Properties

Label 272.2.v.b.161.1
Level $272$
Weight $2$
Character 272.161
Analytic conductor $2.172$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [272,2,Mod(49,272)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(272, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("272.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 272.v (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17193093498\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 161.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 272.161
Dual form 272.2.v.b.49.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 1.70711i) q^{3} +(-3.41421 - 1.41421i) q^{5} +(-1.41421 + 0.585786i) q^{7} +(-0.292893 - 0.292893i) q^{9} +(-1.70711 - 4.12132i) q^{11} -0.828427i q^{13} +(-4.82843 + 4.82843i) q^{15} +(-2.12132 - 3.53553i) q^{17} +(-0.585786 + 0.585786i) q^{19} +2.82843i q^{21} +(1.17157 + 2.82843i) q^{23} +(6.12132 + 6.12132i) q^{25} +(4.41421 - 1.82843i) q^{27} +(-1.41421 - 0.585786i) q^{29} +(1.41421 - 3.41421i) q^{31} -8.24264 q^{33} +5.65685 q^{35} +(0.828427 - 2.00000i) q^{37} +(-1.41421 - 0.585786i) q^{39} +(10.3640 - 4.29289i) q^{41} +(1.24264 + 1.24264i) q^{43} +(0.585786 + 1.41421i) q^{45} -9.65685i q^{47} +(-3.29289 + 3.29289i) q^{49} +(-7.53553 + 1.12132i) q^{51} +(0.585786 - 0.585786i) q^{53} +16.4853i q^{55} +(0.585786 + 1.41421i) q^{57} +(-0.414214 - 0.414214i) q^{59} +(6.82843 - 2.82843i) q^{61} +(0.585786 + 0.242641i) q^{63} +(-1.17157 + 2.82843i) q^{65} +7.41421 q^{67} +5.65685 q^{69} +(-0.828427 + 2.00000i) q^{71} +(-4.94975 - 2.05025i) q^{73} +(14.7782 - 6.12132i) q^{75} +(4.82843 + 4.82843i) q^{77} +(2.00000 + 4.82843i) q^{79} -10.0711i q^{81} +(-4.41421 + 4.41421i) q^{83} +(2.24264 + 15.0711i) q^{85} +(-2.00000 + 2.00000i) q^{87} +15.0711i q^{89} +(0.485281 + 1.17157i) q^{91} +(-4.82843 - 4.82843i) q^{93} +(2.82843 - 1.17157i) q^{95} +(-5.12132 - 2.12132i) q^{97} +(-0.707107 + 1.70711i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} - 4 q^{9} - 4 q^{11} - 8 q^{15} - 8 q^{19} + 16 q^{23} + 16 q^{25} + 12 q^{27} - 16 q^{33} - 8 q^{37} + 16 q^{41} - 12 q^{43} + 8 q^{45} - 16 q^{49} - 16 q^{51} + 8 q^{53} + 8 q^{57} + 4 q^{59}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 1.70711i 0.408248 0.985599i −0.577350 0.816497i \(-0.695913\pi\)
0.985599 0.169102i \(-0.0540867\pi\)
\(4\) 0 0
\(5\) −3.41421 1.41421i −1.52688 0.632456i −0.547927 0.836526i \(-0.684583\pi\)
−0.978956 + 0.204071i \(0.934583\pi\)
\(6\) 0 0
\(7\) −1.41421 + 0.585786i −0.534522 + 0.221406i −0.633583 0.773675i \(-0.718416\pi\)
0.0990602 + 0.995081i \(0.468416\pi\)
\(8\) 0 0
\(9\) −0.292893 0.292893i −0.0976311 0.0976311i
\(10\) 0 0
\(11\) −1.70711 4.12132i −0.514712 1.24262i −0.941113 0.338091i \(-0.890219\pi\)
0.426401 0.904534i \(-0.359781\pi\)
\(12\) 0 0
\(13\) 0.828427i 0.229764i −0.993379 0.114882i \(-0.963351\pi\)
0.993379 0.114882i \(-0.0366490\pi\)
\(14\) 0 0
\(15\) −4.82843 + 4.82843i −1.24669 + 1.24669i
\(16\) 0 0
\(17\) −2.12132 3.53553i −0.514496 0.857493i
\(18\) 0 0
\(19\) −0.585786 + 0.585786i −0.134389 + 0.134389i −0.771101 0.636713i \(-0.780294\pi\)
0.636713 + 0.771101i \(0.280294\pi\)
\(20\) 0 0
\(21\) 2.82843i 0.617213i
\(22\) 0 0
\(23\) 1.17157 + 2.82843i 0.244290 + 0.589768i 0.997700 0.0677829i \(-0.0215925\pi\)
−0.753410 + 0.657551i \(0.771593\pi\)
\(24\) 0 0
\(25\) 6.12132 + 6.12132i 1.22426 + 1.22426i
\(26\) 0 0
\(27\) 4.41421 1.82843i 0.849516 0.351881i
\(28\) 0 0
\(29\) −1.41421 0.585786i −0.262613 0.108778i 0.247492 0.968890i \(-0.420394\pi\)
−0.510105 + 0.860112i \(0.670394\pi\)
\(30\) 0 0
\(31\) 1.41421 3.41421i 0.254000 0.613211i −0.744520 0.667601i \(-0.767321\pi\)
0.998520 + 0.0543898i \(0.0173214\pi\)
\(32\) 0 0
\(33\) −8.24264 −1.43486
\(34\) 0 0
\(35\) 5.65685 0.956183
\(36\) 0 0
\(37\) 0.828427 2.00000i 0.136193 0.328798i −0.841039 0.540975i \(-0.818055\pi\)
0.977231 + 0.212177i \(0.0680553\pi\)
\(38\) 0 0
\(39\) −1.41421 0.585786i −0.226455 0.0938009i
\(40\) 0 0
\(41\) 10.3640 4.29289i 1.61858 0.670437i 0.624695 0.780869i \(-0.285223\pi\)
0.993884 + 0.110432i \(0.0352233\pi\)
\(42\) 0 0
\(43\) 1.24264 + 1.24264i 0.189501 + 0.189501i 0.795480 0.605979i \(-0.207219\pi\)
−0.605979 + 0.795480i \(0.707219\pi\)
\(44\) 0 0
\(45\) 0.585786 + 1.41421i 0.0873239 + 0.210819i
\(46\) 0 0
\(47\) 9.65685i 1.40860i −0.709904 0.704298i \(-0.751262\pi\)
0.709904 0.704298i \(-0.248738\pi\)
\(48\) 0 0
\(49\) −3.29289 + 3.29289i −0.470413 + 0.470413i
\(50\) 0 0
\(51\) −7.53553 + 1.12132i −1.05519 + 0.157016i
\(52\) 0 0
\(53\) 0.585786 0.585786i 0.0804640 0.0804640i −0.665729 0.746193i \(-0.731879\pi\)
0.746193 + 0.665729i \(0.231879\pi\)
\(54\) 0 0
\(55\) 16.4853i 2.22287i
\(56\) 0 0
\(57\) 0.585786 + 1.41421i 0.0775893 + 0.187317i
\(58\) 0 0
\(59\) −0.414214 0.414214i −0.0539260 0.0539260i 0.679630 0.733556i \(-0.262141\pi\)
−0.733556 + 0.679630i \(0.762141\pi\)
\(60\) 0 0
\(61\) 6.82843 2.82843i 0.874291 0.362143i 0.100011 0.994986i \(-0.468112\pi\)
0.774280 + 0.632843i \(0.218112\pi\)
\(62\) 0 0
\(63\) 0.585786 + 0.242641i 0.0738022 + 0.0305699i
\(64\) 0 0
\(65\) −1.17157 + 2.82843i −0.145316 + 0.350823i
\(66\) 0 0
\(67\) 7.41421 0.905790 0.452895 0.891564i \(-0.350391\pi\)
0.452895 + 0.891564i \(0.350391\pi\)
\(68\) 0 0
\(69\) 5.65685 0.681005
\(70\) 0 0
\(71\) −0.828427 + 2.00000i −0.0983162 + 0.237356i −0.965383 0.260835i \(-0.916002\pi\)
0.867067 + 0.498191i \(0.166002\pi\)
\(72\) 0 0
\(73\) −4.94975 2.05025i −0.579324 0.239964i 0.0737261 0.997279i \(-0.476511\pi\)
