Properties

Label 275.3.q.d.24.1
Level $275$
Weight $3$
Character 275.24
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(24,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,18,0,30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 24.1
Root \(0.587785 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 275.24
Dual form 275.3.q.d.149.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.224514 + 0.690983i) q^{2} +(-0.812299 - 1.11803i) q^{3} +(2.80902 + 2.04087i) q^{4} +(0.954915 - 0.310271i) q^{6} +(-8.05748 - 5.85410i) q^{7} +(-4.39201 + 3.19098i) q^{8} +(2.19098 - 6.74315i) q^{9} +(-10.3713 - 3.66547i) q^{11} -4.79837i q^{12} +(1.62460 - 5.00000i) q^{13} +(5.85410 - 4.25325i) q^{14} +(3.07295 + 9.45756i) q^{16} +(-4.72253 - 14.5344i) q^{17} +(4.16750 + 3.02786i) q^{18} +(-1.21885 - 1.67760i) q^{19} +13.7638i q^{21} +(4.86128 - 6.34346i) q^{22} -2.76393i q^{23} +(7.13525 + 2.31838i) q^{24} +(3.09017 + 2.24514i) q^{26} +(-21.1478 + 6.87132i) q^{27} +(-10.6861 - 32.8885i) q^{28} +(16.7082 - 22.9969i) q^{29} +(-2.20163 + 6.77591i) q^{31} -28.9402 q^{32} +(4.32650 + 14.5729i) q^{33} +11.1033 q^{34} +(19.9164 - 14.4701i) q^{36} +(23.6579 - 32.5623i) q^{37} +(1.43284 - 0.465558i) q^{38} +(-6.90983 + 2.24514i) q^{39} +(-41.2426 - 56.7656i) q^{41} +(-9.51057 - 3.09017i) q^{42} -23.0624 q^{43} +(-21.6525 - 31.4629i) q^{44} +(1.90983 + 0.620541i) q^{46} +(16.0090 + 22.0344i) q^{47} +(8.07772 - 11.1180i) q^{48} +(15.5106 + 47.7369i) q^{49} +(-12.4139 + 17.0863i) q^{51} +(14.7679 - 10.7295i) q^{52} +(-10.8981 - 3.54102i) q^{53} -16.1554i q^{54} +54.0689 q^{56} +(-0.885544 + 2.72542i) q^{57} +(12.1392 + 16.7082i) q^{58} +(-1.83688 - 1.33457i) q^{59} +(21.5066 - 6.98791i) q^{61} +(-4.18774 - 3.04257i) q^{62} +(-57.1289 + 41.5066i) q^{63} +(-5.79431 + 17.8330i) q^{64} +(-11.0410 - 0.282294i) q^{66} +38.4934i q^{67} +(16.3973 - 50.4656i) q^{68} +(-3.09017 + 2.24514i) q^{69} +(23.5836 + 72.5828i) q^{71} +(11.8945 + 36.6074i) q^{72} +(83.2237 + 60.4656i) q^{73} +(17.1885 + 23.6579i) q^{74} -7.19991i q^{76} +(62.1087 + 90.2492i) q^{77} -5.27864i q^{78} +(3.74265 + 1.21606i) q^{79} +(-26.7639 - 19.4451i) q^{81} +(48.4836 - 15.7533i) q^{82} +(25.7238 + 79.1697i) q^{83} +(-28.0902 + 38.6628i) q^{84} +(5.17783 - 15.9357i) q^{86} -39.2833 q^{87} +(57.2474 - 16.9959i) q^{88} -123.297 q^{89} +(-42.3607 + 30.7768i) q^{91} +(5.64083 - 7.76393i) q^{92} +(9.36408 - 3.04257i) q^{93} +(-18.8197 + 6.11488i) q^{94} +(23.5081 + 32.3562i) q^{96} +(73.6196 + 23.9205i) q^{97} -36.4677 q^{98} +(-47.4402 + 61.9044i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 18 q^{4} + 30 q^{6} + 22 q^{9} + 2 q^{11} + 20 q^{14} + 38 q^{16} - 50 q^{19} - 10 q^{24} - 20 q^{26} + 80 q^{29} - 116 q^{31} - 260 q^{34} + 52 q^{36} - 100 q^{39} - 160 q^{41} - 48 q^{44} + 60 q^{46}+ \cdots - 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.224514 + 0.690983i −0.112257 + 0.345492i −0.991365 0.131131i \(-0.958139\pi\)
0.879108 + 0.476623i \(0.158139\pi\)
\(3\) −0.812299 1.11803i −0.270766 0.372678i 0.651882 0.758321i \(-0.273980\pi\)
−0.922648 + 0.385643i \(0.873980\pi\)
\(4\) 2.80902 + 2.04087i 0.702254 + 0.510218i
\(5\) 0 0
\(6\) 0.954915 0.310271i 0.159153 0.0517118i
\(7\) −8.05748 5.85410i −1.15107 0.836300i −0.162446 0.986717i \(-0.551938\pi\)
−0.988623 + 0.150417i \(0.951938\pi\)
\(8\) −4.39201 + 3.19098i −0.549001 + 0.398873i
\(9\) 2.19098 6.74315i 0.243443 0.749239i
\(10\) 0 0
\(11\) −10.3713 3.66547i −0.942848 0.333224i
\(12\) 4.79837i 0.399864i
\(13\) 1.62460 5.00000i 0.124969 0.384615i −0.868926 0.494941i \(-0.835190\pi\)
0.993895 + 0.110326i \(0.0351895\pi\)
\(14\) 5.85410 4.25325i 0.418150 0.303804i
\(15\) 0 0
\(16\) 3.07295 + 9.45756i 0.192059 + 0.591098i
\(17\) −4.72253 14.5344i −0.277796 0.854967i −0.988466 0.151442i \(-0.951608\pi\)
0.710670 0.703525i \(-0.248392\pi\)
\(18\) 4.16750 + 3.02786i 0.231528 + 0.168215i
\(19\) −1.21885 1.67760i −0.0641498 0.0882947i 0.775737 0.631057i \(-0.217379\pi\)
−0.839886 + 0.542762i \(0.817379\pi\)
\(20\) 0 0
\(21\) 13.7638i 0.655420i
\(22\) 4.86128 6.34346i 0.220967 0.288339i
\(23\) 2.76393i 0.120171i −0.998193 0.0600855i \(-0.980863\pi\)
0.998193 0.0600855i \(-0.0191373\pi\)
\(24\) 7.13525 + 2.31838i 0.297302 + 0.0965994i
\(25\) 0 0
\(26\) 3.09017 + 2.24514i 0.118853 + 0.0863515i
\(27\) −21.1478 + 6.87132i −0.783250 + 0.254493i
\(28\) −10.6861 32.8885i −0.381648 1.17459i
\(29\) 16.7082 22.9969i 0.576145 0.792996i −0.417121 0.908851i \(-0.636961\pi\)
0.993266 + 0.115855i \(0.0369609\pi\)
\(30\) 0 0
\(31\) −2.20163 + 6.77591i −0.0710202 + 0.218578i −0.980266 0.197681i \(-0.936659\pi\)
0.909246 + 0.416259i \(0.136659\pi\)
\(32\) −28.9402 −0.904382
\(33\) 4.32650 + 14.5729i 0.131106 + 0.441605i
\(34\) 11.1033 0.326568
\(35\) 0 0
\(36\) 19.9164 14.4701i 0.553234 0.401948i
\(37\) 23.6579 32.5623i 0.639403 0.880062i −0.359181 0.933268i \(-0.616944\pi\)
0.998584 + 0.0532056i \(0.0169439\pi\)
\(38\) 1.43284 0.465558i 0.0377063 0.0122515i
\(39\) −6.90983 + 2.24514i −0.177175 + 0.0575677i
\(40\) 0 0
\(41\) −41.2426 56.7656i −1.00592 1.38453i −0.921623 0.388087i \(-0.873136\pi\)
−0.0842954 0.996441i \(-0.526864\pi\)
\(42\) −9.51057 3.09017i −0.226442 0.0735755i
\(43\) −23.0624 −0.536334 −0.268167 0.963372i \(-0.586418\pi\)
−0.268167 + 0.963372i \(0.586418\pi\)
\(44\) −21.6525 31.4629i −0.492102 0.715066i
\(45\) 0 0
\(46\) 1.90983 + 0.620541i 0.0415180 + 0.0134900i
\(47\) 16.0090 + 22.0344i 0.340616 + 0.468818i 0.944621 0.328163i \(-0.106429\pi\)
−0.604005 + 0.796980i \(0.706429\pi\)
\(48\) 8.07772 11.1180i 0.168286 0.231626i
\(49\) 15.5106 + 47.7369i 0.316544 + 0.974221i
\(50\) 0 0
\(51\) −12.4139 + 17.0863i −0.243410 + 0.335025i
\(52\) 14.7679 10.7295i 0.283998 0.206336i
\(53\) −10.8981 3.54102i −0.205625 0.0668117i 0.204393 0.978889i \(-0.434478\pi\)
−0.410019 + 0.912077i \(0.634478\pi\)
\(54\) 16.1554i 0.299175i
\(55\) 0 0
\(56\) 54.0689 0.965516
\(57\) −0.885544 + 2.72542i −0.0155359 + 0.0478145i
\(58\) 12.1392 + 16.7082i 0.209297 + 0.288072i
\(59\) −1.83688 1.33457i −0.0311336 0.0226199i 0.572110 0.820177i \(-0.306125\pi\)
−0.603243 + 0.797557i \(0.706125\pi\)
\(60\) 0 0
\(61\) 21.5066 6.98791i 0.352567 0.114556i −0.127379 0.991854i \(-0.540656\pi\)
0.479946 + 0.877298i \(0.340656\pi\)
\(62\) −4.18774 3.04257i −0.0675442 0.0490737i
\(63\) −57.1289 + 41.5066i −0.906808 + 0.658835i
\(64\) −5.79431 + 17.8330i −0.0905361 + 0.278641i
\(65\) 0 0
\(66\) −11.0410 0.282294i −0.167288 0.00427718i
\(67\) 38.4934i 0.574529i 0.957851 + 0.287264i \(0.0927458\pi\)
−0.957851 + 0.287264i \(0.907254\pi\)
\(68\) 16.3973 50.4656i 0.241136 0.742141i
\(69\) −3.09017 + 2.24514i −0.0447851 + 0.0325383i
\(70\) 0 0
\(71\) 23.5836 + 72.5828i 0.332163 + 1.02229i 0.968103 + 0.250554i \(0.0806129\pi\)
