L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (3.41 + 1.41i)5-s + (1.41 − 0.585i)7-s + (0.707 + 0.707i)8-s + (−3.41 + 1.41i)10-s + (−1.70 − 4.12i)11-s − 0.828i·13-s + (−0.585 + 1.41i)14-s − 1.00·16-s + (2.12 + 3.53i)17-s + (0.585 − 0.585i)19-s + (1.41 − 3.41i)20-s + (4.12 + 1.70i)22-s + (1.17 + 2.82i)23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (1.52 + 0.632i)5-s + (0.534 − 0.221i)7-s + (0.250 + 0.250i)8-s + (−1.07 + 0.447i)10-s + (−0.514 − 1.24i)11-s − 0.229i·13-s + (−0.156 + 0.377i)14-s − 0.250·16-s + (0.514 + 0.857i)17-s + (0.134 − 0.134i)19-s + (0.316 − 0.763i)20-s + (0.878 + 0.363i)22-s + (0.244 + 0.589i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 306 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.815 - 0.578i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 306 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.815 - 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26680 + 0.403264i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26680 + 0.403264i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 17 | \( 1 + (-2.12 - 3.53i)T \) |
good | 5 | \( 1 + (-3.41 - 1.41i)T + (3.53 + 3.53i)T^{2} \) |
| 7 | \( 1 + (-1.41 + 0.585i)T + (4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (1.70 + 4.12i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 + 0.828iT - 13T^{2} \) |
| 19 | \( 1 + (-0.585 + 0.585i)T - 19iT^{2} \) |
| 23 | \( 1 + (-1.17 - 2.82i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (-1.41 - 0.585i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (1.41 - 3.41i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-0.828 + 2i)T + (-26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (10.3 - 4.29i)T + (28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (1.24 + 1.24i)T + 43iT^{2} \) |
| 47 | \( 1 + 9.65iT - 47T^{2} \) |
| 53 | \( 1 + (0.585 - 0.585i)T - 53iT^{2} \) |
| 59 | \( 1 + (0.414 + 0.414i)T + 59iT^{2} \) |
| 61 | \( 1 + (-6.82 + 2.82i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 + 7.41T + 67T^{2} \) |
| 71 | \( 1 + (0.828 - 2i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (4.94 + 2.05i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (2 + 4.82i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (4.41 - 4.41i)T - 83iT^{2} \) |
| 89 | \( 1 + 15.0iT - 89T^{2} \) |
| 97 | \( 1 + (5.12 + 2.12i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.45765490377870389126954947041, −10.53414703598304394194248582572, −10.07713529752803129713176649003, −8.917122250745625571876748997638, −8.058010689157198533342986684904, −6.86665930417664124773311000975, −5.90316040761339160580328428395, −5.23621820428728382401839697649, −3.15501054893724717482560229768, −1.60174187788080598049794235002,
1.55995254244719664547979385841, 2.57145032228850290058591757508, 4.64284374649415733665399655376, 5.44888302949348539239802536236, 6.82276436577544029777806803434, 8.009521617353248845076232002641, 9.069436744453029782466293544301, 9.774286071407184622221977629497, 10.37801267771894724014884951027, 11.65070742860131463025143899274