−0.653050 + 0.757315i \(0.726511\pi\)
\(74\) 0 0
\(75\) 14.7782 6.12132i 1.70644 0.706829i
\(76\) 0 0
\(77\) 4.82843 + 4.82843i 0.550250 + 0.550250i
\(78\) 0 0
\(79\) 2.00000 + 4.82843i 0.225018 + 0.543240i 0.995558 0.0941507i \(-0.0300136\pi\)
−0.770540 + 0.637391i \(0.780014\pi\)
\(80\) 0 0
\(81\) 10.0711i 1.11901i
\(82\) 0 0
\(83\) −4.41421 + 4.41421i −0.484523 + 0.484523i −0.906573 0.422050i \(-0.861311\pi\)
0.422050 + 0.906573i \(0.361311\pi\)
\(84\) 0 0
\(85\) 2.24264 + 15.0711i 0.243249 + 1.63469i
\(86\) 0 0
\(87\) −2.00000 + 2.00000i −0.214423 + 0.214423i
\(88\) 0 0
\(89\) 15.0711i 1.59753i 0.601643 + 0.798765i \(0.294513\pi\)
−0.601643 + 0.798765i \(0.705487\pi\)
\(90\) 0 0
\(91\) 0.485281 + 1.17157i 0.0508713 + 0.122814i
\(92\) 0 0
\(93\) −4.82843 4.82843i −0.500685 0.500685i
\(94\) 0 0
\(95\) 2.82843 1.17157i 0.290191 0.120201i
\(96\) 0 0
\(97\) −5.12132 2.12132i −0.519991 0.215387i 0.107222 0.994235i \(-0.465804\pi\)
−0.627213 + 0.778848i \(0.715804\pi\)
\(98\) 0 0
\(99\) −0.707107 + 1.70711i −0.0710669 + 0.171571i
\(100\) 0 0
\(101\) 4.34315 0.432159 0.216080 0.976376i \(-0.430673\pi\)
0.216080 + 0.976376i \(0.430673\pi\)
\(102\) 0 0
\(103\) −12.4853 −1.23021 −0.615106 0.788445i \(-0.710887\pi\)
−0.615106 + 0.788445i \(0.710887\pi\)
\(104\) 0 0
\(105\) 4.00000 9.65685i 0.390360 0.942412i
\(106\) 0 0
\(107\) −10.7782 4.46447i −1.04197 0.431596i −0.204948 0.978773i \(-0.565703\pi\)
−0.837017 + 0.547177i \(0.815703\pi\)
\(108\) 0 0
\(109\) −9.07107 + 3.75736i −0.868851 + 0.359890i −0.772163 0.635425i \(-0.780825\pi\)
−0.0966881 + 0.995315i \(0.530825\pi\)
\(110\) 0 0
\(111\) −2.82843 2.82843i −0.268462 0.268462i
\(112\) 0 0
\(113\) −3.53553 8.53553i −0.332595 0.802955i −0.998385 0.0568160i \(-0.981905\pi\)
0.665790 0.746140i \(-0.268095\pi\)
\(114\) 0 0
\(115\) 11.3137i 1.05501i
\(116\) 0 0
\(117\) −0.242641 + 0.242641i −0.0224321 + 0.0224321i
\(118\) 0 0
\(119\) 5.07107 + 3.75736i 0.464864 + 0.344437i
\(120\) 0 0
\(121\) −6.29289 + 6.29289i −0.572081 + 0.572081i
\(122\) 0 0
\(123\) 20.7279i 1.86897i
\(124\) 0 0
\(125\) −5.17157 12.4853i −0.462560 1.11672i
\(126\) 0 0
\(127\) 9.17157 + 9.17157i 0.813845 + 0.813845i 0.985208 0.171363i \(-0.0548169\pi\)
−0.171363 + 0.985208i \(0.554817\pi\)
\(128\) 0 0
\(129\) 3.00000 1.24264i 0.264135 0.109408i
\(130\) 0 0
\(131\) −0.121320 0.0502525i −0.0105998 0.00439058i 0.377377 0.926060i \(-0.376826\pi\)
−0.387977 + 0.921669i \(0.626826\pi\)
\(132\) 0 0
\(133\) 0.485281 1.17157i 0.0420792 0.101588i
\(134\) 0 0
\(135\) −17.6569 −1.51966
\(136\) 0 0
\(137\) −2.34315 −0.200188 −0.100094 0.994978i \(-0.531914\pi\)
−0.100094 + 0.994978i \(0.531914\pi\)
\(138\) 0 0
\(139\) 0.707107 1.70711i 0.0599760 0.144795i −0.891051 0.453904i \(-0.850031\pi\)
0.951027 + 0.309109i \(0.100031\pi\)
\(140\) 0 0
\(141\) −16.4853 6.82843i −1.38831 0.575057i
\(142\) 0 0
\(143\) −3.41421 + 1.41421i −0.285511 + 0.118262i
\(144\) 0 0
\(145\) 4.00000 + 4.00000i 0.332182 + 0.332182i
\(146\) 0 0
\(147\) 3.29289 + 7.94975i 0.271593 + 0.655684i
\(148\) 0 0
\(149\) 15.6569i 1.28266i −0.767265 0.641330i \(-0.778383\pi\)
0.767265 0.641330i \(-0.221617\pi\)
\(150\) 0 0
\(151\) 15.6569 15.6569i 1.27414 1.27414i 0.330240 0.943897i \(-0.392870\pi\)
0.943897 0.330240i \(-0.107130\pi\)
\(152\) 0 0
\(153\) −0.414214 + 1.65685i −0.0334872 + 0.133949i
\(154\) 0 0
\(155\) −9.65685 + 9.65685i −0.775657 + 0.775657i
\(156\) 0 0
\(157\) 13.3137i 1.06255i −0.847200 0.531275i \(-0.821713\pi\)
0.847200 0.531275i \(-0.178287\pi\)
\(158\) 0 0
\(159\) −0.585786 1.41421i −0.0464559 0.112154i
\(160\) 0 0
\(161\) −3.31371 3.31371i −0.261157 0.261157i
\(162\) 0 0
\(163\) −21.0208 + 8.70711i −1.64648 + 0.681993i −0.996928 0.0783260i \(-0.975042\pi\)
−0.649550 + 0.760319i \(0.725042\pi\)
\(164\) 0 0
\(165\) 28.1421 + 11.6569i 2.19086 + 0.907485i
\(166\) 0 0
\(167\) 7.55635 18.2426i 0.584728 1.41166i −0.303756 0.952750i \(-0.598241\pi\)
0.888484 0.458908i \(-0.151759\pi\)
\(168\) 0 0
\(169\) 12.3137 0.947208
\(170\) 0 0
\(171\) 0.343146 0.0262410
\(172\) 0 0
\(173\) −2.24264 + 5.41421i −0.170505 + 0.411635i −0.985915 0.167249i \(-0.946512\pi\)
0.815410 + 0.578884i \(0.196512\pi\)
\(174\) 0 0
\(175\) −12.2426 5.07107i −0.925457 0.383337i
\(176\) 0 0
\(177\) −1.00000 + 0.414214i −0.0751646 + 0.0311342i
\(178\) 0 0
\(179\) 18.2426 + 18.2426i 1.36352 + 1.36352i 0.869387 + 0.494132i \(0.164514\pi\)
0.494132 + 0.869387i \(0.335486\pi\)
\(180\) 0 0
\(181\) 2.34315 + 5.65685i 0.174165 + 0.420471i 0.986724 0.162408i \(-0.0519262\pi\)
−0.812559 + 0.582879i \(0.801926\pi\)
\(182\) 0 0
\(183\) 13.6569i 1.00954i
\(184\) 0 0
\(185\) −5.65685 + 5.65685i −0.415900 + 0.415900i
\(186\) 0 0
\(187\) −10.9497 + 14.7782i −0.800725 + 1.08069i
\(188\) 0 0
\(189\) −5.17157 + 5.17157i −0.376177 + 0.376177i
\(190\) 0 0
\(191\) 2.82843i 0.204658i 0.994751 + 0.102329i \(0.0326294\pi\)
−0.994751 + 0.102329i \(0.967371\pi\)
\(192\) 0 0
\(193\) 4.70711 + 11.3640i 0.338825 + 0.817996i 0.997829 + 0.0658565i \(0.0209780\pi\)
−0.659004 + 0.752139i \(0.729022\pi\)
\(194\) 0 0
\(195\) 4.00000 + 4.00000i 0.286446 + 0.286446i
\(196\) 0 0
\(197\) −18.4853 + 7.65685i −1.31702 + 0.545528i −0.926925 0.375246i \(-0.877558\pi\)
−0.390096 + 0.920774i \(0.627558\pi\)
\(198\) 0 0
\(199\) 19.3137 + 8.00000i 1.36911 + 0.567105i 0.941548 0.336880i \(-0.109372\pi\)
0.427565 + 0.903985i \(0.359372\pi\)
\(200\) 0 0
\(201\) 5.24264 12.6569i 0.369787 0.892746i
\(202\) 0 0
\(203\) 2.34315 0.164457