−0.635939 + 0.771739i \(0.719387\pi\)
\(72\) 11.8945 + 36.6074i 0.165201 + 0.508436i
\(73\) 83.2237 + 60.4656i 1.14005 + 0.828295i 0.987126 0.159943i \(-0.0511309\pi\)
0.152924 + 0.988238i \(0.451131\pi\)
\(74\) 17.1885 + 23.6579i 0.232277 + 0.319701i
\(75\) 0 0
\(76\) 7.19991i 0.0947357i
\(77\) 62.1087 + 90.2492i 0.806606 + 1.17207i
\(78\) 5.27864i 0.0676749i
\(79\) 3.74265 + 1.21606i 0.0473753 + 0.0153932i 0.332609 0.943065i \(-0.392071\pi\)
−0.285233 + 0.958458i \(0.592071\pi\)
\(80\) 0 0
\(81\) −26.7639 19.4451i −0.330419 0.240063i
\(82\) 48.4836 15.7533i 0.591264 0.192113i
\(83\) 25.7238 + 79.1697i 0.309925 + 0.953852i 0.977793 + 0.209572i \(0.0672071\pi\)
−0.667868 + 0.744280i \(0.732793\pi\)
\(84\) −28.0902 + 38.6628i −0.334407 + 0.460271i
\(85\) 0 0
\(86\) 5.17783 15.9357i 0.0602073 0.185299i
\(87\) −39.2833 −0.451533
\(88\) 57.2474 16.9959i 0.650539 0.193136i
\(89\) −123.297 −1.38536 −0.692679 0.721246i \(-0.743570\pi\)
−0.692679 + 0.721246i \(0.743570\pi\)
\(90\) 0 0
\(91\) −42.3607 + 30.7768i −0.465502 + 0.338207i
\(92\) 5.64083 7.76393i 0.0613133 0.0843906i
\(93\) 9.36408 3.04257i 0.100689 0.0327158i
\(94\) −18.8197 + 6.11488i −0.200209 + 0.0650519i
\(95\) 0 0
\(96\) 23.5081 + 32.3562i 0.244876 + 0.337043i
\(97\) 73.6196 + 23.9205i 0.758965 + 0.246603i 0.662835 0.748766i \(-0.269353\pi\)
0.0961309 + 0.995369i \(0.469353\pi\)
\(98\) −36.4677 −0.372119
\(99\) −47.4402 + 61.9044i −0.479194 + 0.625297i
\(100\) 0 0
\(101\) −107.159 34.8181i −1.06098 0.344734i −0.274012 0.961726i \(-0.588351\pi\)
−0.786969 + 0.616993i \(0.788351\pi\)
\(102\) −9.01922 12.4139i −0.0884238 0.121705i
\(103\) 54.4347 74.9230i 0.528493 0.727408i −0.458407 0.888742i \(-0.651580\pi\)
0.986900 + 0.161335i \(0.0515799\pi\)
\(104\) 8.81966 + 27.1441i 0.0848044 + 0.261001i
\(105\) 0 0
\(106\) 4.89357 6.73542i 0.0461657 0.0635417i
\(107\) −68.6273 + 49.8607i −0.641377 + 0.465988i −0.860323 0.509749i \(-0.829738\pi\)
0.218946 + 0.975737i \(0.429738\pi\)
\(108\) −73.4279 23.8582i −0.679888 0.220909i
\(109\) 94.0766i 0.863088i −0.902092 0.431544i \(-0.857969\pi\)
0.902092 0.431544i \(-0.142031\pi\)
\(110\) 0 0
\(111\) −55.6231 −0.501109
\(112\) 30.6053 94.1935i 0.273262 0.841013i
\(113\) 4.99231 + 6.87132i 0.0441797 + 0.0608082i 0.830535 0.556966i \(-0.188035\pi\)
−0.786356 + 0.617774i \(0.788035\pi\)
\(114\) −1.68441 1.22379i −0.0147755 0.0107350i
\(115\) 0 0
\(116\) 93.8673 30.4993i 0.809200 0.262925i
\(117\) −30.1563 21.9098i −0.257746 0.187264i
\(118\) 1.33457 0.969623i 0.0113099 0.00821715i
\(119\) −47.0344 + 144.757i −0.395247 + 1.21645i
\(120\) 0 0
\(121\) 94.1287 + 76.0315i 0.777923 + 0.628360i
\(122\) 16.4296i 0.134669i
\(123\) −29.9645 + 92.2214i −0.243614 + 0.749767i
\(124\) −20.0132 + 14.5404i −0.161396 + 0.117261i
\(125\) 0 0
\(126\) −15.8541 48.7939i −0.125826 0.387253i
\(127\) 58.1734 + 179.039i 0.458059 + 1.40976i 0.867506 + 0.497426i \(0.165721\pi\)
−0.409448 + 0.912334i \(0.634279\pi\)
\(128\) −104.674 76.0501i −0.817766 0.594141i
\(129\) 18.7336 + 25.7845i 0.145221 + 0.199880i
\(130\) 0 0
\(131\) 141.932i 1.08345i −0.840556 0.541725i \(-0.817771\pi\)
0.840556 0.541725i \(-0.182229\pi\)
\(132\) −17.5883 + 49.7655i −0.133245 + 0.377011i
\(133\) 20.6525i 0.155282i
\(134\) −26.5983 8.64231i −0.198495 0.0644949i
\(135\) 0 0
\(136\) 67.1205 + 48.7659i 0.493533 + 0.358573i
\(137\) 15.4617 5.02380i 0.112859 0.0366701i −0.252043 0.967716i \(-0.581102\pi\)
0.364902 + 0.931046i \(0.381102\pi\)
\(138\) −0.857567 2.63932i −0.00621425 0.0191255i
\(139\) 133.108 183.208i 0.957614 1.31804i 0.00955293 0.999954i \(-0.496959\pi\)
0.948061 0.318088i \(-0.103041\pi\)
\(140\) 0 0
\(141\) 11.6312 35.7971i 0.0824907 0.253880i
\(142\) −55.4484 −0.390481
\(143\) −35.1766 + 45.9017i −0.245990 + 0.320991i
\(144\) 70.5066 0.489629
\(145\) 0 0
\(146\) −60.4656 + 43.9308i −0.414148 + 0.300896i
\(147\) 40.7721 56.1180i 0.277361 0.381755i
\(148\) 132.911 43.1854i 0.898047 0.291793i
\(149\) 63.8967 20.7613i 0.428837 0.139338i −0.0866427 0.996239i \(-0.527614\pi\)
0.515479 + 0.856902i \(0.327614\pi\)
\(150\) 0 0
\(151\) 59.0871 + 81.3264i 0.391305 + 0.538585i 0.958535 0.284974i \(-0.0919850\pi\)
−0.567230 + 0.823559i \(0.691985\pi\)
\(152\) 10.7064 + 3.47871i 0.0704367 + 0.0228863i
\(153\) −108.355 −0.708202
\(154\) −76.3050 + 22.6538i −0.495487 + 0.147103i
\(155\) 0 0
\(156\) −23.9919 7.79543i −0.153794 0.0499707i
\(157\) −144.960 199.520i −0.923309 1.27083i −0.962413 0.271591i \(-0.912450\pi\)
0.0391033 0.999235i \(-0.487550\pi\)
\(158\) −1.68055 + 2.31308i −0.0106364 + 0.0146398i
\(159\) 4.89357 + 15.0609i 0.0307772 + 0.0947224i
\(160\) 0 0
\(161\) −16.1803 + 22.2703i −0.100499 + 0.138325i
\(162\) 19.4451 14.1277i 0.120032 0.0872081i
\(163\) 165.832 + 53.8820i 1.01737 + 0.330564i 0.769786 0.638302i \(-0.220363\pi\)
0.247586 + 0.968866i \(0.420363\pi\)
\(164\) 243.627i 1.48553i
\(165\) 0 0
\(166\) −60.4803 −0.364339
\(167\) 76.3120 234.864i 0.456958 1.40637i −0.411863 0.911246i \(-0.635122\pi\)
0.868821 0.495126i \(-0.164878\pi\)
\(168\) −43.9201 60.4508i −0.261429 0.359826i
\(169\) 114.363 + 83.0897i 0.676705 + 0.491655i
\(170\) 0 0
\(171\) −13.9828 + 4.54328i −0.0817706 + 0.0265689i
\(172\) −64.7826 47.0673i −0.376643 0.273647i
\(173\) 40.2469 29.2411i 0.232641 0.169024i −0.465357 0.885123i \(-0.654074\pi\)
0.697999 + 0.716099i \(0.254074\pi\)
\(174\) 8.81966 27.1441i 0.0506877 0.156001i
\(175\) 0 0
\(176\) 2.79586 109.351i 0.0158856 0.621314i
\(177\) 3.13777i 0.0177275i
\(178\) 27.6819 85.1960i 0.155516 0.478629i
\(179\) 177.134 128.695i 0.989574 0.718967i 0.0297461 0.999557i \(-0.490530\pi\)
0.959828 + 0.280590i \(0.0905301\pi\)
\(180\) 0 0
\(181\) 12.0213 + 36.9977i 0.0664159 + 0.204407i 0.978757 0.205024i \(-0.0657272\pi\)
−0.912341 + 0.409431i \(0.865727\pi\)
\(182\) −11.7557 36.1803i −0.0645918 0.198793i
\(183\) −25.2825 18.3688i −0.138156 0.100376i
\(184\) 8.81966 + 12.1392i 0.0479329 + 0.0659740i
\(185\) 0 0
\(186\) 7.15352i 0.0384598i
\(187\) −4.29670 + 168.052i −0.0229770 + 0.898672i
\(188\) 94.5673i 0.503018i
\(189\) 210.623 + 68.4356i 1.11441 + 0.362093i
\(190\) 0 0
\(191\) −96.9230 70.4187i −0.507450 0.368684i 0.304405 0.952543i \(-0.401542\pi\)
−0.811855 + 0.583858i \(0.801542\pi\)
\(192\) 24.6447 8.00754i 0.128358 0.0417059i
\(193\) 9.03061 + 27.7933i 0.0467907 + 0.144007i 0.971722 0.236127i \(-0.0758780\pi\)
−0.924932 + 0.380134i \(0.875878\pi\)
\(194\) −33.0573 + 45.4994i −0.170398 + 0.234533i
\(195\) 0 0
\(196\) −53.8551 + 165.749i −0.274771 + 0.845657i
\(197\) −282.037 −1.43166 −0.715830 0.698275i \(-0.753951\pi\)
−0.715830 + 0.698275i \(0.753951\pi\)
\(198\) −32.1239 46.6788i −0.162242 0.235751i
\(199\) −177.469 −0.891804 −0.445902 0.895082i \(-0.647117\pi\)
−0.445902 + 0.895082i \(0.647117\pi\)
\(200\) 0 0
\(201\) 43.0370 31.2682i 0.214114 0.155563i
