Properties

Label 306.2.l.c
Level $306$
Weight $2$
Character orbit 306.l
Analytic conductor $2.443$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [306,2,Mod(19,306)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(306, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("306.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 306.l (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,8,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.44342230185\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 34)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{8}^{3} q^{2} - \zeta_{8}^{2} q^{4} + ( - 2 \zeta_{8} + 2) q^{5} + ( - 2 \zeta_{8}^{2} - 2 \zeta_{8}) q^{7} - \zeta_{8} q^{8} + ( - 2 \zeta_{8}^{3} - 2) q^{10} + (\zeta_{8}^{3} - 2 \zeta_{8}^{2} + \cdots - 1) q^{11} + \cdots + (4 \zeta_{8}^{3} + \zeta_{8}^{2} + 4 \zeta_{8}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} - 8 q^{10} - 4 q^{11} - 8 q^{14} - 4 q^{16} + 8 q^{19} + 8 q^{22} + 16 q^{23} + 16 q^{25} + 8 q^{26} - 8 q^{28} - 16 q^{34} - 8 q^{37} - 16 q^{41} + 12 q^{43} - 8 q^{44} - 16 q^{49} - 12 q^{50}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/306\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(\zeta_{8}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.707107 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i 0 1.00000i 0.585786 + 1.41421i 0 −1.41421 + 3.41421i −0.707107 + 0.707107i 0 −0.585786 + 1.41421i
127.1 −0.707107 + 0.707107i 0 1.00000i 3.41421 + 1.41421i 0 1.41421 0.585786i 0.707107 + 0.707107i 0 −3.41421 + 1.41421i
145.1 0.707107 0.707107i 0 1.00000i 0.585786 1.41421i 0 −1.41421 3.41421i −0.707107 0.707107i 0 −0.585786 1.41421i
253.1 −0.707107 0.707107i 0 1.00000i 3.41421 1.41421i 0 1.41421 + 0.585786i 0.707107 0.707107i 0 −3.41421 1.41421i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.d even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 306.2.l.c 4
3.b odd 2 1 34.2.d.a 4
12.b even 2 1 272.2.v.b 4
15.d odd 2 1 850.2.l.a 4
15.e even 4 1 850.2.o.a 4
15.e even 4 1 850.2.o.b 4
17.d even 8 1 inner 306.2.l.c 4
17.e odd 16 2 5202.2.a.bw 4
51.c odd 2 1 578.2.d.b 4
51.f odd 4 1 578.2.d.a 4
51.f odd 4 1 578.2.d.c 4
51.g odd 8 1 34.2.d.a 4
51.g odd 8 1 578.2.d.a 4
51.g odd 8 1 578.2.d.b 4
51.g odd 8 1 578.2.d.c 4
51.i even 16 2 578.2.a.i 4
51.i even 16 2 578.2.b.d 4
51.i even 16 4 578.2.c.f 8
204.p even 8 1 272.2.v.b 4
204.t odd 16 2 4624.2.a.bn 4
255.v even 8 1 850.2.o.b 4
255.y odd 8 1 850.2.l.a 4
255.ba even 8 1 850.2.o.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
34.2.d.a 4 3.b odd 2 1
34.2.d.a 4 51.g odd 8 1
272.2.v.b 4 12.b even 2 1
272.2.v.b 4 204.p even 8 1
306.2.l.c 4 1.a even 1 1 trivial
306.2.l.c 4 17.d even 8 1 inner
578.2.a.i 4 51.i even 16 2
578.2.b.d 4 51.i even 16 2
578.2.c.f 8 51.i even 16 4
578.2.d.a 4 51.f odd 4 1
578.2.d.a 4 51.g odd 8 1
578.2.d.b 4 51.c odd 2 1
578.2.d.b 4 51.g odd 8 1
578.2.d.c 4 51.f odd 4 1
578.2.d.c 4 51.g odd 8 1
850.2.l.a 4 15.d odd 2 1
850.2.l.a 4 255.y odd 8 1
850.2.o.a 4 15.e even 4 1
850.2.o.a 4 255.ba even 8 1
850.2.o.b 4 15.e even 4 1
850.2.o.b 4 255.v even 8 1
4624.2.a.bn 4 204.t odd 16 2
5202.2.a.bw 4 17.e odd 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 8T_{5}^{3} + 24T_{5}^{2} - 32T_{5} + 32 \) acting on \(S_{2}^{\mathrm{new}}(306, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 8 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$7$ \( T^{4} + 8 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$11$ \( T^{4} + 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{4} + 16T^{2} + 289 \) Copy content Toggle raw display
$19$ \( T^{4} - 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{4} - 16 T^{3} + \cdots + 512 \) Copy content Toggle raw display
$29$ \( T^{4} + 8 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$31$ \( T^{4} + 8 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$37$ \( T^{4} + 8 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$41$ \( T^{4} + 16 T^{3} + \cdots + 4802 \) Copy content Toggle raw display
$43$ \( T^{4} - 12 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$47$ \( T^{4} + 96T^{2} + 256 \) Copy content Toggle raw display
$53$ \( T^{4} + 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$61$ \( T^{4} - 16 T^{3} + \cdots + 512 \) Copy content Toggle raw display
$67$ \( (T^{2} + 12 T + 34)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 8 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$73$ \( T^{4} + 98 T^{2} + \cdots + 4802 \) Copy content Toggle raw display
$79$ \( T^{4} + 8 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$83$ \( T^{4} + 12 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$89$ \( T^{4} + 228T^{2} + 196 \) Copy content Toggle raw display
$97$ \( T^{4} + 12 T^{3} + \cdots + 162 \) Copy content Toggle raw display
show more
show less