\(204\) 0 0
\(205\) −41.4558 −2.89540
\(206\) 0 0
\(207\) 0.485281 1.17157i 0.0337294 0.0814299i
\(208\) 0 0
\(209\) 3.41421 + 1.41421i 0.236166 + 0.0978232i
\(210\) 0 0
\(211\) 0.121320 0.0502525i 0.00835204 0.00345953i −0.378504 0.925600i \(-0.623561\pi\)
0.386856 + 0.922140i \(0.373561\pi\)
\(212\) 0 0
\(213\) 2.82843 + 2.82843i 0.193801 + 0.193801i
\(214\) 0 0
\(215\) −2.48528 6.00000i −0.169495 0.409197i
\(216\) 0 0
\(217\) 5.65685i 0.384012i
\(218\) 0 0
\(219\) −7.00000 + 7.00000i −0.473016 + 0.473016i
\(220\) 0 0
\(221\) −2.92893 + 1.75736i −0.197021 + 0.118213i
\(222\) 0 0
\(223\) 17.3137 17.3137i 1.15941 1.15941i 0.174809 0.984602i \(-0.444069\pi\)
0.984602 0.174809i \(-0.0559309\pi\)
\(224\) 0 0
\(225\) 3.58579i 0.239052i
\(226\) 0 0
\(227\) −7.77817 18.7782i −0.516256 1.24635i −0.940188 0.340657i \(-0.889350\pi\)
0.423932 0.905694i \(-0.360650\pi\)
\(228\) 0 0
\(229\) 13.0711 + 13.0711i 0.863760 + 0.863760i 0.991773 0.128012i \(-0.0408596\pi\)
−0.128012 + 0.991773i \(0.540860\pi\)
\(230\) 0 0
\(231\) 11.6569 4.82843i 0.766965 0.317687i
\(232\) 0 0
\(233\) 9.70711 + 4.02082i 0.635934 + 0.263412i 0.677272 0.735733i \(-0.263162\pi\)
−0.0413382 + 0.999145i \(0.513162\pi\)
\(234\) 0 0
\(235\) −13.6569 + 32.9706i −0.890875 + 2.15076i
\(236\) 0 0
\(237\) 9.65685 0.627280
\(238\) 0 0
\(239\) −21.1716 −1.36948 −0.684738 0.728790i \(-0.740083\pi\)
−0.684738 + 0.728790i \(0.740083\pi\)
\(240\) 0 0
\(241\) 7.60660 18.3640i 0.489984 1.18293i −0.464743 0.885445i \(-0.653853\pi\)
0.954728 0.297481i \(-0.0961466\pi\)
\(242\) 0 0
\(243\) −3.94975 1.63604i −0.253376 0.104952i
\(244\) 0 0
\(245\) 15.8995 6.58579i 1.01578 0.420750i
\(246\) 0 0
\(247\) 0.485281 + 0.485281i 0.0308777 + 0.0308777i
\(248\) 0 0
\(249\) 4.41421 + 10.6569i 0.279739 + 0.675351i
\(250\) 0 0
\(251\) 18.7279i 1.18210i 0.806636 + 0.591048i \(0.201286\pi\)
−0.806636 + 0.591048i \(0.798714\pi\)
\(252\) 0 0
\(253\) 9.65685 9.65685i 0.607121 0.607121i
\(254\) 0 0
\(255\) 27.3137 + 6.82843i 1.71045 + 0.427613i
\(256\) 0 0
\(257\) 5.82843 5.82843i 0.363567 0.363567i −0.501557 0.865124i \(-0.667239\pi\)
0.865124 + 0.501557i \(0.167239\pi\)
\(258\) 0 0
\(259\) 3.31371i 0.205904i
\(260\) 0 0
\(261\) 0.242641 + 0.585786i 0.0150191 + 0.0362593i
\(262\) 0 0
\(263\) −5.65685 5.65685i −0.348817 0.348817i 0.510852 0.859669i \(-0.329330\pi\)
−0.859669 + 0.510852i \(0.829330\pi\)
\(264\) 0 0
\(265\) −2.82843 + 1.17157i −0.173749 + 0.0719691i
\(266\) 0 0
\(267\) 25.7279 + 10.6569i 1.57452 + 0.652189i
\(268\) 0 0
\(269\) 2.92893 7.07107i 0.178580 0.431131i −0.809089 0.587686i \(-0.800039\pi\)
0.987669 + 0.156555i \(0.0500390\pi\)
\(270\) 0 0
\(271\) 14.8284 0.900763 0.450381 0.892836i \(-0.351288\pi\)
0.450381 + 0.892836i \(0.351288\pi\)
\(272\) 0 0
\(273\) 2.34315 0.141814
\(274\) 0 0
\(275\) 14.7782 35.6777i 0.891157 2.15144i
\(276\) 0 0
\(277\) 21.8995 + 9.07107i 1.31581 + 0.545028i 0.926575 0.376110i \(-0.122738\pi\)
0.389238 + 0.921137i \(0.372738\pi\)
\(278\) 0 0
\(279\) −1.41421 + 0.585786i −0.0846668 + 0.0350701i
\(280\) 0 0
\(281\) 10.1421 + 10.1421i 0.605029 + 0.605029i 0.941643 0.336614i \(-0.109282\pi\)
−0.336614 + 0.941643i \(0.609282\pi\)
\(282\) 0 0
\(283\) −0.435029 1.05025i −0.0258598 0.0624310i 0.910422 0.413680i \(-0.135757\pi\)
−0.936282 + 0.351249i \(0.885757\pi\)
\(284\) 0 0
\(285\) 5.65685i 0.335083i
\(286\) 0 0
\(287\) −12.1421 + 12.1421i −0.716728 + 0.716728i
\(288\) 0 0
\(289\) −8.00000 + 15.0000i −0.470588 + 0.882353i
\(290\) 0 0
\(291\) −7.24264 + 7.24264i −0.424571 + 0.424571i
\(292\) 0 0
\(293\) 22.0000i 1.28525i −0.766179 0.642627i \(-0.777845\pi\)
0.766179 0.642627i \(-0.222155\pi\)
\(294\) 0 0
\(295\) 0.828427 + 2.00000i 0.0482329 + 0.116445i
\(296\) 0 0
\(297\) −15.0711 15.0711i −0.874512 0.874512i
\(298\) 0 0
\(299\) 2.34315 0.970563i 0.135508 0.0561291i
\(300\) 0 0
\(301\) −2.48528 1.02944i −0.143249 0.0593358i
\(302\) 0 0
\(303\) 3.07107 7.41421i 0.176428 0.425935i
\(304\) 0 0
\(305\) −27.3137 −1.56398
\(306\) 0 0
\(307\) −6.34315 −0.362022 −0.181011 0.983481i \(-0.557937\pi\)
−0.181011 + 0.983481i \(0.557937\pi\)
\(308\) 0 0
\(309\) −8.82843 + 21.3137i −0.502232 + 1.21249i
\(310\) 0 0
\(311\) 13.8995 + 5.75736i 0.788168 + 0.326470i 0.740207 0.672379i \(-0.234728\pi\)
0.0479613 + 0.998849i \(0.484728\pi\)
\(312\) 0 0
\(313\) 12.5355 5.19239i 0.708550 0.293491i 0.000845724 1.00000i \(-0.499731\pi\)
0.707705 + 0.706509i \(0.249731\pi\)
\(314\) 0 0
\(315\) −1.65685 1.65685i −0.0933532 0.0933532i
\(316\) 0 0
\(317\) 8.48528 + 20.4853i 0.476581 + 1.15057i 0.961202 + 0.275844i \(0.0889573\pi\)
−0.484622 + 0.874724i \(0.661043\pi\)
\(318\) 0 0
\(319\) 6.82843i 0.382319i
\(320\) 0 0
\(321\) −15.2426 + 15.2426i −0.850761 + 0.850761i
\(322\) 0 0
\(323\) 3.31371 + 0.828427i 0.184380 + 0.0460949i
\(324\) 0 0
\(325\) 5.07107 5.07107i 0.281292 0.281292i
\(326\) 0 0
\(327\) 18.1421i 1.00326i
\(328\) 0 0
\(329\) 5.65685 + 13.6569i 0.311872 + 0.752927i
\(330\) 0 0
\(331\) −19.5858 19.5858i −1.07653 1.07653i −0.996818 0.0797144i \(-0.974599\pi\)
−0.0797144 0.996818i \(-0.525401\pi\)
\(332\) 0 0
\(333\) −0.828427 + 0.343146i −0.0453975 + 0.0188043i
\(334\) 0 0
\(335\) −25.3137 10.4853i −1.38304 0.572872i
\(336\) 0 0
\(337\) 4.46447 10.7782i 0.243195 0.587125i −0.754402 0.656413i \(-0.772073\pi\)
0.997597 + 0.0692885i \(0.0220729\pi\)
\(338\) 0 0
\(339\) −17.0711 −0.927173
\(340\) 0 0
\(341\) −16.4853 −0.892728
\(342\) 0 0
\(343\) 6.82843 16.4853i 0.368700 0.890122i