\(202\) 48.1174 66.2279i 0.238205 0.327861i
\(203\) −269.252 + 87.4853i −1.32636 + 0.430962i
\(204\) −69.7417 + 22.6604i −0.341871 + 0.111081i
\(205\) 0 0
\(206\) 39.5492 + 54.4347i 0.191986 + 0.264246i
\(207\) −18.6376 6.05573i −0.0900368 0.0292547i
\(208\) 52.2801 0.251347
\(209\) 6.49187 + 21.8666i 0.0310616 + 0.104625i
\(210\) 0 0
\(211\) 93.5354 + 30.3915i 0.443296 + 0.144036i 0.522156 0.852850i \(-0.325128\pi\)
−0.0788599 + 0.996886i \(0.525128\pi\)
\(212\) −23.3863 32.1885i −0.110313 0.151832i
\(213\) 61.9931 85.3262i 0.291048 0.400593i
\(214\) −19.0451 58.6147i −0.0889957 0.273901i
\(215\) 0 0
\(216\) 70.9549 97.6611i 0.328495 0.452135i
\(217\) 57.4064 41.7082i 0.264546 0.192204i
\(218\) 65.0053 + 21.1215i 0.298190 + 0.0968876i
\(219\) 142.163i 0.649146i
\(220\) 0 0
\(221\) −80.3444 −0.363549
\(222\) 12.4882 38.4346i 0.0562529 0.173129i
\(223\) −156.366 215.220i −0.701194 0.965111i −0.999942 0.0107791i \(-0.996569\pi\)
0.298748 0.954332i \(-0.403431\pi\)
\(224\) 233.185 + 169.419i 1.04101 + 0.756335i
\(225\) 0 0
\(226\) −5.86881 + 1.90689i −0.0259682 + 0.00843758i
\(227\) −205.915 149.606i −0.907114 0.659057i 0.0331697 0.999450i \(-0.489440\pi\)
−0.940283 + 0.340393i \(0.889440\pi\)
\(228\) −8.04975 + 5.84848i −0.0353059 + 0.0256512i
\(229\) 12.4245 38.2388i 0.0542556 0.166982i −0.920257 0.391315i \(-0.872020\pi\)
0.974513 + 0.224333i \(0.0720204\pi\)
\(230\) 0 0
\(231\) 50.4508 142.749i 0.218402 0.617961i
\(232\) 154.318i 0.665164i
\(233\) 71.3649 219.639i 0.306287 0.942655i −0.672906 0.739728i \(-0.734954\pi\)
0.979194 0.202928i \(-0.0650457\pi\)
\(234\) 21.9098 15.9184i 0.0936318 0.0680275i
\(235\) 0 0
\(236\) −2.43614 7.49767i −0.0103226 0.0317698i
\(237\) −1.68055 5.17221i −0.00709094 0.0218237i
\(238\) −89.4648 65.0000i −0.375903 0.273109i
\(239\) −185.249 254.974i −0.775101 1.06684i −0.995806 0.0914947i \(-0.970836\pi\)
0.220704 0.975341i \(-0.429164\pi\)
\(240\) 0 0
\(241\) 270.933i 1.12420i 0.827069 + 0.562101i \(0.190007\pi\)
−0.827069 + 0.562101i \(0.809993\pi\)
\(242\) −73.6697 + 47.9712i −0.304420 + 0.198228i
\(243\) 245.843i 1.01170i
\(244\) 74.6738 + 24.2630i 0.306040 + 0.0994384i
\(245\) 0 0
\(246\) −56.9959 41.4100i −0.231691 0.168333i
\(247\) −10.3681 + 3.36881i −0.0419762 + 0.0136389i
\(248\) −11.9522 36.7852i −0.0481945 0.148327i
\(249\) 67.6190 93.0696i 0.271562 0.373773i
\(250\) 0 0
\(251\) 3.44080 10.5897i 0.0137084 0.0421900i −0.943968 0.330036i \(-0.892939\pi\)
0.957677 + 0.287846i \(0.0929391\pi\)
\(252\) −245.186 −0.972959
\(253\) −10.1311 + 28.6656i −0.0400439 + 0.113303i
\(254\) −136.774 −0.538480
\(255\) 0 0
\(256\) 15.3713 11.1679i 0.0600442 0.0436247i
\(257\) 237.042 326.261i 0.922344 1.26950i −0.0404281 0.999182i \(-0.512872\pi\)
0.962772 0.270315i \(-0.0871278\pi\)
\(258\) −22.0226 + 7.15558i −0.0853590 + 0.0277348i
\(259\) −381.246 + 123.874i −1.47199 + 0.478279i
\(260\) 0 0
\(261\) −118.464 163.052i −0.453885 0.624719i
\(262\) 98.0726 + 31.8657i 0.374323 + 0.121625i
\(263\) −42.6636 −0.162219 −0.0811094 0.996705i \(-0.525846\pi\)
−0.0811094 + 0.996705i \(0.525846\pi\)
\(264\) −65.5041 50.1988i −0.248121 0.190147i
\(265\) 0 0
\(266\) −14.2705 4.63677i −0.0536485 0.0174315i
\(267\) 100.154 + 137.850i 0.375108 + 0.516292i
\(268\) −78.5601 + 108.129i −0.293135 + 0.403465i
\(269\) 126.695 + 389.927i 0.470985 + 1.44954i 0.851296 + 0.524685i \(0.175817\pi\)
−0.380311 + 0.924859i \(0.624183\pi\)
\(270\) 0 0
\(271\) −136.400 + 187.739i −0.503322 + 0.692763i −0.982775 0.184804i \(-0.940835\pi\)
0.479454 + 0.877567i \(0.340835\pi\)
\(272\) 122.948 89.3272i 0.452016 0.328409i
\(273\) 68.8191 + 22.3607i 0.252085 + 0.0819073i
\(274\) 11.8117i 0.0431082i
\(275\) 0 0
\(276\) −13.2624 −0.0480521
\(277\) 94.6507 291.305i 0.341699 1.05164i −0.621628 0.783313i \(-0.713528\pi\)
0.963327 0.268330i \(-0.0864716\pi\)
\(278\) 96.7089 + 133.108i 0.347874 + 0.478807i
\(279\) 40.8673 + 29.6918i 0.146478 + 0.106422i
\(280\) 0 0
\(281\) −123.114 + 40.0022i −0.438128 + 0.142356i −0.519772 0.854305i \(-0.673983\pi\)
0.0816438 + 0.996662i \(0.473983\pi\)
\(282\) 22.1238 + 16.0739i 0.0784533 + 0.0569997i
\(283\) 341.320 247.984i 1.20608 0.876268i 0.211210 0.977441i \(-0.432260\pi\)
0.994869 + 0.101173i \(0.0322596\pi\)
\(284\) −81.8854 + 252.017i −0.288329 + 0.887385i
\(285\) 0 0
\(286\) −23.8197 34.6120i −0.0832855 0.121021i
\(287\) 698.827i 2.43494i
\(288\) −63.4076 + 195.148i −0.220165 + 0.677599i
\(289\) 44.8582 32.5914i 0.155219 0.112773i
\(290\) 0 0
\(291\) −33.0573 101.740i −0.113599 0.349621i
\(292\) 110.374 + 339.698i 0.377995 + 1.16335i
\(293\) −52.1646 37.8998i −0.178036 0.129351i 0.495198 0.868780i \(-0.335095\pi\)
−0.673234 + 0.739429i \(0.735095\pi\)
\(294\) 29.6227 + 40.7721i 0.100757 + 0.138681i
\(295\) 0 0
\(296\) 218.506i 0.738196i
\(297\) 244.517 + 6.25174i 0.823289 + 0.0210496i
\(298\) 48.8127i 0.163801i
\(299\) −13.8197 4.49028i −0.0462196 0.0150177i
\(300\) 0 0
\(301\) 185.825 + 135.010i 0.617358 + 0.448537i
\(302\) −69.4610 + 22.5693i −0.230003 + 0.0747326i
\(303\) 48.1174 + 148.090i 0.158803 + 0.488746i
\(304\) 12.1205 16.6825i 0.0398702 0.0548766i
\(305\) 0 0
\(306\) 24.3272 74.8714i 0.0795006 0.244678i
\(307\) −356.512 −1.16128 −0.580639 0.814161i \(-0.697197\pi\)
−0.580639 + 0.814161i \(0.697197\pi\)
\(308\) −9.72257 + 380.267i −0.0315668 + 1.23463i
\(309\) −127.984 −0.414187
\(310\) 0 0
\(311\) 449.177 326.346i 1.44430 1.04935i 0.457178 0.889375i \(-0.348860\pi\)
0.987122 0.159970i \(-0.0511397\pi\)
\(312\) 23.1838 31.9098i 0.0743072 0.102275i
\(313\) 315.170 102.405i 1.00693 0.327172i 0.241300 0.970451i \(-0.422426\pi\)
0.765632 + 0.643279i \(0.222426\pi\)
\(314\) 170.410 55.3696i 0.542708 0.176336i
\(315\) 0 0
\(316\) 8.03134 + 11.0542i 0.0254156 + 0.0349816i
\(317\) 491.628 + 159.740i 1.55088 + 0.503910i 0.954352 0.298685i \(-0.0965479\pi\)
0.596524 + 0.802595i \(0.296548\pi\)
\(318\) −11.5055 −0.0361807
\(319\) −257.580 + 177.265i −0.807462 + 0.555688i
\(320\) 0 0
\(321\) 111.492 + 36.2259i 0.347327 + 0.112853i
\(322\) −11.7557 16.1803i −0.0365084 0.0502495i
\(323\) −18.6269 + 25.6378i −0.0576685 + 0.0793739i
\(324\) −35.4953 109.243i −0.109554 0.337171i
\(325\) 0 0
\(326\) −74.4630 + 102.490i −0.228414 + 0.314385i
\(327\) −105.181 + 76.4183i −0.321654 + 0.233695i
\(328\) 362.276 + 117.711i 1.10450 + 0.358874i
\(329\) 271.260i 0.824499i
\(330\) 0 0
\(331\) 208.884 0.631068 0.315534 0.948914i \(-0.397816\pi\)
0.315534 + 0.948914i \(0.397816\pi\)
\(332\) −89.3165 + 274.888i −0.269026 + 0.827976i
\(333\) −167.739 230.872i −0.503719 0.693310i
\(334\) 145.154 + 105.461i 0.434593 + 0.315750i
\(335\) 0 0
\(336\) −130.172 + 42.2955i −0.387417 + 0.125880i
\(337\) 109.159 + 79.3090i 0.323915 + 0.235338i 0.737844 0.674971i \(-0.235844\pi\)
