L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (0.585 + 1.41i)5-s + (−1.41 + 3.41i)7-s + (−0.707 + 0.707i)8-s + (−0.585 + 1.41i)10-s + (−0.292 − 0.121i)11-s − 4.82i·13-s + (−3.41 + 1.41i)14-s − 1.00·16-s + (−2.12 + 3.53i)17-s + (3.41 + 3.41i)19-s + (−1.41 + 0.585i)20-s + (−0.121 − 0.292i)22-s + (6.82 + 2.82i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (0.261 + 0.632i)5-s + (−0.534 + 1.29i)7-s + (−0.250 + 0.250i)8-s + (−0.185 + 0.447i)10-s + (−0.0883 − 0.0365i)11-s − 1.33i·13-s + (−0.912 + 0.377i)14-s − 0.250·16-s + (−0.514 + 0.857i)17-s + (0.783 + 0.783i)19-s + (−0.316 + 0.130i)20-s + (−0.0258 − 0.0624i)22-s + (1.42 + 0.589i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 306 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.197 - 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 306 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.197 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.01264 + 1.23654i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.01264 + 1.23654i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (2.12 - 3.53i)T \) |
good | 5 | \( 1 + (-0.585 - 1.41i)T + (-3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (1.41 - 3.41i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (0.292 + 0.121i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 4.82iT - 13T^{2} \) |
| 19 | \( 1 + (-3.41 - 3.41i)T + 19iT^{2} \) |
| 23 | \( 1 + (-6.82 - 2.82i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (1.41 + 3.41i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-1.41 + 0.585i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (4.82 - 2i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (-2.36 + 5.70i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-7.24 + 7.24i)T - 43iT^{2} \) |
| 47 | \( 1 + 1.65iT - 47T^{2} \) |
| 53 | \( 1 + (3.41 + 3.41i)T + 53iT^{2} \) |
| 59 | \( 1 + (-2.41 + 2.41i)T - 59iT^{2} \) |
| 61 | \( 1 + (-1.17 + 2.82i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 4.58T + 67T^{2} \) |
| 71 | \( 1 + (-4.82 + 2i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-4.94 - 11.9i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (2 + 0.828i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (1.58 + 1.58i)T + 83iT^{2} \) |
| 89 | \( 1 - 0.928iT - 89T^{2} \) |
| 97 | \( 1 + (0.878 + 2.12i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.26901854362607560633738887287, −11.08768128174846436830855571925, −10.12152939155307970330818656851, −9.025571452455863763593113129636, −8.095584039147618887002413498679, −6.94552986867088722899185810186, −5.90772815613422143492255266102, −5.32481339551174074613179330486, −3.52120176524809938116631946451, −2.54799013953468199419492326413,
1.10053598697703898447853294427, 2.94490709165696495911500496698, 4.32145993712187888831128008693, 5.04332673863417242636374485872, 6.63264837609531143414042481273, 7.27292864928569052737342533383, 9.061378176061001012594324979059, 9.482962994765168560683906096910, 10.74335470414725335797637231260, 11.35923075950302700191642408601