\(344\) 0 0
\(345\) −19.3137 8.00000i −1.03982 0.430706i
\(346\) 0 0
\(347\) 14.9497 6.19239i 0.802544 0.332425i 0.0565694 0.998399i \(-0.481984\pi\)
0.745975 + 0.665974i \(0.231984\pi\)
\(348\) 0 0
\(349\) −13.8995 13.8995i −0.744023 0.744023i 0.229327 0.973350i \(-0.426348\pi\)
−0.973350 + 0.229327i \(0.926348\pi\)
\(350\) 0 0
\(351\) −1.51472 3.65685i −0.0808497 0.195188i
\(352\) 0 0
\(353\) 14.3848i 0.765624i −0.923826 0.382812i \(-0.874956\pi\)
0.923826 0.382812i \(-0.125044\pi\)
\(354\) 0 0
\(355\) 5.65685 5.65685i 0.300235 0.300235i
\(356\) 0 0
\(357\) 10.0000 6.00000i 0.529256 0.317554i
\(358\) 0 0
\(359\) −8.00000 + 8.00000i −0.422224 + 0.422224i −0.885969 0.463745i \(-0.846505\pi\)
0.463745 + 0.885969i \(0.346505\pi\)
\(360\) 0 0
\(361\) 18.3137i 0.963879i
\(362\) 0 0
\(363\) 6.29289 + 15.1924i 0.330291 + 0.797394i
\(364\) 0 0
\(365\) 14.0000 + 14.0000i 0.732793 + 0.732793i
\(366\) 0 0
\(367\) −17.3137 + 7.17157i −0.903768 + 0.374353i −0.785668 0.618649i \(-0.787680\pi\)
−0.118100 + 0.993002i \(0.537680\pi\)
\(368\) 0 0
\(369\) −4.29289 1.77817i −0.223479 0.0925681i
\(370\) 0 0
\(371\) −0.485281 + 1.17157i −0.0251946 + 0.0608250i
\(372\) 0 0
\(373\) −10.4853 −0.542907 −0.271454 0.962452i \(-0.587504\pi\)
−0.271454 + 0.962452i \(0.587504\pi\)
\(374\) 0 0
\(375\) −24.9706 −1.28947
\(376\) 0 0
\(377\) −0.485281 + 1.17157i −0.0249933 + 0.0603391i
\(378\) 0 0
\(379\) −8.60660 3.56497i −0.442091 0.183120i 0.150523 0.988606i \(-0.451904\pi\)
−0.592614 + 0.805486i \(0.701904\pi\)
\(380\) 0 0
\(381\) 22.1421 9.17157i 1.13438 0.469874i
\(382\) 0 0
\(383\) 21.3137 + 21.3137i 1.08908 + 1.08908i 0.995623 + 0.0934562i \(0.0297915\pi\)
0.0934562 + 0.995623i \(0.470208\pi\)
\(384\) 0 0
\(385\) −9.65685 23.3137i −0.492159 1.18818i
\(386\) 0 0
\(387\) 0.727922i 0.0370024i
\(388\) 0 0
\(389\) 2.24264 2.24264i 0.113706 0.113706i −0.647964 0.761671i \(-0.724379\pi\)
0.761671 + 0.647964i \(0.224379\pi\)
\(390\) 0 0
\(391\) 7.51472 10.1421i 0.380036 0.512910i
\(392\) 0 0
\(393\) −0.171573 + 0.171573i −0.00865471 + 0.00865471i
\(394\) 0 0
\(395\) 19.3137i 0.971778i
\(396\) 0 0
\(397\) 3.17157 + 7.65685i 0.159177 + 0.384286i 0.983267 0.182173i \(-0.0583129\pi\)
−0.824090 + 0.566459i \(0.808313\pi\)
\(398\) 0 0
\(399\) −1.65685 1.65685i −0.0829465 0.0829465i
\(400\) 0 0
\(401\) −22.1924 + 9.19239i −1.10823 + 0.459046i −0.860330 0.509738i \(-0.829742\pi\)
−0.247905 + 0.968784i \(0.579742\pi\)
\(402\) 0 0
\(403\) −2.82843 1.17157i −0.140894 0.0583602i
\(404\) 0 0
\(405\) −14.2426 + 34.3848i −0.707723 + 1.70859i
\(406\) 0 0
\(407\) −9.65685 −0.478672
\(408\) 0 0
\(409\) 15.5563 0.769212 0.384606 0.923081i \(-0.374337\pi\)
0.384606 + 0.923081i \(0.374337\pi\)
\(410\) 0 0
\(411\) −1.65685 + 4.00000i −0.0817266 + 0.197305i
\(412\) 0 0
\(413\) 0.828427 + 0.343146i 0.0407642 + 0.0168851i
\(414\) 0 0
\(415\) 21.3137 8.82843i 1.04625 0.433370i
\(416\) 0 0
\(417\) −2.41421 2.41421i −0.118225 0.118225i
\(418\) 0 0
\(419\) 6.60660 + 15.9497i 0.322754 + 0.779196i 0.999092 + 0.0426051i \(0.0135657\pi\)
−0.676338 + 0.736591i \(0.736434\pi\)
\(420\) 0 0
\(421\) 15.6569i 0.763068i −0.924355 0.381534i \(-0.875396\pi\)
0.924355 0.381534i \(-0.124604\pi\)
\(422\) 0 0
\(423\) −2.82843 + 2.82843i −0.137523 + 0.137523i
\(424\) 0 0
\(425\) 8.65685 34.6274i 0.419919 1.67968i
\(426\) 0 0
\(427\) −8.00000 + 8.00000i −0.387147 + 0.387147i
\(428\) 0 0
\(429\) 6.82843i 0.329680i
\(430\) 0 0
\(431\) 5.51472 + 13.3137i 0.265635 + 0.641299i 0.999268 0.0382464i \(-0.0121772\pi\)
−0.733634 + 0.679545i \(0.762177\pi\)
\(432\) 0 0
\(433\) −9.17157 9.17157i −0.440758 0.440758i 0.451509 0.892267i \(-0.350886\pi\)
−0.892267 + 0.451509i \(0.850886\pi\)
\(434\) 0 0
\(435\) 9.65685 4.00000i 0.463011 0.191785i
\(436\) 0 0
\(437\) −2.34315 0.970563i −0.112088 0.0464283i
\(438\) 0 0
\(439\) 8.82843 21.3137i 0.421358 1.01725i −0.560590 0.828094i \(-0.689425\pi\)
0.981947 0.189154i \(-0.0605745\pi\)
\(440\) 0 0
\(441\) 1.92893 0.0918539
\(442\) 0 0
\(443\) 36.8701 1.75175 0.875875 0.482539i \(-0.160285\pi\)
0.875875 + 0.482539i \(0.160285\pi\)
\(444\) 0 0
\(445\) 21.3137 51.4558i 1.01037 2.43924i
\(446\) 0 0
\(447\) −26.7279 11.0711i −1.26419 0.523644i
\(448\) 0 0
\(449\) 5.12132 2.12132i 0.241690 0.100111i −0.258551 0.965998i \(-0.583245\pi\)
0.500241 + 0.865886i \(0.333245\pi\)
\(450\) 0 0
\(451\) −35.3848 35.3848i −1.66620 1.66620i
\(452\) 0 0
\(453\) −15.6569 37.7990i −0.735623 1.77595i
\(454\) 0 0
\(455\) 4.68629i 0.219697i
\(456\) 0 0
\(457\) 3.51472 3.51472i 0.164412 0.164412i −0.620106 0.784518i \(-0.712911\pi\)
0.784518 + 0.620106i \(0.212911\pi\)
\(458\) 0 0
\(459\) −15.8284 11.7279i −0.738808 0.547413i
\(460\) 0 0
\(461\) −24.7279 + 24.7279i −1.15169 + 1.15169i −0.165481 + 0.986213i \(0.552918\pi\)
−0.986213 + 0.165481i \(0.947082\pi\)
\(462\) 0 0
\(463\) 3.31371i 0.154001i −0.997031 0.0770005i \(-0.975466\pi\)
0.997031 0.0770005i \(-0.0245343\pi\)
\(464\) 0 0
\(465\) 9.65685 + 23.3137i 0.447826 + 1.08115i
\(466\) 0 0
\(467\) 1.75736 + 1.75736i 0.0813209 + 0.0813209i 0.746597 0.665276i \(-0.231686\pi\)
−0.665276 + 0.746597i \(0.731686\pi\)
\(468\) 0 0
\(469\) −10.4853 + 4.34315i −0.484165 + 0.200548i
\(470\) 0 0
\(471\) −22.7279 9.41421i −1.04725 0.433784i
\(472\) 0 0
\(473\) 3.00000 7.24264i 0.137940 0.333017i
\(474\) 0 0
\(475\) −7.17157 −0.329054
\(476\) 0 0
\(477\) −0.343146 −0.0157116
\(478\) 0 0
\(479\) −9.51472 + 22.9706i −0.434739 + 1.04955i 0.543001 + 0.839732i \(0.317288\pi\)