−0.413929 + 0.910309i \(0.635844\pi\)
\(338\) −83.0897 + 60.3682i −0.245828 + 0.178604i
\(339\) 3.62712 11.1631i 0.0106995 0.0329296i
\(340\) 0 0
\(341\) 47.6707 62.2051i 0.139797 0.182420i
\(342\) 10.6819i 0.0312336i
\(343\) 3.67320 11.3050i 0.0107090 0.0329590i
\(344\) 101.290 73.5917i 0.294448 0.213929i
\(345\) 0 0
\(346\) 11.1691 + 34.3750i 0.0322806 + 0.0993496i
\(347\) 29.2880 + 90.1393i 0.0844036 + 0.259767i 0.984348 0.176238i \(-0.0563928\pi\)
−0.899944 + 0.436005i \(0.856393\pi\)
\(348\) −110.348 80.1722i −0.317091 0.230380i
\(349\) 100.997 + 139.010i 0.289389 + 0.398310i 0.928816 0.370542i \(-0.120828\pi\)
−0.639426 + 0.768852i \(0.720828\pi\)
\(350\) 0 0
\(351\) 116.902i 0.333054i
\(352\) 300.149 + 106.080i 0.852695 + 0.301362i
\(353\) 119.644i 0.338936i −0.985536 0.169468i \(-0.945795\pi\)
0.985536 0.169468i \(-0.0542049\pi\)
\(354\) −2.16814 0.704473i −0.00612470 0.00199004i
\(355\) 0 0
\(356\) −346.343 251.633i −0.972873 0.706834i
\(357\) 200.049 65.0000i 0.560363 0.182073i
\(358\) 49.1572 + 151.290i 0.137311 + 0.422598i
\(359\) −274.681 + 378.066i −0.765127 + 1.05311i 0.231643 + 0.972801i \(0.425590\pi\)
−0.996770 + 0.0803065i \(0.974410\pi\)
\(360\) 0 0
\(361\) 110.226 339.242i 0.305336 0.939728i
\(362\) −28.2637 −0.0780766
\(363\) 8.54517 166.999i 0.0235404 0.460053i
\(364\) −181.803 −0.499460
\(365\) 0 0
\(366\) 18.3688 13.3457i 0.0501880 0.0364637i
\(367\) 193.279 266.026i 0.526647 0.724867i −0.459968 0.887936i \(-0.652139\pi\)
0.986615 + 0.163068i \(0.0521391\pi\)
\(368\) 26.1401 8.49342i 0.0710328 0.0230800i
\(369\) −473.141 + 153.733i −1.28223 + 0.416620i
\(370\) 0 0
\(371\) 67.0820 + 92.3305i 0.180814 + 0.248869i
\(372\) 32.5133 + 10.5642i 0.0874015 + 0.0283985i
\(373\) −214.135 −0.574088 −0.287044 0.957917i \(-0.592673\pi\)
−0.287044 + 0.957917i \(0.592673\pi\)
\(374\) −115.156 40.6989i −0.307904 0.108821i
\(375\) 0 0
\(376\) −140.623 45.6912i −0.373997 0.121519i
\(377\) −87.8402 120.902i −0.232998 0.320694i
\(378\) −94.5756 + 130.172i −0.250200 + 0.344371i
\(379\) −98.9630 304.577i −0.261116 0.803633i −0.992563 0.121734i \(-0.961154\pi\)
0.731447 0.681899i \(-0.238846\pi\)
\(380\) 0 0
\(381\) 152.918 210.474i 0.401359 0.552424i
\(382\) 70.4187 51.1622i 0.184342 0.133932i
\(383\) −520.759 169.205i −1.35968 0.441788i −0.463746 0.885968i \(-0.653495\pi\)
−0.895937 + 0.444181i \(0.853495\pi\)
\(384\) 178.805i 0.465637i
\(385\) 0 0
\(386\) −21.2322 −0.0550058
\(387\) −50.5293 + 155.513i −0.130567 + 0.401843i
\(388\) 157.980 + 217.441i 0.407166 + 0.560415i
\(389\) 272.259 + 197.808i 0.699895 + 0.508504i 0.879898 0.475162i \(-0.157611\pi\)
−0.180003 + 0.983666i \(0.557611\pi\)
\(390\) 0 0
\(391\) −40.1722 + 13.0527i −0.102742 + 0.0333830i
\(392\) −220.450 160.167i −0.562373 0.408588i
\(393\) −158.685 + 115.291i −0.403778 + 0.293362i
\(394\) 63.3212 194.883i 0.160714 0.494626i
\(395\) 0 0
\(396\) −259.599 + 77.0713i −0.655554 + 0.194624i
\(397\) 115.374i 0.290614i −0.989387 0.145307i \(-0.953583\pi\)
0.989387 0.145307i \(-0.0464170\pi\)
\(398\) 39.8443 122.628i 0.100111 0.308111i
\(399\) 23.0902 16.7760i 0.0578701 0.0420451i
\(400\) 0 0
\(401\) 19.7138 + 60.6729i 0.0491617 + 0.151304i 0.972624 0.232386i \(-0.0746532\pi\)
−0.923462 + 0.383690i \(0.874653\pi\)
\(402\) 11.9434 + 36.7579i 0.0297099 + 0.0914377i
\(403\) 30.3028 + 22.0163i 0.0751930 + 0.0546309i
\(404\) −229.952 316.502i −0.569189 0.783422i
\(405\) 0 0
\(406\) 205.690i 0.506626i
\(407\) −364.720 + 250.997i −0.896118 + 0.616700i
\(408\) 114.656i 0.281019i
\(409\) 581.745 + 189.020i 1.42236 + 0.462152i 0.916351 0.400377i \(-0.131121\pi\)
0.506008 + 0.862529i \(0.331121\pi\)
\(410\) 0 0
\(411\) −18.1763 13.2058i −0.0442245 0.0321310i
\(412\) 305.816 99.3657i 0.742272 0.241179i
\(413\) 6.98791 + 21.5066i 0.0169199 + 0.0520740i
\(414\) 8.36881 11.5187i 0.0202145 0.0278229i
\(415\) 0 0
\(416\) −47.0163 + 144.701i −0.113020 + 0.347839i
\(417\) −312.957 −0.750495
\(418\) −16.5669 0.423579i −0.0396338 0.00101335i
\(419\) −146.156 −0.348821 −0.174410 0.984673i \(-0.555802\pi\)
−0.174410 + 0.984673i \(0.555802\pi\)
\(420\) 0 0
\(421\) −480.079 + 348.798i −1.14033 + 0.828498i −0.987165 0.159702i \(-0.948947\pi\)
−0.153165 + 0.988201i \(0.548947\pi\)
\(422\) −42.0000 + 57.8081i −0.0995261 + 0.136986i
\(423\) 183.657 59.6738i 0.434177 0.141073i
\(424\) 59.1641 19.2236i 0.139538 0.0453386i
\(425\) 0 0
\(426\) 45.0407 + 61.9931i 0.105729 + 0.145524i
\(427\) −214.197 69.5967i −0.501632 0.162990i
\(428\) −294.535 −0.688165
\(429\) 79.8936 + 2.04270i 0.186232 + 0.00476153i
\(430\) 0 0
\(431\) 165.807 + 53.8738i 0.384702 + 0.124997i 0.494982 0.868903i \(-0.335175\pi\)
−0.110280 + 0.993901i \(0.535175\pi\)
\(432\) −129.972 178.891i −0.300861 0.414100i
\(433\) 364.804 502.109i 0.842503 1.15961i −0.142962 0.989728i \(-0.545663\pi\)
0.985465 0.169878i \(-0.0543373\pi\)
\(434\) 15.9311 + 49.0309i 0.0367076 + 0.112975i
\(435\) 0 0
\(436\) 191.998 264.263i 0.440363 0.606107i
\(437\) −4.63677 + 3.36881i −0.0106105 + 0.00770895i
\(438\) 98.2323 + 31.9176i 0.224275 + 0.0728712i
\(439\) 676.778i 1.54164i −0.637055 0.770818i \(-0.719848\pi\)
0.637055 0.770818i \(-0.280152\pi\)
\(440\) 0 0
\(441\) 355.880 0.806985
\(442\) 18.0384 55.5166i 0.0408110 0.125603i
\(443\) 152.417 + 209.784i 0.344056 + 0.473552i 0.945621 0.325272i \(-0.105456\pi\)
−0.601565 + 0.798824i \(0.705456\pi\)
\(444\) −156.246 113.519i −0.351906 0.255674i
\(445\) 0 0
\(446\) 183.820 59.7266i 0.412152 0.133916i
\(447\) −75.1150 54.5743i −0.168043 0.122090i
\(448\) 151.084 109.769i 0.337241 0.245020i
\(449\) −124.349 + 382.707i −0.276947 + 0.852354i 0.711751 + 0.702432i \(0.247902\pi\)
−0.988698 + 0.149923i \(0.952098\pi\)
\(450\) 0 0
\(451\) 219.668 + 739.908i 0.487069 + 1.64059i
\(452\) 29.4903i 0.0652441i
\(453\) 42.9293 132.123i 0.0947666 0.291662i
\(454\) 149.606 108.695i 0.329528 0.239416i
\(455\) 0 0
\(456\) −4.80746 14.7959i −0.0105427 0.0324470i
\(457\) −79.0234 243.209i −0.172918 0.532186i 0.826614 0.562769i \(-0.190264\pi\)
−0.999532 + 0.0305823i \(0.990264\pi\)
\(458\) 23.6329 + 17.1703i 0.0516002 + 0.0374897i
\(459\) 199.742 + 274.921i 0.435167 + 0.598956i
\(460\) 0 0
\(461\) 446.274i 0.968056i −0.875053 0.484028i \(-0.839173\pi\)
0.875053 0.484028i \(-0.160827\pi\)
\(462\) 87.3102 + 66.9098i 0.188983 + 0.144826i
\(463\) 73.1308i 0.157950i 0.996877 + 0.0789750i \(0.0251647\pi\)
−0.996877 + 0.0789750i \(0.974835\pi\)
\(464\) 268.838 + 87.3507i 0.579392 + 0.188256i
\(465\) 0 0
\(466\) 135.744 + 98.6239i 0.291297 + 0.211639i
\(467\) 10.5706 3.43459i 0.0226351 0.00735458i −0.297678 0.954666i \(-0.596212\pi\)
0.320313 + 0.947312i \(0.396212\pi\)
\(468\) −39.9944 123.090i −0.0854582 0.263013i
\(469\) 225.344 310.160i 0.480479 0.661322i
\(470\) 0 0
\(471\) −105.319 + 324.139i −0.223608 + 0.688194i
