sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(306, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,7]))
pari:[g,chi] = znchar(Mod(19,306))
\(\chi_{306}(19,\cdot)\)
\(\chi_{306}(127,\cdot)\)
\(\chi_{306}(145,\cdot)\)
\(\chi_{306}(253,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((137,37)\) → \((1,e\left(\frac{7}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 306 }(19, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)