−0.977740 + 0.209820i \(0.932712\pi\)
\(480\) 0 0
\(481\) −1.65685 0.686292i −0.0755461 0.0312922i
\(482\) 0 0
\(483\) −8.00000 + 3.31371i −0.364013 + 0.150779i
\(484\) 0 0
\(485\) 14.4853 + 14.4853i 0.657743 + 0.657743i
\(486\) 0 0
\(487\) −8.48528 20.4853i −0.384505 0.928277i −0.991082 0.133252i \(-0.957458\pi\)
0.606577 0.795024i \(-0.292542\pi\)
\(488\) 0 0
\(489\) 42.0416i 1.90119i
\(490\) 0 0
\(491\) −10.9289 + 10.9289i −0.493216 + 0.493216i −0.909318 0.416102i \(-0.863396\pi\)
0.416102 + 0.909318i \(0.363396\pi\)
\(492\) 0 0
\(493\) 0.928932 + 6.24264i 0.0418370 + 0.281154i
\(494\) 0 0
\(495\) 4.82843 4.82843i 0.217022 0.217022i
\(496\) 0 0
\(497\) 3.31371i 0.148640i
\(498\) 0 0
\(499\) 14.0919 + 34.0208i 0.630839 + 1.52298i 0.838569 + 0.544795i \(0.183392\pi\)
−0.207730 + 0.978186i \(0.566608\pi\)
\(500\) 0 0
\(501\) −25.7990 25.7990i −1.15261 1.15261i
\(502\) 0 0
\(503\) −11.1716 + 4.62742i −0.498116 + 0.206326i −0.617574 0.786513i \(-0.711884\pi\)
0.119458 + 0.992839i \(0.461884\pi\)
\(504\) 0 0
\(505\) −14.8284 6.14214i −0.659856 0.273321i
\(506\) 0 0
\(507\) 8.70711 21.0208i 0.386696 0.933567i
\(508\) 0 0
\(509\) 16.6274 0.736997 0.368499 0.929628i \(-0.379872\pi\)
0.368499 + 0.929628i \(0.379872\pi\)
\(510\) 0 0
\(511\) 8.20101 0.362791
\(512\) 0 0
\(513\) −1.51472 + 3.65685i −0.0668765 + 0.161454i
\(514\) 0 0
\(515\) 42.6274 + 17.6569i 1.87839 + 0.778054i
\(516\) 0 0
\(517\) −39.7990 + 16.4853i −1.75036 + 0.725022i
\(518\) 0 0
\(519\) 7.65685 + 7.65685i 0.336099 + 0.336099i
\(520\) 0 0
\(521\) 13.4645 + 32.5061i 0.589889 + 1.42412i 0.883609 + 0.468226i \(0.155107\pi\)
−0.293720 + 0.955892i \(0.594893\pi\)
\(522\) 0 0
\(523\) 23.2132i 1.01504i −0.861639 0.507521i \(-0.830562\pi\)
0.861639 0.507521i \(-0.169438\pi\)
\(524\) 0 0
\(525\) −17.3137 + 17.3137i −0.755632 + 0.755632i
\(526\) 0 0
\(527\) −15.0711 + 2.24264i −0.656506 + 0.0976910i
\(528\) 0 0
\(529\) 9.63604 9.63604i 0.418958 0.418958i
\(530\) 0 0
\(531\) 0.242641i 0.0105297i
\(532\) 0 0
\(533\) −3.55635 8.58579i −0.154043 0.371892i
\(534\) 0 0
\(535\) 30.4853 + 30.4853i 1.31799 + 1.31799i
\(536\) 0 0
\(537\) 44.0416 18.2426i 1.90054 0.787228i
\(538\) 0 0
\(539\) 19.1924 + 7.94975i 0.826675 + 0.342420i
\(540\) 0 0
\(541\) 7.79899 18.8284i 0.335305 0.809497i −0.662849 0.748753i \(-0.730653\pi\)
0.998153 0.0607439i \(-0.0193473\pi\)
\(542\) 0 0
\(543\) 11.3137 0.485518
\(544\) 0 0
\(545\) 36.2843 1.55425
\(546\) 0 0
\(547\) 9.39340 22.6777i 0.401633 0.969627i −0.585637 0.810573i \(-0.699156\pi\)
0.987270 0.159054i \(-0.0508443\pi\)
\(548\) 0 0
\(549\) −2.82843 1.17157i −0.120714 0.0500015i
\(550\) 0 0
\(551\) 1.17157 0.485281i 0.0499107 0.0206737i
\(552\) 0 0
\(553\) −5.65685 5.65685i −0.240554 0.240554i
\(554\) 0 0
\(555\) 5.65685 + 13.6569i 0.240120 + 0.579701i
\(556\) 0 0
\(557\) 41.1127i 1.74200i 0.491282 + 0.871000i \(0.336528\pi\)
−0.491282 + 0.871000i \(0.663472\pi\)
\(558\) 0 0
\(559\) 1.02944 1.02944i 0.0435406 0.0435406i
\(560\) 0 0
\(561\) 17.4853 + 29.1421i 0.738229 + 1.23038i
\(562\) 0 0
\(563\) 5.92893 5.92893i 0.249875 0.249875i −0.571044 0.820919i \(-0.693462\pi\)
0.820919 + 0.571044i \(0.193462\pi\)
\(564\) 0 0
\(565\) 34.1421i 1.43637i
\(566\) 0 0
\(567\) 5.89949 + 14.2426i 0.247755 + 0.598135i
\(568\) 0 0
\(569\) 3.48528 + 3.48528i 0.146111 + 0.146111i 0.776378 0.630267i \(-0.217055\pi\)
−0.630267 + 0.776378i \(0.717055\pi\)
\(570\) 0 0
\(571\) −2.22183 + 0.920310i −0.0929805 + 0.0385138i −0.428689 0.903452i \(-0.641024\pi\)
0.335708 + 0.941966i \(0.391024\pi\)
\(572\) 0 0
\(573\) 4.82843 + 2.00000i 0.201710 + 0.0835512i
\(574\) 0 0
\(575\) −10.1421 + 24.4853i −0.422956 + 1.02111i
\(576\) 0 0
\(577\) −16.6274 −0.692208 −0.346104 0.938196i \(-0.612496\pi\)
−0.346104 + 0.938196i \(0.612496\pi\)
\(578\) 0 0
\(579\) 22.7279 0.944540
\(580\) 0 0
\(581\) 3.65685 8.82843i 0.151712 0.366265i
\(582\) 0 0
\(583\) −3.41421 1.41421i −0.141402 0.0585707i
\(584\) 0 0
\(585\) 1.17157 0.485281i 0.0484386 0.0200639i
\(586\) 0 0
\(587\) 2.14214 + 2.14214i 0.0884154 + 0.0884154i 0.749931 0.661516i \(-0.230087\pi\)
−0.661516 + 0.749931i \(0.730087\pi\)
\(588\) 0 0
\(589\) 1.17157 + 2.82843i 0.0482738 + 0.116543i
\(590\) 0 0
\(591\) 36.9706i 1.52077i
\(592\) 0 0
\(593\) −3.00000 + 3.00000i −0.123195 + 0.123195i −0.766016 0.642821i \(-0.777764\pi\)
0.642821 + 0.766016i \(0.277764\pi\)
\(594\) 0 0
\(595\) −12.0000 20.0000i −0.491952 0.819920i
\(596\) 0 0
\(597\) 27.3137 27.3137i 1.11788 1.11788i
\(598\) 0 0
\(599\) 26.3431i 1.07635i 0.842833 + 0.538176i \(0.180886\pi\)
−0.842833 + 0.538176i \(0.819114\pi\)
\(600\) 0 0
\(601\) −7.05025 17.0208i −0.287586 0.694294i 0.712386 0.701788i \(-0.247615\pi\)
−0.999972 + 0.00749419i \(0.997615\pi\)
\(602\) 0 0
\(603\) −2.17157 2.17157i −0.0884333 0.0884333i
\(604\) 0 0
\(605\) 30.3848 12.5858i 1.23532 0.511685i
\(606\) 0 0
\(607\) −9.07107 3.75736i −0.368183 0.152507i 0.190918 0.981606i \(-0.438854\pi\)
−0.559101 + 0.829100i \(0.688854\pi\)
\(608\) 0 0
\(609\) 1.65685 4.00000i 0.0671391 0.162088i
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 37.7990 1.52669 0.763343 0.645993i \(-0.223556\pi\)
0.763343 + 0.645993i \(0.223556\pi\)
\(614\) 0 0
\(615\) −29.3137 + 70.7696i −1.18204 + 2.85370i
\(616\) 0 0
\(617\) −16.7071 6.92031i −0.672603 0.278601i 0.0201281 0.999797i \(-0.493593\pi\)
−0.692731 + 0.721196i \(0.743593\pi\)
\(618\) 0 0
\(619\) −5.12132 + 2.12132i −0.205843 + 0.0852631i −0.483223 0.875497i \(-0.660534\pi\)
0.277380 + 0.960760i \(0.410534\pi\)