\(472\) 12.3262 0.0261148
\(473\) 239.187 + 84.5344i 0.505682 + 0.178720i
\(474\) 3.95122 0.00833590
\(475\) 0 0
\(476\) −427.551 + 310.634i −0.898217 + 0.652593i
\(477\) −47.7553 + 65.7295i −0.100116 + 0.137798i
\(478\) 217.774 70.7589i 0.455593 0.148031i
\(479\) 545.546 177.259i 1.13893 0.370060i 0.321965 0.946752i \(-0.395657\pi\)
0.816962 + 0.576692i \(0.195657\pi\)
\(480\) 0 0
\(481\) −124.377 171.190i −0.258580 0.355905i
\(482\) −187.210 60.8282i −0.388402 0.126199i
\(483\) 38.0423 0.0787624
\(484\) 109.239 + 405.678i 0.225700 + 0.838178i
\(485\) 0 0
\(486\) −169.873 55.1952i −0.349533 0.113570i
\(487\) −370.800 510.363i −0.761397 1.04797i −0.997097 0.0761466i \(-0.975738\pi\)
0.235700 0.971826i \(-0.424262\pi\)
\(488\) −72.1588 + 99.3181i −0.147866 + 0.203521i
\(489\) −74.4630 229.174i −0.152276 0.468658i
\(490\) 0 0
\(491\) −256.297 + 352.763i −0.521990 + 0.718458i −0.985883 0.167433i \(-0.946452\pi\)
0.463893 + 0.885891i \(0.346452\pi\)
\(492\) −272.383 + 197.898i −0.553623 + 0.402231i
\(493\) −413.152 134.241i −0.838036 0.272294i
\(494\) 7.92055i 0.0160335i
\(495\) 0 0
\(496\) −70.8491 −0.142841
\(497\) 234.883 722.895i 0.472602 1.45452i
\(498\) 49.1281 + 67.6190i 0.0986508 + 0.135781i
\(499\) −376.446 273.504i −0.754401 0.548105i 0.142787 0.989753i \(-0.454394\pi\)
−0.897188 + 0.441649i \(0.854394\pi\)
\(500\) 0 0
\(501\) −324.574 + 105.461i −0.647853 + 0.210500i
\(502\) 6.54479 + 4.75507i 0.0130374 + 0.00947225i
\(503\) −371.704 + 270.059i −0.738974 + 0.536896i −0.892390 0.451265i \(-0.850973\pi\)
0.153415 + 0.988162i \(0.450973\pi\)
\(504\) 118.464 364.595i 0.235048 0.723402i
\(505\) 0 0
\(506\) −17.5329 13.4363i −0.0346500 0.0265539i
\(507\) 195.356i 0.385317i
\(508\) −201.986 + 621.649i −0.397610 + 1.22372i
\(509\) −194.705 + 141.462i −0.382525 + 0.277920i −0.762385 0.647123i \(-0.775972\pi\)
0.379861 + 0.925044i \(0.375972\pi\)
\(510\) 0 0
\(511\) −316.602 974.400i −0.619573 1.90685i
\(512\) −155.662 479.078i −0.304027 0.935699i
\(513\) 37.3032 + 27.1024i 0.0727158 + 0.0528311i
\(514\) 172.221 + 237.042i 0.335061 + 0.461172i
\(515\) 0 0
\(516\) 110.662i 0.214461i
\(517\) −85.2675 287.207i −0.164928 0.555525i
\(518\) 291.246i 0.562251i
\(519\) −65.3851 21.2449i −0.125983 0.0409343i
\(520\) 0 0
\(521\) 564.504 + 410.136i 1.08350 + 0.787210i 0.978290 0.207240i \(-0.0664480\pi\)
0.105212 + 0.994450i \(0.466448\pi\)
\(522\) 139.263 45.2492i 0.266787 0.0866843i
\(523\) −114.868 353.526i −0.219632 0.675959i −0.998792 0.0491334i \(-0.984354\pi\)
0.779160 0.626825i \(-0.215646\pi\)
\(524\) 289.665 398.689i 0.552795 0.760857i
\(525\) 0 0
\(526\) 9.57857 29.4798i 0.0182102 0.0560452i
\(527\) 108.881 0.206606
\(528\) −124.529 + 85.7001i −0.235851 + 0.162311i
\(529\) 521.361 0.985559
\(530\) 0 0
\(531\) −13.0238 + 9.46234i −0.0245269 + 0.0178199i
\(532\) −42.1490 + 58.0132i −0.0792275 + 0.109047i
\(533\) −350.831 + 113.992i −0.658219 + 0.213868i
\(534\) −117.738 + 38.2554i −0.220483 + 0.0716393i
\(535\) 0 0
\(536\) −122.832 169.064i −0.229164 0.315417i
\(537\) −287.771 93.5025i −0.535887 0.174120i
\(538\) −297.878 −0.553676
\(539\) 14.1120 551.948i 0.0261819 1.02402i
\(540\) 0 0
\(541\) −64.3657 20.9137i −0.118975 0.0386575i 0.248924 0.968523i \(-0.419923\pi\)
−0.367900 + 0.929866i \(0.619923\pi\)
\(542\) −99.1005 136.400i −0.182842 0.251661i
\(543\) 31.5998 43.4934i 0.0581949 0.0800984i
\(544\) 136.671 + 420.630i 0.251233 + 0.773217i
\(545\) 0 0
\(546\) −30.9017 + 42.5325i −0.0565965 + 0.0778984i
\(547\) −600.625 + 436.380i −1.09804 + 0.797769i −0.980738 0.195328i \(-0.937423\pi\)
−0.117297 + 0.993097i \(0.537423\pi\)
\(548\) 53.6850 + 17.4433i 0.0979653 + 0.0318309i
\(549\) 160.333i 0.292045i
\(550\) 0 0
\(551\) −58.9443 −0.106977
\(552\) 6.40786 19.7214i 0.0116084 0.0357271i
\(553\) −23.0374 31.7082i −0.0416589 0.0573385i
\(554\) 180.036 + 130.804i 0.324975 + 0.236108i
\(555\) 0 0
\(556\) 747.807 242.977i 1.34498 0.437010i
\(557\) 607.429 + 441.323i 1.09054 + 0.792322i 0.979490 0.201494i \(-0.0645795\pi\)
0.111047 + 0.993815i \(0.464579\pi\)
\(558\) −29.6918 + 21.5724i −0.0532111 + 0.0386601i
\(559\) −37.4671 + 115.312i −0.0670252 + 0.206282i
\(560\) 0 0
\(561\) 191.378 131.704i 0.341137 0.234767i
\(562\) 94.0507i 0.167350i
\(563\) 322.214 991.673i 0.572316 1.76141i −0.0728240 0.997345i \(-0.523201\pi\)
0.645140 0.764064i \(-0.276799\pi\)
\(564\) 105.729 76.8170i 0.187464 0.136200i
\(565\) 0 0
\(566\) 94.7214 + 291.522i 0.167352 + 0.515057i
\(567\) 101.816 + 313.358i 0.179570 + 0.552659i
\(568\) −335.190 243.530i −0.590123 0.428750i
\(569\) 136.967 + 188.518i 0.240714 + 0.331315i 0.912232 0.409673i \(-0.134357\pi\)
−0.671518 + 0.740988i \(0.734357\pi\)
\(570\) 0 0
\(571\) 196.324i 0.343825i −0.985112 0.171912i \(-0.945005\pi\)
0.985112 0.171912i \(-0.0549946\pi\)
\(572\) −192.491 + 57.1478i −0.336523 + 0.0999088i
\(573\) 165.564i 0.288943i
\(574\) −482.877 156.896i −0.841250 0.273339i
\(575\) 0 0
\(576\) 107.556 + 78.1438i 0.186729 + 0.135666i
\(577\) 135.382 43.9884i 0.234631 0.0762364i −0.189341 0.981911i \(-0.560635\pi\)
0.423973 + 0.905675i \(0.360635\pi\)
\(578\) 12.4488 + 38.3134i 0.0215377 + 0.0662862i
\(579\) 23.7384 32.6730i 0.0409989 0.0564301i
\(580\) 0 0
\(581\) 256.199 788.498i 0.440961 1.35714i
\(582\) 77.7223 0.133544
\(583\) 100.049 + 76.6718i 0.171610 + 0.131513i
\(584\) −558.464 −0.956274
\(585\) 0 0
\(586\) 37.8998 27.5358i 0.0646754 0.0469894i
\(587\) 140.838 193.847i 0.239929 0.330233i −0.672024 0.740530i \(-0.734575\pi\)
0.911952 + 0.410296i \(0.134575\pi\)
\(588\) 229.059 74.4259i 0.389557 0.126575i
\(589\) 14.0507 4.56535i 0.0238552 0.00775102i
\(590\) 0 0
\(591\) 229.098 + 315.327i 0.387645 + 0.533548i
\(592\) 380.660 + 123.684i 0.643006 + 0.208925i
\(593\) 598.782 1.00975 0.504875 0.863192i \(-0.331538\pi\)
0.504875 + 0.863192i \(0.331538\pi\)
\(594\) −59.2173 + 167.553i −0.0996924 + 0.282076i
\(595\) 0 0
\(596\) 221.858 + 72.0860i 0.372245 + 0.120950i
\(597\) 144.158 + 198.416i 0.241471 + 0.332356i
\(598\) 6.20541 8.54102i 0.0103769 0.0142826i
\(599\) −93.8359 288.797i −0.156654 0.482132i 0.841670 0.539992i \(-0.181573\pi\)
−0.998325 + 0.0578592i \(0.981573\pi\)
\(600\) 0 0
\(601\) −107.416 + 147.845i −0.178729 + 0.245999i −0.888977 0.457953i \(-0.848583\pi\)
0.710248 + 0.703952i \(0.248583\pi\)
\(602\) −135.010 + 98.0902i −0.224268 + 0.162940i
\(603\) 259.567 + 84.3384i 0.430459 + 0.139865i
\(604\) 349.036i 0.577874i
\(605\) 0 0
\(606\) −113.131 −0.186685
\(607\) −249.940 + 769.237i −0.411763 + 1.26728i 0.503351 + 0.864082i \(0.332100\pi\)
−0.915114 + 0.403195i \(0.867900\pi\)
\(608\) 35.2737 + 48.5501i 0.0580160 + 0.0798522i
\(609\) 316.525 + 229.969i 0.519745 + 0.377617i
\(610\) 0 0
\(611\) 136.180 44.2477i 0.222881 0.0724185i
\(612\) −304.371 221.138i −0.497338 0.361337i
