.998599i \(-0.483151\pi\)
0.743529 + 0.668704i \(0.233151\pi\)
\(984\) −14.6569 14.6569i −0.467243 0.467243i
\(985\) 0 0
\(986\) 5.07107 3.75736i 0.161496 0.119659i
\(987\) 27.3137i 0.869405i
\(988\) −0.485281 + 0.485281i −0.0154389 + 0.0154389i
\(989\) 2.05887 + 4.97056i 0.0654684 + 0.158055i
\(990\) 0 0
\(991\) −42.2843 + 17.5147i −1.34320 + 0.556373i −0.934392 0.356245i \(-0.884057\pi\)
−0.408812 + 0.912619i \(0.634057\pi\)
\(992\) −3.41421 1.41421i −0.108401 0.0449013i
\(993\) −19.5858 + 47.2843i −0.621536 + 1.50052i
\(994\) 2.34315 2.34315i 0.0743201 0.0743201i
\(995\) 0 0
\(996\) 10.6569 + 4.41421i 0.337675 + 0.139870i
\(997\) −10.9706 4.54416i −0.347441 0.143915i 0.202137 0.979357i \(-0.435211\pi\)
−0.549578 + 0.835442i \(0.685211\pi\)
\(998\) 14.0919 + 34.0208i 0.446071 + 1.07691i
\(999\) 10.3431i 0.327243i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.o.a.49.1 4
5.2 odd 4 850.2.l.a.151.1 4
5.3 odd 4 34.2.d.a.15.1 4
5.4 even 2 850.2.o.b.49.1 4
15.8 even 4 306.2.l.c.253.1 4
17.8 even 8 850.2.o.b.399.1 4
20.3 even 4 272.2.v.b.49.1 4
85.3 even 16 578.2.b.d.577.1 4
85.8 odd 8 34.2.d.a.25.1 yes 4
85.13 odd 4 578.2.d.c.155.1 4
85.23 even 16 578.2.c.f.251.1 8
85.28 even 16 578.2.c.f.251.4 8
85.33 odd 4 578.2.d.b.423.1 4
85.38 odd 4 578.2.d.a.155.1 4
85.42 odd 8 850.2.l.a.501.1 4
85.43 odd 8 578.2.d.b.399.1 4
85.48 even 16 578.2.b.d.577.4 4
85.53 odd 8 578.2.d.a.179.1 4
85.58 even 16 578.2.c.f.327.1 8
85.59 even 8 inner 850.2.o.a.399.1 4
85.63 even 16 578.2.a.i.1.1 4
85.73 even 16 578.2.a.i.1.4 4
85.78 even 16 578.2.c.f.327.4 8
85.83 odd 8 578.2.d.c.179.1 4
255.8 even 8 306.2.l.c.127.1 4
255.158 odd 16 5202.2.a.bw.1.1 4
255.233 odd 16 5202.2.a.bw.1.4 4
340.63 odd 16 4624.2.a.bn.1.4 4
340.243 odd 16 4624.2.a.bn.1.1 4
340.263 even 8 272.2.v.b.161.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.d.a.15.1 4 5.3 odd 4
34.2.d.a.25.1 yes 4 85.8 odd 8
272.2.v.b.49.1 4 20.3 even 4
272.2.v.b.161.1 4 340.263 even 8
306.2.l.c.127.1 4 255.8 even 8
306.2.l.c.253.1 4 15.8 even 4
578.2.a.i.1.1 4 85.63 even 16
578.2.a.i.1.4 4 85.73 even 16
578.2.b.d.577.1 4 85.3 even 16
578.2.b.d.577.4 4 85.48 even 16
578.2.c.f.251.1 8 85.23 even 16
578.2.c.f.251.4 8 85.28 even 16
578.2.c.f.327.1 8 85.58 even 16
578.2.c.f.327.4 8 85.78 even 16
578.2.d.a.155.1 4 85.38 odd 4
578.2.d.a.179.1 4 85.53 odd 8
578.2.d.b.399.1 4 85.43 odd 8
578.2.d.b.423.1 4 85.33 odd 4
578.2.d.c.155.1 4 85.13 odd 4
578.2.d.c.179.1 4 85.83 odd 8
850.2.l.a.151.1 4 5.2 odd 4
850.2.l.a.501.1 4 85.42 odd 8
850.2.o.a.49.1 4 1.1 even 1 trivial
850.2.o.a.399.1 4 85.59 even 8 inner
850.2.o.b.49.1 4 5.4 even 2
850.2.o.b.399.1 4 17.8 even 8
4624.2.a.bn.1.1 4 340.243 odd 16
4624.2.a.bn.1.4 4 340.63 odd 16
5202.2.a.bw.1.1 4 255.158 odd 16
5202.2.a.bw.1.4 4 255.233 odd 16