\(620\) 0 0
\(621\) 10.3431 + 10.3431i 0.415056 + 0.415056i
\(622\) 0 0
\(623\) −8.82843 21.3137i −0.353703 0.853916i
\(624\) 0 0
\(625\) 6.65685i 0.266274i
\(626\) 0 0
\(627\) 4.82843 4.82843i 0.192829 0.192829i
\(628\) 0 0
\(629\) −8.82843 + 1.31371i −0.352012 + 0.0523810i
\(630\) 0 0
\(631\) 21.6569 21.6569i 0.862146 0.862146i −0.129441 0.991587i \(-0.541318\pi\)
0.991587 + 0.129441i \(0.0413184\pi\)
\(632\) 0 0
\(633\) 0.242641i 0.00964410i
\(634\) 0 0
\(635\) −18.3431 44.2843i −0.727926 1.75737i
\(636\) 0 0
\(637\) 2.72792 + 2.72792i 0.108084 + 0.108084i
\(638\) 0 0
\(639\) 0.828427 0.343146i 0.0327721 0.0135746i
\(640\) 0 0
\(641\) −13.4350 5.56497i −0.530652 0.219803i 0.101237 0.994862i \(-0.467720\pi\)
−0.631889 + 0.775059i \(0.717720\pi\)
\(642\) 0 0
\(643\) 5.12132 12.3640i 0.201965 0.487587i −0.790150 0.612913i \(-0.789998\pi\)
0.992116 + 0.125326i \(0.0399976\pi\)
\(644\) 0 0
\(645\) −12.0000 −0.472500
\(646\) 0 0
\(647\) −12.4853 −0.490847 −0.245424 0.969416i \(-0.578927\pi\)
−0.245424 + 0.969416i \(0.578927\pi\)
\(648\) 0 0
\(649\) −1.00000 + 2.41421i −0.0392534 + 0.0947662i
\(650\) 0 0
\(651\) 9.65685 + 4.00000i 0.378482 + 0.156772i
\(652\) 0 0
\(653\) −23.8995 + 9.89949i −0.935260 + 0.387397i −0.797671 0.603092i \(-0.793935\pi\)
−0.137588 + 0.990490i \(0.543935\pi\)
\(654\) 0 0
\(655\) 0.343146 + 0.343146i 0.0134078 + 0.0134078i
\(656\) 0 0
\(657\) 0.849242 + 2.05025i 0.0331321 + 0.0799880i
\(658\) 0 0
\(659\) 39.3137i 1.53144i −0.643171 0.765722i \(-0.722382\pi\)
0.643171 0.765722i \(-0.277618\pi\)
\(660\) 0 0
\(661\) 12.7279 12.7279i 0.495059 0.495059i −0.414837 0.909896i \(-0.636161\pi\)
0.909896 + 0.414837i \(0.136161\pi\)
\(662\) 0 0
\(663\) 0.928932 + 6.24264i 0.0360767 + 0.242444i
\(664\) 0 0
\(665\) −3.31371 + 3.31371i −0.128500 + 0.128500i
\(666\) 0 0
\(667\) 4.68629i 0.181454i
\(668\) 0 0
\(669\) −17.3137 41.7990i −0.669387 1.61604i
\(670\) 0 0
\(671\) −23.3137 23.3137i −0.900016 0.900016i
\(672\) 0 0
\(673\) 0.949747 0.393398i 0.0366101 0.0151644i −0.364303 0.931280i \(-0.618693\pi\)
0.400913 + 0.916116i \(0.368693\pi\)
\(674\) 0 0
\(675\) 38.2132 + 15.8284i 1.47083 + 0.609236i
\(676\) 0 0
\(677\) −4.48528 + 10.8284i −0.172383 + 0.416170i −0.986333 0.164766i \(-0.947313\pi\)
0.813949 + 0.580936i \(0.197313\pi\)
\(678\) 0 0
\(679\) 8.48528 0.325635
\(680\) 0 0
\(681\) −37.5563 −1.43916
\(682\) 0 0
\(683\) 4.15076 10.0208i 0.158824 0.383436i −0.824356 0.566071i \(-0.808463\pi\)
0.983181 + 0.182635i \(0.0584628\pi\)
\(684\) 0 0
\(685\) 8.00000 + 3.31371i 0.305664 + 0.126610i
\(686\) 0 0
\(687\) 31.5563 13.0711i 1.20395 0.498692i
\(688\) 0 0
\(689\) −0.485281 0.485281i −0.0184877 0.0184877i
\(690\) 0 0
\(691\) 17.9914 + 43.4350i 0.684424 + 1.65235i 0.755723 + 0.654891i \(0.227286\pi\)
−0.0712988 + 0.997455i \(0.522714\pi\)
\(692\) 0 0
\(693\) 2.82843i 0.107443i
\(694\) 0 0
\(695\) −4.82843 + 4.82843i −0.183153 + 0.183153i
\(696\) 0 0
\(697\) −37.1630 27.5355i −1.40765 1.04298i
\(698\) 0 0
\(699\) 13.7279 13.7279i 0.519238 0.519238i
\(700\) 0 0
\(701\) 1.51472i 0.0572101i 0.999591 + 0.0286051i \(0.00910652\pi\)
−0.999591 + 0.0286051i \(0.990893\pi\)
\(702\) 0 0
\(703\) 0.686292 + 1.65685i 0.0258840 + 0.0624894i
\(704\) 0 0
\(705\) 46.6274 + 46.6274i 1.75609 + 1.75609i
\(706\) 0 0
\(707\) −6.14214 + 2.54416i −0.230999 + 0.0956828i
\(708\) 0 0
\(709\) −5.75736 2.38478i −0.216222 0.0895622i 0.271943 0.962313i \(-0.412334\pi\)
−0.488165 + 0.872751i \(0.662334\pi\)
\(710\) 0 0
\(711\) 0.828427 2.00000i 0.0310684 0.0750059i
\(712\) 0 0
\(713\) 11.3137 0.423702
\(714\) 0 0
\(715\) 13.6569 0.510737
\(716\) 0 0
\(717\) −14.9706 + 36.1421i −0.559086 + 1.34975i
\(718\) 0 0
\(719\) −4.00000 1.65685i −0.149175 0.0617902i 0.306847 0.951759i \(-0.400726\pi\)
−0.456022 + 0.889969i \(0.650726\pi\)
\(720\) 0 0
\(721\) 17.6569 7.31371i 0.657576 0.272377i
\(722\) 0 0
\(723\) −25.9706 25.9706i −0.965856 0.965856i
\(724\) 0 0
\(725\) −5.07107 12.2426i −0.188335 0.454680i
\(726\) 0 0
\(727\) 32.2843i 1.19736i 0.800989 + 0.598679i \(0.204307\pi\)
−0.800989 + 0.598679i \(0.795693\pi\)
\(728\) 0 0
\(729\) 15.7782 15.7782i 0.584377 0.584377i
\(730\) 0 0
\(731\) 1.75736 7.02944i 0.0649983 0.259993i
\(732\) 0 0
\(733\) −9.89949 + 9.89949i −0.365646 + 0.365646i −0.865887 0.500240i \(-0.833245\pi\)
0.500240 + 0.865887i \(0.333245\pi\)
\(734\) 0 0
\(735\) 31.7990i 1.17292i
\(736\) 0 0
\(737\) −12.6569 30.5563i −0.466221 1.12556i
\(738\) 0 0
\(739\) 0.485281 + 0.485281i 0.0178514 + 0.0178514i 0.715976 0.698125i \(-0.245982\pi\)
−0.698125 + 0.715976i \(0.745982\pi\)
\(740\) 0 0
\(741\) 1.17157 0.485281i 0.0430388 0.0178273i
\(742\) 0 0
\(743\) −23.8995 9.89949i −0.876787 0.363177i −0.101537 0.994832i \(-0.532376\pi\)
−0.775250 + 0.631654i \(0.782376\pi\)
\(744\) 0 0
\(745\) −22.1421 + 53.4558i −0.811225 + 1.95847i
\(746\) 0 0
\(747\) 2.58579 0.0946090
\(748\) 0 0
\(749\) 17.8579 0.652512
\(750\) 0 0
\(751\) −9.51472 + 22.9706i −0.347197 + 0.838208i 0.649752 + 0.760147i \(0.274873\pi\)
−0.996949 + 0.0780611i \(0.975127\pi\)
\(752\) 0 0
\(753\) 31.9706 + 13.2426i 1.16507 + 0.482589i
\(754\) 0 0
\(755\) −75.5980 + 31.3137i −2.75129 + 1.13962i
\(756\) 0 0
\(757\) −7.75736 7.75736i −0.281946 0.281946i 0.551939 0.833885i \(-0.313888\pi\)
−0.833885 + 0.551939i \(0.813888\pi\)
\(758\) 0 0
\(759\) −9.65685 23.3137i −0.350522 0.846234i
\(760\) 0 0
\(761\) 53.2548i 1.93049i −0.261354 0.965243i \(-0.584169\pi\)
0.261354 0.965243i \(-0.415831\pi\)