\(613\) −965.666 + 701.597i −1.57531 + 1.14453i −0.653478 + 0.756946i \(0.726691\pi\)
−0.921834 + 0.387585i \(0.873309\pi\)
\(614\) 80.0420 246.344i 0.130362 0.401212i
\(615\) 0 0
\(616\) −560.766 198.188i −0.910334 0.321733i
\(617\) 107.900i 0.174878i −0.996170 0.0874390i \(-0.972132\pi\)
0.996170 0.0874390i \(-0.0278683\pi\)
\(618\) 28.7341 88.4346i 0.0464954 0.143098i
\(619\) −457.719 + 332.552i −0.739449 + 0.537241i −0.892539 0.450971i \(-0.851078\pi\)
0.153089 + 0.988212i \(0.451078\pi\)
\(620\) 0 0
\(621\) 18.9919 + 58.4510i 0.0305827 + 0.0941239i
\(622\) 124.653 + 383.643i 0.200407 + 0.616790i
\(623\) 993.462 + 721.792i 1.59464 + 1.15857i
\(624\) −42.4671 58.4510i −0.0680563 0.0936714i
\(625\) 0 0
\(626\) 240.768i 0.384614i
\(627\) 19.1742 25.0203i 0.0305809 0.0399048i
\(628\) 856.298i 1.36353i
\(629\) −585.000 190.078i −0.930048 0.302191i
\(630\) 0 0
\(631\) −558.872 406.044i −0.885693 0.643494i 0.0490585 0.998796i \(-0.484378\pi\)
−0.934751 + 0.355302i \(0.884378\pi\)
\(632\) −20.3182 + 6.60177i −0.0321490 + 0.0104458i
\(633\) −42.0000 129.263i −0.0663507 0.204207i
\(634\) −220.755 + 303.843i −0.348193 + 0.479247i
\(635\) 0 0
\(636\) −16.9911 + 52.2933i −0.0267156 + 0.0822222i
\(637\) 263.883 0.414259
\(638\) −64.6564 217.782i −0.101342 0.341351i
\(639\) 541.108 0.846805
\(640\) 0 0
\(641\) −624.756 + 453.912i −0.974659 + 0.708131i −0.956509 0.291704i \(-0.905778\pi\)
−0.0181501 + 0.999835i \(0.505778\pi\)
\(642\) −50.0630 + 68.9058i −0.0779797 + 0.107330i
\(643\) −898.264 + 291.864i −1.39699 + 0.453909i −0.908216 0.418502i \(-0.862555\pi\)
−0.488773 + 0.872411i \(0.662555\pi\)
\(644\) −90.9017 + 29.5358i −0.141152 + 0.0458630i
\(645\) 0 0
\(646\) −13.5333 18.6269i −0.0209493 0.0288343i
\(647\) 927.614 + 301.400i 1.43372 + 0.465843i 0.919932 0.392077i \(-0.128243\pi\)
0.513784 + 0.857920i \(0.328243\pi\)
\(648\) 179.597 0.277155
\(649\) 14.1591 + 20.5743i 0.0218167 + 0.0317016i
\(650\) 0 0
\(651\) −93.2624 30.3028i −0.143260 0.0465481i
\(652\) 355.858 + 489.796i 0.545794 + 0.751221i
\(653\) 141.396 194.615i 0.216533 0.298032i −0.686908 0.726744i \(-0.741033\pi\)
0.903441 + 0.428712i \(0.141033\pi\)
\(654\) −29.1892 89.8351i −0.0446318 0.137363i
\(655\) 0 0
\(656\) 410.128 564.493i 0.625195 0.860507i
\(657\) 590.070 428.711i 0.898128 0.652528i
\(658\) 187.436 + 60.9017i 0.284857 + 0.0925558i
\(659\) 937.713i 1.42293i 0.702720 + 0.711467i \(0.251969\pi\)
−0.702720 + 0.711467i \(0.748031\pi\)
\(660\) 0 0
\(661\) 133.305 0.201672 0.100836 0.994903i \(-0.467848\pi\)
0.100836 + 0.994903i \(0.467848\pi\)
\(662\) −46.8973 + 144.335i −0.0708418 + 0.218029i
\(663\) 65.2637 + 89.8278i 0.0984370 + 0.135487i
\(664\) −365.608 265.630i −0.550615 0.400045i
\(665\) 0 0
\(666\) 197.188 64.0704i 0.296079 0.0962018i
\(667\) −63.5618 46.1803i −0.0952950 0.0692359i
\(668\) 693.689 503.995i 1.03846 0.754483i
\(669\) −113.607 + 349.646i −0.169816 + 0.522639i
\(670\) 0 0
\(671\) −248.666 6.35781i −0.370590 0.00947513i
\(672\) 398.328i 0.592750i
\(673\) −279.506 + 860.230i −0.415313 + 1.27820i 0.496657 + 0.867947i \(0.334561\pi\)
−0.911971 + 0.410256i \(0.865439\pi\)
\(674\) −79.3090 + 57.6214i −0.117669 + 0.0854917i
\(675\) 0 0
\(676\) 151.673 + 466.801i 0.224368 + 0.690534i
\(677\) −186.763 574.798i −0.275869 0.849037i −0.988988 0.147995i \(-0.952718\pi\)
0.713119 0.701043i \(-0.247282\pi\)
\(678\) 6.89920 + 5.01256i 0.0101758 + 0.00739316i
\(679\) −453.156 623.716i −0.667387 0.918580i
\(680\) 0 0
\(681\) 351.744i 0.516512i
\(682\) 32.2800 + 46.9055i 0.0473313 + 0.0687764i
\(683\) 1261.32i 1.84673i 0.383919 + 0.923367i \(0.374574\pi\)
−0.383919 + 0.923367i \(0.625426\pi\)
\(684\) −48.5501 15.7749i −0.0709797 0.0230627i
\(685\) 0 0
\(686\) 6.98684 + 5.07624i 0.0101849 + 0.00739977i
\(687\) −52.8447 + 17.1703i −0.0769210 + 0.0249931i
\(688\) −70.8695 218.114i −0.103008 0.317026i
\(689\) −35.4102 + 48.7380i −0.0513936 + 0.0707372i
\(690\) 0 0
\(691\) −132.915 + 409.071i −0.192352 + 0.591999i 0.807645 + 0.589669i \(0.200742\pi\)
−0.999997 + 0.00232993i \(0.999258\pi\)
\(692\) 172.732 0.249612
\(693\) 744.643 221.074i 1.07452 0.319010i
\(694\) −68.8603 −0.0992224
\(695\) 0 0
\(696\) 172.533 125.352i 0.247892 0.180104i
\(697\) −630.287 + 867.516i −0.904286 + 1.24464i
\(698\) −118.729 + 38.5774i −0.170099 + 0.0552685i
\(699\) −303.533 + 98.6239i −0.434239 + 0.141093i
\(700\) 0 0
\(701\) −299.098 411.673i −0.426674 0.587266i 0.540512 0.841336i \(-0.318231\pi\)
−0.967186 + 0.254070i \(0.918231\pi\)
\(702\) −80.7772 26.2461i −0.115067 0.0373876i
\(703\) −83.4619 −0.118722
\(704\) 125.461 163.713i 0.178212 0.232548i
\(705\) 0 0
\(706\) 82.6722 + 26.8618i 0.117099 + 0.0380479i
\(707\) 659.603 + 907.866i 0.932961 + 1.28411i
\(708\) −6.40378 + 8.81404i −0.00904488 + 0.0124492i
\(709\) 227.956 + 701.577i 0.321518 + 0.989531i 0.972988 + 0.230856i \(0.0741527\pi\)
−0.651470 + 0.758674i \(0.725847\pi\)
\(710\) 0 0
\(711\) 16.4001 22.5729i 0.0230663 0.0317481i
\(712\) 541.521 393.438i 0.760563 0.552582i
\(713\) 18.7282 + 6.08514i 0.0262667 + 0.00853457i
\(714\) 152.824i 0.214039i
\(715\) 0 0
\(716\) 760.222 1.06176
\(717\) −134.591 + 414.230i −0.187715 + 0.577726i
\(718\) −199.567 274.681i −0.277949 0.382564i
\(719\) −425.782 309.349i −0.592187 0.430249i 0.250910 0.968010i \(-0.419270\pi\)
−0.843097 + 0.537762i \(0.819270\pi\)
\(720\) 0 0
\(721\) −877.214 + 285.024i −1.21666 + 0.395318i
\(722\) 209.663 + 152.329i 0.290392 + 0.210982i
\(723\) 302.912 220.078i 0.418965 0.304396i
\(724\) −41.7395 + 128.461i −0.0576513 + 0.177432i
\(725\) 0 0
\(726\) 113.475 + 43.3983i 0.156302 + 0.0597772i
\(727\) 756.122i 1.04006i 0.854149 + 0.520029i \(0.174079\pi\)
−0.854149 + 0.520029i \(0.825921\pi\)
\(728\) 87.8402 270.344i 0.120660 0.371352i
\(729\) 33.9853 24.6918i 0.0466191 0.0338707i
\(730\) 0 0
\(731\) 108.913 + 335.199i 0.148991 + 0.458548i
\(732\) −33.5306 103.197i −0.0458068 0.140979i
\(733\) 344.620 + 250.381i 0.470149 + 0.341584i 0.797500 0.603320i \(-0.206156\pi\)
−0.327350 + 0.944903i \(0.606156\pi\)
\(734\) 140.426 + 193.279i 0.191316 + 0.263323i
\(735\) 0 0
\(736\) 79.9888i 0.108680i
\(737\) 141.096 399.228i 0.191447 0.541693i
\(738\) 361.448i 0.489767i
\(739\) −184.618 59.9862i −0.249822 0.0811721i 0.181429 0.983404i \(-0.441928\pi\)
−0.431251 + 0.902232i \(0.641928\pi\)
\(740\) 0 0
\(741\) 12.1885 + 8.85544i 0.0164487 + 0.0119507i
\(742\) −78.8597 + 25.6231i −0.106280 + 0.0345324i
\(743\) 68.7477 + 211.584i 0.0925272 + 0.284769i 0.986601 0.163150i \(-0.0521653\pi\)
−0.894074 + 0.447919i \(0.852165\pi\)
\(744\) −31.4183 + 43.2436i −0.0422289 + 0.0581231i
\(745\) 0 0
\(746\) 48.0763 147.964i 0.0644454 0.198343i
\(747\) 590.214 0.790112
\(748\) −355.041 + 463.291i −0.474654 + 0.619373i
\(749\) 844.853 1.12797