\(762\) 0 0
\(763\) 10.6274 10.6274i 0.384738 0.384738i
\(764\) 0 0
\(765\) 3.75736 5.07107i 0.135848 0.183345i
\(766\) 0 0
\(767\) −0.343146 + 0.343146i −0.0123903 + 0.0123903i
\(768\) 0 0
\(769\) 26.3431i 0.949958i −0.879997 0.474979i \(-0.842456\pi\)
0.879997 0.474979i \(-0.157544\pi\)
\(770\) 0 0
\(771\) −5.82843 14.0711i −0.209906 0.506757i
\(772\) 0 0
\(773\) 2.58579 + 2.58579i 0.0930043 + 0.0930043i 0.752078 0.659074i \(-0.229052\pi\)
−0.659074 + 0.752078i \(0.729052\pi\)
\(774\) 0 0
\(775\) 29.5563 12.2426i 1.06170 0.439769i
\(776\) 0 0
\(777\) 5.65685 + 2.34315i 0.202939 + 0.0840599i
\(778\) 0 0
\(779\) −3.55635 + 8.58579i −0.127419 + 0.307618i
\(780\) 0 0
\(781\) 9.65685 0.345549
\(782\) 0 0
\(783\) −7.31371 −0.261371
\(784\) 0 0
\(785\) −18.8284 + 45.4558i −0.672015 + 1.62239i
\(786\) 0 0
\(787\) 17.6066 + 7.29289i 0.627608 + 0.259964i 0.673736 0.738972i \(-0.264688\pi\)
−0.0461286 + 0.998936i \(0.514688\pi\)
\(788\) 0 0
\(789\) −13.6569 + 5.65685i −0.486197 + 0.201389i
\(790\) 0 0
\(791\) 10.0000 + 10.0000i 0.355559 + 0.355559i
\(792\) 0 0
\(793\) −2.34315 5.65685i −0.0832075 0.200881i
\(794\) 0 0
\(795\) 5.65685i 0.200628i
\(796\) 0 0
\(797\) 18.8701 18.8701i 0.668412 0.668412i −0.288937 0.957348i \(-0.593302\pi\)
0.957348 + 0.288937i \(0.0933017\pi\)
\(798\) 0 0
\(799\) −34.1421 + 20.4853i −1.20786 + 0.724717i
\(800\) 0 0
\(801\) 4.41421 4.41421i 0.155969 0.155969i
\(802\) 0 0
\(803\) 23.8995i 0.843395i
\(804\) 0 0
\(805\) 6.62742 + 16.0000i 0.233586 + 0.563926i
\(806\) 0 0
\(807\) −10.0000 10.0000i −0.352017 0.352017i
\(808\) 0 0
\(809\) −43.1630 + 17.8787i −1.51753 + 0.628581i −0.977095 0.212806i \(-0.931740\pi\)
−0.540434 + 0.841386i \(0.681740\pi\)
\(810\) 0 0
\(811\) −45.5061 18.8492i −1.59794 0.661886i −0.606813 0.794844i \(-0.707553\pi\)
−0.991122 + 0.132958i \(0.957553\pi\)
\(812\) 0 0
\(813\) 10.4853 25.3137i 0.367735 0.887791i
\(814\) 0 0
\(815\) 84.0833 2.94531
\(816\) 0 0
\(817\) −1.45584 −0.0509335
\(818\) 0 0
\(819\) 0.201010 0.485281i 0.00702386 0.0169571i
\(820\) 0 0
\(821\) −0.343146 0.142136i −0.0119759 0.00496057i 0.376687 0.926340i \(-0.377063\pi\)
−0.388663 + 0.921380i \(0.627063\pi\)
\(822\) 0 0
\(823\) −40.2843 + 16.6863i −1.40422 + 0.581648i −0.950844 0.309671i \(-0.899781\pi\)
−0.453378 + 0.891319i \(0.649781\pi\)
\(824\) 0 0
\(825\) −50.4558 50.4558i −1.75665 1.75665i
\(826\) 0 0
\(827\) 9.15076 + 22.0919i 0.318203 + 0.768210i 0.999350 + 0.0360629i \(0.0114817\pi\)
−0.681147 + 0.732147i \(0.738518\pi\)
\(828\) 0 0
\(829\) 20.1421i 0.699565i 0.936831 + 0.349783i \(0.113745\pi\)
−0.936831 + 0.349783i \(0.886255\pi\)
\(830\) 0 0
\(831\) 30.9706 30.9706i 1.07436 1.07436i
\(832\) 0 0
\(833\) 18.6274 + 4.65685i 0.645402 + 0.161350i
\(834\) 0 0
\(835\) −51.5980 + 51.5980i −1.78562 + 1.78562i
\(836\) 0 0
\(837\) 17.6569i 0.610310i
\(838\) 0 0
\(839\) −18.5269 44.7279i −0.639620 1.54418i −0.827187 0.561927i \(-0.810060\pi\)
0.187566 0.982252i \(-0.439940\pi\)
\(840\) 0 0
\(841\) −18.8492 18.8492i −0.649974 0.649974i
\(842\) 0 0
\(843\) 24.4853 10.1421i 0.843318 0.349314i
\(844\) 0 0
\(845\) −42.0416 17.4142i −1.44628 0.599067i
\(846\) 0 0
\(847\) 5.21320 12.5858i 0.179128 0.432453i
\(848\) 0 0
\(849\) −2.10051 −0.0720891
\(850\) 0 0
\(851\) 6.62742 0.227185
\(852\) 0 0
\(853\) −14.5269 + 35.0711i −0.497392 + 1.20081i 0.453491 + 0.891261i \(0.350178\pi\)
−0.950883 + 0.309550i \(0.899822\pi\)
\(854\) 0 0
\(855\) −1.17157 0.485281i −0.0400669 0.0165963i
\(856\) 0 0
\(857\) −37.1924 + 15.4056i −1.27047 + 0.526245i −0.913106 0.407721i \(-0.866324\pi\)
−0.357361 + 0.933966i \(0.616324\pi\)
\(858\) 0 0
\(859\) −0.556349 0.556349i −0.0189824 0.0189824i 0.697552 0.716534i \(-0.254273\pi\)
−0.716534 + 0.697552i \(0.754273\pi\)
\(860\) 0 0
\(861\) 12.1421 + 29.3137i 0.413803 + 0.999009i
\(862\) 0 0
\(863\) 0.970563i 0.0330383i −0.999864 0.0165192i \(-0.994742\pi\)
0.999864 0.0165192i \(-0.00525845\pi\)
\(864\) 0 0
\(865\) 15.3137 15.3137i 0.520682 0.520682i
\(866\) 0 0
\(867\) 19.9497 + 24.2635i 0.677529 + 0.824030i
\(868\) 0 0
\(869\) 16.4853 16.4853i 0.559225 0.559225i
\(870\) 0 0
\(871\) 6.14214i 0.208118i
\(872\) 0 0
\(873\) 0.878680 + 2.12132i 0.0297388 + 0.0717958i
\(874\) 0 0
\(875\) 14.6274 + 14.6274i 0.494497 + 0.494497i
\(876\) 0 0
\(877\) 9.89949 4.10051i 0.334282 0.138464i −0.209228 0.977867i \(-0.567095\pi\)
0.543510 + 0.839403i \(0.317095\pi\)
\(878\) 0 0
\(879\) −37.5563 15.5563i −1.26674 0.524703i
\(880\) 0 0
\(881\) −6.92031 + 16.7071i −0.233151 + 0.562877i −0.996545 0.0830568i \(-0.973532\pi\)
0.763394 + 0.645934i \(0.223532\pi\)
\(882\) 0 0
\(883\) −34.5269 −1.16192 −0.580962 0.813931i \(-0.697323\pi\)
−0.580962 + 0.813931i \(0.697323\pi\)
\(884\) 0 0
\(885\) 4.00000 0.134459
\(886\) 0 0
\(887\) 0.970563 2.34315i 0.0325883 0.0786751i −0.906748 0.421674i \(-0.861443\pi\)
0.939336 + 0.342999i \(0.111443\pi\)
\(888\) 0 0
\(889\) −18.3431 7.59798i −0.615209 0.254828i
\(890\) 0 0
\(891\) −41.5061 + 17.1924i −1.39051 + 0.575967i
\(892\) 0 0
\(893\) 5.65685 + 5.65685i 0.189299 + 0.189299i
\(894\) 0 0
\(895\) −36.4853 88.0833i −1.21957 2.94430i
\(896\) 0 0
\(897\) 4.68629i 0.156471i
\(898\) 0 0
\(899\) −4.00000 + 4.00000i −0.133407 + 0.133407i
\(900\) 0 0
\(901\) −3.31371 0.828427i −0.110396 0.0275989i
\(902\) 0 0
\(903\) −3.51472 + 3.51472i −0.116963 + 0.116963i
\(904\) 0 0
\(905\) 22.6274i 0.752161i
\(906\) 0 0
\(907\) −5.60660 13.5355i −0.186164 0.449440i 0.803051 0.595910i \(-0.203209\pi\)