\(750\) 0 0
\(751\) 1186.49 862.033i 1.57987 1.14785i 0.663037 0.748587i \(-0.269267\pi\)
0.916838 0.399260i \(-0.130733\pi\)
\(752\) −159.197 + 219.116i −0.211699 + 0.291378i
\(753\) −14.6346 + 4.75507i −0.0194351 + 0.00631483i
\(754\) 103.262 33.5520i 0.136953 0.0444986i
\(755\) 0 0
\(756\) 451.976 + 622.091i 0.597851 + 0.822872i
\(757\) −1264.41 410.832i −1.67029 0.542710i −0.687301 0.726373i \(-0.741205\pi\)
−0.982989 + 0.183663i \(0.941205\pi\)
\(758\) 232.676 0.306961
\(759\) 40.2786 11.9581i 0.0530680 0.0157551i
\(760\) 0 0
\(761\) 654.725 + 212.733i 0.860348 + 0.279544i 0.705774 0.708437i \(-0.250599\pi\)
0.154574 + 0.987981i \(0.450599\pi\)
\(762\) 111.101 + 152.918i 0.145802 + 0.200680i
\(763\) −550.734 + 758.020i −0.721801 + 0.993473i
\(764\) −128.543 395.614i −0.168250 0.517820i
\(765\) 0 0
\(766\) 233.835 321.847i 0.305268 0.420165i
\(767\) −9.65706 + 7.01626i −0.0125907 + 0.00914767i
\(768\) −24.9722 8.11397i −0.0325159 0.0105651i
\(769\) 695.838i 0.904860i 0.891800 + 0.452430i \(0.149443\pi\)
−0.891800 + 0.452430i \(0.850557\pi\)
\(770\) 0 0
\(771\) −557.320 −0.722853
\(772\) −31.3555 + 96.5023i −0.0406159 + 0.125003i
\(773\) −48.7939 67.1591i −0.0631228 0.0868811i 0.776288 0.630378i \(-0.217100\pi\)
−0.839411 + 0.543497i \(0.817100\pi\)
\(774\) −96.1124 69.8298i −0.124176 0.0902193i
\(775\) 0 0
\(776\) −399.668 + 129.860i −0.515036 + 0.167345i
\(777\) 448.182 + 325.623i 0.576810 + 0.419077i
\(778\) −197.808 + 143.716i −0.254252 + 0.184725i
\(779\) −44.9615 + 138.377i −0.0577169 + 0.177634i
\(780\) 0 0
\(781\) 21.4571 839.225i 0.0274738 1.07455i
\(782\) 30.6888i 0.0392440i
\(783\) −195.322 + 601.140i −0.249454 + 0.767739i
\(784\) −403.811 + 293.386i −0.515065 + 0.374217i
\(785\) 0 0
\(786\) −44.0373 135.533i −0.0560271 0.172434i
\(787\) −33.5185 103.159i −0.0425903 0.131079i 0.927500 0.373822i \(-0.121953\pi\)
−0.970091 + 0.242743i \(0.921953\pi\)
\(788\) −792.246 575.601i −1.00539 0.730458i
\(789\) 34.6556 + 47.6993i 0.0439234 + 0.0604554i
\(790\) 0 0
\(791\) 84.5910i 0.106942i
\(792\) 10.8219 423.266i 0.0136641 0.534427i
\(793\) 118.885i 0.149919i
\(794\) 79.7214 + 25.9030i 0.100405 + 0.0326235i
\(795\) 0 0
\(796\) −498.514 362.191i −0.626273 0.455014i
\(797\) −949.759 + 308.596i −1.19167 + 0.387196i −0.836689 0.547678i \(-0.815512\pi\)
−0.354979 + 0.934874i \(0.615512\pi\)
\(798\) 6.40786 + 19.7214i 0.00802990 + 0.0247135i
\(799\) 244.656 336.740i 0.306202 0.421451i
\(800\) 0 0
\(801\) −270.141 + 831.409i −0.337255 + 1.03796i
\(802\) −46.3500 −0.0577930
\(803\) −641.505 932.162i −0.798886 1.16085i
\(804\) 184.706 0.229734
\(805\) 0 0
\(806\) −22.0163 + 15.9958i −0.0273155 + 0.0198458i
\(807\) 333.038 458.387i 0.412686 0.568014i
\(808\) 581.748 189.021i 0.719985 0.233937i
\(809\) −71.6823 + 23.2910i −0.0886060 + 0.0287898i −0.352985 0.935629i \(-0.614833\pi\)
0.264379 + 0.964419i \(0.414833\pi\)
\(810\) 0 0
\(811\) −583.402 802.984i −0.719361 0.990115i −0.999545 0.0301690i \(-0.990395\pi\)
0.280184 0.959946i \(-0.409605\pi\)
\(812\) −934.880 303.761i −1.15133 0.374090i
\(813\) 320.696 0.394460
\(814\) −91.5499 308.368i −0.112469 0.378830i
\(815\) 0 0
\(816\) −199.742 64.9000i −0.244781 0.0795343i
\(817\) 28.1095 + 38.6894i 0.0344058 + 0.0473555i
\(818\) −261.220 + 359.538i −0.319339 + 0.439533i
\(819\) 114.721 + 353.076i 0.140075 + 0.431106i
\(820\) 0 0
\(821\) −733.079 + 1009.00i −0.892910 + 1.22898i 0.0797652 + 0.996814i \(0.474583\pi\)
−0.972675 + 0.232171i \(0.925417\pi\)
\(822\) 13.2058 9.59460i 0.0160655 0.0116723i
\(823\) −508.800 165.319i −0.618227 0.200874i −0.0168738 0.999858i \(-0.505371\pi\)
−0.601353 + 0.798984i \(0.705371\pi\)
\(824\) 502.763i 0.610149i
\(825\) 0 0
\(826\) −16.4296 −0.0198905
\(827\) 17.3822 53.4969i 0.0210184 0.0646879i −0.939997 0.341182i \(-0.889173\pi\)
0.961016 + 0.276494i \(0.0891727\pi\)
\(828\) −39.9944 55.0476i −0.0483024 0.0664826i
\(829\) −660.320 479.751i −0.796526 0.578710i 0.113367 0.993553i \(-0.463836\pi\)
−0.909893 + 0.414843i \(0.863836\pi\)
\(830\) 0 0
\(831\) −402.574 + 130.804i −0.484445 + 0.157406i
\(832\) 79.7518 + 57.9431i 0.0958555 + 0.0696431i
\(833\) 620.579 450.877i 0.744993 0.541269i
\(834\) 70.2631 216.248i 0.0842483 0.259290i
\(835\) 0 0
\(836\) −26.3911 + 74.6726i −0.0315682 + 0.0893213i
\(837\) 158.423i 0.189275i
\(838\) 32.8141 100.991i 0.0391576 0.120515i
\(839\) 49.8216 36.1975i 0.0593821 0.0431436i −0.557698 0.830044i \(-0.688315\pi\)
0.617080 + 0.786900i \(0.288315\pi\)
\(840\) 0 0
\(841\) 10.1913 + 31.3657i 0.0121181 + 0.0372958i
\(842\) −133.229 410.036i −0.158229 0.486979i
\(843\) 144.729 + 105.152i 0.171683 + 0.124735i
\(844\) 200.717 + 276.264i 0.237817 + 0.327327i
\(845\) 0 0
\(846\) 140.301i 0.165841i
\(847\) −313.344 1163.66i −0.369945 1.37386i
\(848\) 113.951i 0.134376i
\(849\) −554.508 180.171i −0.653131 0.212215i
\(850\) 0 0
\(851\) −90.0000 65.3888i −0.105758 0.0768376i
\(852\) 348.280 113.163i 0.408779 0.132820i
\(853\) 437.746 + 1347.24i 0.513184 + 1.57942i 0.786562 + 0.617511i \(0.211859\pi\)
−0.273379 + 0.961907i \(0.588141\pi\)
\(854\) 96.1803 132.381i 0.112623 0.155013i
\(855\) 0 0
\(856\) 142.307 437.977i 0.166247 0.511656i
\(857\) 1249.64 1.45815 0.729077 0.684432i \(-0.239950\pi\)
0.729077 + 0.684432i \(0.239950\pi\)
\(858\) −19.3487 + 54.7465i −0.0225509 + 0.0638071i
\(859\) 345.229 0.401896 0.200948 0.979602i \(-0.435598\pi\)
0.200948 + 0.979602i \(0.435598\pi\)
\(860\) 0 0
\(861\) 781.312 567.656i 0.907447 0.659299i
\(862\) −74.4518 + 102.474i −0.0863710 + 0.118879i
\(863\) 385.456 125.242i 0.446647 0.145124i −0.0770535 0.997027i \(-0.524551\pi\)
0.523700 + 0.851903i \(0.324551\pi\)
\(864\) 612.021 198.858i 0.708358 0.230159i
\(865\) 0 0
\(866\) 265.045 + 364.804i 0.306057 + 0.421251i
\(867\) −72.8765 23.6790i −0.0840560 0.0273114i
\(868\) 246.377 0.283844
\(869\) −34.3588 26.3307i −0.0395383 0.0303000i
\(870\) 0 0
\(871\) 192.467 + 62.5364i 0.220973 + 0.0717983i
\(872\) 300.197 + 413.185i 0.344262 + 0.473836i
\(873\) 322.599 444.019i 0.369529 0.508613i
\(874\) −1.28677 3.96027i −0.00147228 0.00453121i
\(875\) 0 0
\(876\) 290.136 399.338i 0.331206 0.455866i
\(877\) 287.759 209.069i 0.328117 0.238391i −0.411514 0.911403i \(-0.635000\pi\)
0.739631 + 0.673012i \(0.235000\pi\)
\(878\) 467.642 + 151.946i 0.532622 + 0.173059i
\(879\) 89.1077i 0.101374i
\(880\) 0 0
\(881\) −883.370 −1.00269 −0.501345 0.865248i \(-0.667161\pi\)
−0.501345 + 0.865248i \(0.667161\pi\)
\(882\) −79.9001 + 245.907i −0.0905897 + 0.278806i
\(883\) −490.062 674.512i −0.554996 0.763887i 0.435683 0.900100i \(-0.356507\pi\)
−0.990680 + 0.136213i \(0.956507\pi\)
\(884\) −225.689 163.973i −0.255304 0.185489i
\(885\) 0 0
\(886\) −179.177 + 58.2180i −0.202231 + 0.0657088i
\(887\) −74.7934 54.3406i −0.0843217 0.0612633i 0.544826 0.838549i \(-0.316596\pi\)