−0.989215 + 0.146470i \(0.953209\pi\)
\(908\) 0 0
\(909\) −1.27208 1.27208i −0.0421922 0.0421922i
\(910\) 0 0
\(911\) 21.5563 8.92893i 0.714194 0.295829i 0.00415500 0.999991i \(-0.498677\pi\)
0.710039 + 0.704163i \(0.248677\pi\)
\(912\) 0 0
\(913\) 25.7279 + 10.6569i 0.851470 + 0.352690i
\(914\) 0 0
\(915\) −19.3137 + 46.6274i −0.638492 + 1.54145i
\(916\) 0 0
\(917\) 0.201010 0.00663794
\(918\) 0 0
\(919\) 2.34315 0.0772932 0.0386466 0.999253i \(-0.487695\pi\)
0.0386466 + 0.999253i \(0.487695\pi\)
\(920\) 0 0
\(921\) −4.48528 + 10.8284i −0.147795 + 0.356809i
\(922\) 0 0
\(923\) 1.65685 + 0.686292i 0.0545360 + 0.0225896i
\(924\) 0 0
\(925\) 17.3137 7.17157i 0.569271 0.235800i
\(926\) 0 0
\(927\) 3.65685 + 3.65685i 0.120107 + 0.120107i
\(928\) 0 0
\(929\) −3.53553 8.53553i −0.115997 0.280042i 0.855209 0.518284i \(-0.173429\pi\)
−0.971206 + 0.238242i \(0.923429\pi\)
\(930\) 0 0
\(931\) 3.85786i 0.126436i
\(932\) 0 0
\(933\) 19.6569 19.6569i 0.643537 0.643537i
\(934\) 0 0
\(935\) 58.2843 34.9706i 1.90610 1.14366i
\(936\) 0 0
\(937\) −3.75736 + 3.75736i −0.122748 + 0.122748i −0.765812 0.643064i \(-0.777663\pi\)
0.643064 + 0.765812i \(0.277663\pi\)
\(938\) 0 0
\(939\) 25.0711i 0.818163i
\(940\) 0 0
\(941\) 7.51472 + 18.1421i 0.244973 + 0.591417i 0.997763 0.0668433i \(-0.0212928\pi\)
−0.752791 + 0.658260i \(0.771293\pi\)
\(942\) 0 0
\(943\) 24.2843 + 24.2843i 0.790805 + 0.790805i
\(944\) 0 0
\(945\) 24.9706 10.3431i 0.812292 0.336463i
\(946\) 0 0
\(947\) 48.3345 + 20.0208i 1.57066 + 0.650589i 0.986900 0.161336i \(-0.0515803\pi\)
0.583761 + 0.811925i \(0.301580\pi\)
\(948\) 0 0
\(949\) −1.69848 + 4.10051i −0.0551352 + 0.133108i
\(950\) 0 0
\(951\) 40.9706 1.32856
\(952\) 0 0
\(953\) −11.5563 −0.374347 −0.187173 0.982327i \(-0.559933\pi\)
−0.187173 + 0.982327i \(0.559933\pi\)
\(954\) 0 0
\(955\) 4.00000 9.65685i 0.129437 0.312488i
\(956\) 0 0
\(957\) 11.6569 + 4.82843i 0.376813 + 0.156081i
\(958\) 0 0
\(959\) 3.31371 1.37258i 0.107005 0.0443230i
\(960\) 0 0
\(961\) 12.2635 + 12.2635i 0.395595 + 0.395595i
\(962\) 0 0
\(963\) 1.84924 + 4.46447i 0.0595910 + 0.143865i
\(964\) 0 0
\(965\) 45.4558i 1.46328i
\(966\) 0 0
\(967\) −9.65685 + 9.65685i −0.310543 + 0.310543i −0.845120 0.534577i \(-0.820471\pi\)
0.534577 + 0.845120i \(0.320471\pi\)
\(968\) 0 0
\(969\) 3.75736 5.07107i 0.120704 0.162906i
\(970\) 0 0
\(971\) −15.0416 + 15.0416i −0.482709 + 0.482709i −0.905996 0.423287i \(-0.860876\pi\)
0.423287 + 0.905996i \(0.360876\pi\)
\(972\) 0 0
\(973\) 2.82843i 0.0906752i
\(974\) 0 0
\(975\) −5.07107 12.2426i −0.162404 0.392078i
\(976\) 0 0
\(977\) 20.1127 + 20.1127i 0.643462 + 0.643462i 0.951405 0.307943i \(-0.0996405\pi\)
−0.307943 + 0.951405i \(0.599641\pi\)
\(978\) 0 0
\(979\) 62.1127 25.7279i 1.98513 0.822268i
\(980\) 0 0
\(981\) 3.75736 + 1.55635i 0.119963 + 0.0496904i
\(982\) 0 0
\(983\) −10.3431 + 24.9706i −0.329895 + 0.796437i 0.668704 + 0.743529i \(0.266849\pi\)
−0.998599 + 0.0529088i \(0.983151\pi\)
\(984\) 0 0
\(985\) 73.9411 2.35596
\(986\) 0 0
\(987\) 27.3137 0.869405
\(988\) 0 0
\(989\) −2.05887 + 4.97056i −0.0654684 + 0.158055i
\(990\) 0 0
\(991\) 42.2843 + 17.5147i 1.34320 + 0.556373i 0.934392 0.356245i \(-0.115943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(992\) 0 0
\(993\) −47.2843 + 19.5858i −1.50052 + 0.621536i
\(994\) 0 0
\(995\) −54.6274 54.6274i −1.73181 1.73181i
\(996\) 0 0
\(997\) −4.54416 10.9706i −0.143915 0.347441i 0.835442 0.549578i \(-0.185211\pi\)
−0.979357 + 0.202137i \(0.935211\pi\)
\(998\) 0 0
\(999\) 10.3431i 0.327243i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.2.v.b.161.1 4
4.3 odd 2 34.2.d.a.25.1 yes 4
12.11 even 2 306.2.l.c.127.1 4
17.7 odd 16 4624.2.a.bn.1.1 4
17.10 odd 16 4624.2.a.bn.1.4 4
17.15 even 8 inner 272.2.v.b.49.1 4
20.3 even 4 850.2.o.a.399.1 4
20.7 even 4 850.2.o.b.399.1 4
20.19 odd 2 850.2.l.a.501.1 4
68.3 even 16 578.2.c.f.327.1 8
68.7 even 16 578.2.a.i.1.4 4
68.11 even 16 578.2.b.d.577.1 4
68.15 odd 8 34.2.d.a.15.1 4
68.19 odd 8 578.2.d.b.423.1 4
68.23 even 16 578.2.b.d.577.4 4
68.27 even 16 578.2.a.i.1.1 4
68.31 even 16 578.2.c.f.327.4 8
68.39 even 16 578.2.c.f.251.1 8
68.43 odd 8 578.2.d.a.155.1 4
68.47 odd 4 578.2.d.a.179.1 4
68.55 odd 4 578.2.d.c.179.1 4
68.59 odd 8 578.2.d.c.155.1 4
68.63 even 16 578.2.c.f.251.4 8
68.67 odd 2 578.2.d.b.399.1 4
204.83 even 8 306.2.l.c.253.1 4
204.95 odd 16 5202.2.a.bw.1.4 4
204.143 odd 16 5202.2.a.bw.1.1 4
340.83 even 8 850.2.o.b.49.1 4
340.219 odd 8 850.2.l.a.151.1 4
340.287 even 8 850.2.o.a.49.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
34.2.d.a.15.1 4 68.15 odd 8
34.2.d.a.25.1 yes 4 4.3 odd 2
272.2.v.b.49.1 4 17.15 even 8 inner
272.2.v.b.161.1 4 1.1 even 1 trivial
306.2.l.c.127.1 4 12.11 even 2
306.2.l.c.253.1 4 204.83 even 8
578.2.a.i.1.1 4 68.27 even 16
578.2.a.i.1.4 4 68.7 even 16
578.2.b.d.577.1 4 68.11 even 16
578.2.b.d.577.4 4 68.23 even 16
578.2.c.f.251.1 8 68.39 even 16
578.2.c.f.251.4 8 68.63 even 16
578.2.c.f.327.1 8 68.3 even 16
578.2.c.f.327.4 8 68.31 even 16
578.2.d.a.155.1 4 68.43 odd 8
578.2.d.a.179.1 4 68.47 odd 4
578.2.d.b.399.1 4 68.67 odd 2
578.2.d.b.423.1 4 68.19 odd 8
578.2.d.c.155.1 4 68.59 odd 8
578.2.d.c.179.1 4 68.55 odd 4
850.2.l.a.151.1 4 340.219 odd 8
850.2.l.a.501.1 4 20.19 odd 2
850.2.o.a.49.1 4 340.287 even 8
850.2.o.a.399.1 4 20.3 even 4
850.2.o.b.49.1 4 340.83 even 8
850.2.o.b.399.1 4 20.7 even 4
4624.2.a.bn.1.1 4 17.7 odd 16
4624.2.a.bn.1.4 4 17.10 odd 16
5202.2.a.bw.1.1 4 204.143 odd 16
5202.2.a.bw.1.4 4 204.95 odd 16