−0.629147 + 0.777286i \(0.716596\pi\)
\(888\) 244.297 177.492i 0.275109 0.199879i
\(889\) 579.384 1783.16i 0.651725 2.00580i
\(890\) 0 0
\(891\) 206.302 + 299.774i 0.231540 + 0.336447i
\(892\) 923.680i 1.03552i
\(893\) 17.4525 53.7132i 0.0195437 0.0601492i
\(894\) 54.5743 39.6505i 0.0610451 0.0443518i
\(895\) 0 0
\(896\) 398.204 + 1225.54i 0.444424 + 1.36780i
\(897\) 6.20541 + 19.0983i 0.00691796 + 0.0212913i
\(898\) −236.526 171.846i −0.263392 0.191365i
\(899\) 119.039 + 163.844i 0.132413 + 0.182251i
\(900\) 0 0
\(901\) 175.121i 0.194363i
\(902\) −560.583 14.3328i −0.621489 0.0158900i
\(903\) 317.426i 0.351524i
\(904\) −43.8525 14.2486i −0.0485095 0.0157617i
\(905\) 0 0
\(906\) 81.6563 + 59.3268i 0.0901284 + 0.0654821i
\(907\) −1399.68 + 454.784i −1.54320 + 0.501415i −0.952256 0.305299i \(-0.901243\pi\)
−0.590941 + 0.806715i \(0.701243\pi\)
\(908\) −273.092 840.491i −0.300762 0.925651i
\(909\) −469.567 + 646.304i −0.516576 + 0.711005i
\(910\) 0 0
\(911\) 54.3525 167.280i 0.0596625 0.183622i −0.916783 0.399385i \(-0.869224\pi\)
0.976446 + 0.215763i \(0.0692237\pi\)
\(912\) −28.4971 −0.0312468
\(913\) 23.4043 915.384i 0.0256345 1.00261i
\(914\) 185.795 0.203277
\(915\) 0 0
\(916\) 112.941 82.0566i 0.123298 0.0895814i
\(917\) −830.884 + 1143.61i −0.906089 + 1.24713i
\(918\) −234.810 + 76.2945i −0.255785 + 0.0831095i
\(919\) 1636.12 531.609i 1.78033 0.578465i 0.781371 0.624066i \(-0.214521\pi\)
0.998960 + 0.0456019i \(0.0145206\pi\)
\(920\) 0 0
\(921\) 289.595 + 398.593i 0.314435 + 0.432783i
\(922\) 308.368 + 100.195i 0.334455 + 0.108671i
\(923\) 401.228 0.434700
\(924\) 433.050 298.021i 0.468668 0.322533i
\(925\) 0 0
\(926\) −50.5322 16.4189i −0.0545704 0.0177310i
\(927\) −385.952 531.217i −0.416345 0.573049i
\(928\) −483.539 + 665.535i −0.521055 + 0.717171i
\(929\) −288.957 889.317i −0.311040 0.957284i −0.977354 0.211612i \(-0.932129\pi\)
0.666313 0.745672i \(-0.267871\pi\)
\(930\) 0 0
\(931\) 61.1782 84.2046i 0.0657123 0.0904453i
\(932\) 648.720 471.322i 0.696051 0.505711i
\(933\) −729.733 237.105i −0.782136 0.254131i
\(934\) 8.07520i 0.00864583i
\(935\) 0 0
\(936\) 202.361 0.216197
\(937\) −277.333 + 853.544i −0.295980 + 0.910933i 0.686910 + 0.726742i \(0.258967\pi\)
−0.982890 + 0.184191i \(0.941033\pi\)
\(938\) 163.722 + 225.344i 0.174544 + 0.240239i
\(939\) −370.504 269.187i −0.394573 0.286674i
\(940\) 0 0
\(941\) 437.800 142.250i 0.465250 0.151169i −0.0670056 0.997753i \(-0.521345\pi\)
0.532256 + 0.846584i \(0.321345\pi\)
\(942\) −200.329 145.548i −0.212664 0.154509i
\(943\) −156.896 + 113.992i −0.166380 + 0.120882i
\(944\) 6.97716 21.4735i 0.00739106 0.0227473i
\(945\) 0 0
\(946\) −112.113 + 146.295i −0.118512 + 0.154646i
\(947\) 1781.44i 1.88114i −0.339600 0.940570i \(-0.610292\pi\)
0.339600 0.940570i \(-0.389708\pi\)
\(948\) 5.83511 17.9586i 0.00615518 0.0189437i
\(949\) 437.533 317.886i 0.461046 0.334970i
\(950\) 0 0
\(951\) −220.755 679.413i −0.232129 0.714419i
\(952\) −255.342 785.861i −0.268216 0.825484i
\(953\) 650.194 + 472.394i 0.682260 + 0.495691i 0.874107 0.485734i \(-0.161448\pi\)
−0.191847 + 0.981425i \(0.561448\pi\)
\(954\) −34.6962 47.7553i −0.0363692 0.0500579i
\(955\) 0 0
\(956\) 1094.30i 1.14466i
\(957\) 407.420 + 143.992i 0.425726 + 0.150462i
\(958\) 416.760i 0.435031i
\(959\) −153.992 50.0350i −0.160575 0.0521741i
\(960\) 0 0
\(961\) 736.400 + 535.026i 0.766285 + 0.556738i
\(962\) 146.214 47.5078i 0.151989 0.0493844i
\(963\) 185.857 + 572.008i 0.192998 + 0.593986i
\(964\) −552.938 + 761.054i −0.573587 + 0.789475i
\(965\) 0 0
\(966\) −8.54102 + 26.2866i −0.00884164 + 0.0272118i
\(967\) 915.454 0.946695 0.473347 0.880876i \(-0.343046\pi\)
0.473347 + 0.880876i \(0.343046\pi\)
\(968\) −656.030 33.5683i −0.677716 0.0346780i
\(969\) 43.7945 0.0451956
\(970\) 0 0
\(971\) −596.366 + 433.285i −0.614177 + 0.446226i −0.850883 0.525356i \(-0.823932\pi\)
0.236706 + 0.971581i \(0.423932\pi\)
\(972\) −501.733 + 690.577i −0.516187 + 0.710470i
\(973\) −2145.04 + 696.964i −2.20456 + 0.716305i
\(974\) 435.902 141.633i 0.447538 0.145414i
\(975\) 0 0
\(976\) 132.177 + 181.926i 0.135427 + 0.186400i
\(977\) −181.942 59.1165i −0.186225 0.0605082i 0.214420 0.976742i \(-0.431214\pi\)
−0.400645 + 0.916233i \(0.631214\pi\)
\(978\) 175.073 0.179011
\(979\) 1278.75 + 451.941i 1.30618 + 0.461635i
\(980\) 0 0
\(981\) −634.373 206.120i −0.646659 0.210112i
\(982\) −186.211 256.297i −0.189624 0.260995i
\(983\) 561.257 772.503i 0.570963 0.785863i −0.421705 0.906733i \(-0.638568\pi\)
0.992668 + 0.120870i \(0.0385683\pi\)
\(984\) −162.672 500.654i −0.165317 0.508794i
\(985\) 0 0
\(986\) 185.517 255.342i 0.188151 0.258967i
\(987\) −303.278 + 220.344i −0.307273 + 0.223247i
\(988\) −35.9996 11.6970i −0.0364368 0.0118390i
\(989\) 63.7429i 0.0644518i
\(990\) 0 0
\(991\) −1076.02 −1.08580 −0.542898 0.839799i \(-0.682673\pi\)
−0.542898 + 0.839799i \(0.682673\pi\)
\(992\) 63.7156 196.096i 0.0642294 0.197678i
\(993\) −169.676 233.539i −0.170872 0.235185i
\(994\) 446.774 + 324.600i 0.449471 + 0.326560i
\(995\) 0 0
\(996\) 379.886 123.432i 0.381411 0.123928i
\(997\) −390.120 283.439i −0.391294 0.284292i 0.374692 0.927150i \(-0.377749\pi\)
−0.765986 + 0.642858i \(0.777749\pi\)
\(998\) 273.504 198.712i 0.274052 0.199111i
\(999\) −276.565 + 851.181i −0.276842 + 0.852033i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.q.d.24.1 8
5.2 odd 4 11.3.d.a.2.1 4
5.3 odd 4 275.3.x.e.101.1 4
5.4 even 2 inner 275.3.q.d.24.2 8
11.6 odd 10 inner 275.3.q.d.149.2 8
15.2 even 4 99.3.k.a.46.1 4
20.7 even 4 176.3.n.a.145.1 4
55.2 even 20 121.3.d.c.118.1 4
55.7 even 20 121.3.b.b.120.3 4
55.17 even 20 11.3.d.a.6.1 yes 4
55.27 odd 20 121.3.d.d.94.1 4
55.28 even 20 275.3.x.e.226.1 4
55.32 even 4 121.3.d.d.112.1 4
55.37 odd 20 121.3.b.b.120.2 4
55.39 odd 10 inner 275.3.q.d.149.1 8
55.42 odd 20 121.3.d.a.118.1 4
55.47 odd 20 121.3.d.c.40.1 4
55.52 even 20 121.3.d.a.40.1 4
165.17 odd 20 99.3.k.a.28.1 4
165.62 odd 20 1089.3.c.e.604.2 4
165.92 even 20 1089.3.c.e.604.3 4
220.127 odd 20 176.3.n.a.17.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.3.d.a.2.1 4 5.2 odd 4
11.3.d.a.6.1 yes 4 55.17 even 20
99.3.k.a.28.1 4 165.17 odd 20
99.3.k.a.46.1 4 15.2 even 4
121.3.b.b.120.2 4 55.37 odd 20
121.3.b.b.120.3 4 55.7 even 20
121.3.d.a.40.1 4 55.52 even 20
121.3.d.a.118.1 4 55.42 odd 20
121.3.d.c.40.1 4 55.47 odd 20
121.3.d.c.118.1 4 55.2 even 20
121.3.d.d.94.1 4 55.27 odd 20
121.3.d.d.112.1 4 55.32 even 4
176.3.n.a.17.1 4 220.127 odd 20
176.3.n.a.145.1 4 20.7 even 4
275.3.q.d.24.1 8 1.1 even 1 trivial
275.3.q.d.24.2 8 5.4 even 2 inner
275.3.q.d.149.1 8 55.39 odd 10 inner
275.3.q.d.149.2 8 11.6 odd 10 inner
275.3.x.e.101.1 4 5.3 odd 4
275.3.x.e.226.1 4 55.28 even 20
1089.3.c.e.604.2 4 165.62 odd 20
1089.3.c.e.604.3 4 165.92 even 20