Properties

Label 99.3.k.a.28.1
Level $99$
Weight $3$
Character 99.28
Analytic conductor $2.698$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [99,3,Mod(19,99)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(99, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("99.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 99.k (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,5,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.69755461717\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 28.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 99.28
Dual form 99.3.k.a.46.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.690983 - 0.224514i) q^{2} +(-2.80902 + 2.04087i) q^{4} +(-1.23607 + 3.80423i) q^{5} +(5.85410 + 8.05748i) q^{7} +(-3.19098 + 4.39201i) q^{8} +2.90617i q^{10} +(10.3713 - 3.66547i) q^{11} +(-5.00000 + 1.62460i) q^{13} +(5.85410 + 4.25325i) q^{14} +(3.07295 - 9.45756i) q^{16} +(-14.5344 - 4.72253i) q^{17} +(1.21885 - 1.67760i) q^{19} +(-4.29180 - 13.2088i) q^{20} +(6.34346 - 4.86128i) q^{22} +2.76393 q^{23} +(7.28115 + 5.29007i) q^{25} +(-3.09017 + 2.24514i) q^{26} +(-32.8885 - 10.6861i) q^{28} +(16.7082 + 22.9969i) q^{29} +(-2.20163 - 6.77591i) q^{31} -28.9402i q^{32} -11.1033 q^{34} +(-37.8885 + 12.3107i) q^{35} +(32.5623 - 23.6579i) q^{37} +(0.465558 - 1.43284i) q^{38} +(-12.7639 - 17.5680i) q^{40} +(41.2426 - 56.7656i) q^{41} -23.0624i q^{43} +(-21.6525 + 31.4629i) q^{44} +(1.90983 - 0.620541i) q^{46} +(22.0344 + 16.0090i) q^{47} +(-15.5106 + 47.7369i) q^{49} +(6.21885 + 2.02063i) q^{50} +(10.7295 - 14.7679i) q^{52} +(3.54102 + 10.8981i) q^{53} +(1.12461 + 43.9856i) q^{55} -54.0689 q^{56} +(16.7082 + 12.1392i) q^{58} +(-1.83688 + 1.33457i) q^{59} +(21.5066 + 6.98791i) q^{61} +(-3.04257 - 4.18774i) q^{62} +(5.79431 + 17.8330i) q^{64} -21.0292i q^{65} -38.4934 q^{67} +(50.4656 - 16.3973i) q^{68} +(-23.4164 + 17.0130i) q^{70} +(-23.5836 + 72.5828i) q^{71} +(60.4656 + 83.2237i) q^{73} +(17.1885 - 23.6579i) q^{74} +7.19991i q^{76} +(90.2492 + 62.1087i) q^{77} +(-3.74265 + 1.21606i) q^{79} +(32.1803 + 23.3804i) q^{80} +(15.7533 - 48.4836i) q^{82} +(-79.1697 - 25.7238i) q^{83} +(35.9311 - 49.4549i) q^{85} +(-5.17783 - 15.9357i) q^{86} +(-16.9959 + 57.2474i) q^{88} -123.297 q^{89} +(-42.3607 - 30.7768i) q^{91} +(-7.76393 + 5.64083i) q^{92} +(18.8197 + 6.11488i) q^{94} +(4.87539 + 6.71040i) q^{95} +(-23.9205 - 73.6196i) q^{97} +36.4677i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 9 q^{4} + 4 q^{5} + 10 q^{7} - 15 q^{8} - q^{11} - 20 q^{13} + 10 q^{14} + 19 q^{16} + 25 q^{19} - 44 q^{20} - 35 q^{22} + 20 q^{23} + 9 q^{25} + 10 q^{26} - 60 q^{28} + 40 q^{29} - 58 q^{31}+ \cdots - 165 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.690983 0.224514i 0.345492 0.112257i −0.131131 0.991365i \(-0.541861\pi\)
0.476623 + 0.879108i \(0.341861\pi\)
\(3\) 0 0
\(4\) −2.80902 + 2.04087i −0.702254 + 0.510218i
\(5\) −1.23607 + 3.80423i −0.247214 + 0.760845i 0.748051 + 0.663641i \(0.230990\pi\)
−0.995264 + 0.0972039i \(0.969010\pi\)
\(6\) 0 0
\(7\) 5.85410 + 8.05748i 0.836300 + 1.15107i 0.986717 + 0.162446i \(0.0519383\pi\)
−0.150417 + 0.988623i \(0.548062\pi\)
\(8\) −3.19098 + 4.39201i −0.398873 + 0.549001i
\(9\) 0 0
\(10\) 2.90617i 0.290617i
\(11\) 10.3713 3.66547i 0.942848 0.333224i
\(12\) 0 0
\(13\) −5.00000 + 1.62460i −0.384615 + 0.124969i −0.494941 0.868926i \(-0.664810\pi\)
0.110326 + 0.993895i \(0.464810\pi\)
\(14\) 5.85410 + 4.25325i 0.418150 + 0.303804i
\(15\) 0 0
\(16\) 3.07295 9.45756i 0.192059 0.591098i
\(17\) −14.5344 4.72253i −0.854967 0.277796i −0.151442 0.988466i \(-0.548392\pi\)
−0.703525 + 0.710670i \(0.748392\pi\)
\(18\) 0 0
\(19\) 1.21885 1.67760i 0.0641498 0.0882947i −0.775737 0.631057i \(-0.782621\pi\)
0.839886 + 0.542762i \(0.182621\pi\)
\(20\) −4.29180 13.2088i −0.214590 0.660440i
\(21\) 0 0
\(22\) 6.34346 4.86128i 0.288339 0.220967i
\(23\) 2.76393 0.120171 0.0600855 0.998193i \(-0.480863\pi\)
0.0600855 + 0.998193i \(0.480863\pi\)
\(24\) 0 0
\(25\) 7.28115 + 5.29007i 0.291246 + 0.211603i
\(26\) −3.09017 + 2.24514i −0.118853 + 0.0863515i
\(27\) 0 0
\(28\) −32.8885 10.6861i −1.17459 0.381648i
\(29\) 16.7082 + 22.9969i 0.576145 + 0.792996i 0.993266 0.115855i \(-0.0369609\pi\)
−0.417121 + 0.908851i \(0.636961\pi\)
\(30\) 0 0
\(31\) −2.20163 6.77591i −0.0710202 0.218578i 0.909246 0.416259i \(-0.136659\pi\)
−0.980266 + 0.197681i \(0.936659\pi\)
\(32\) 28.9402i 0.904382i
\(33\) 0 0
\(34\) −11.1033 −0.326568
\(35\) −37.8885 + 12.3107i −1.08253 + 0.351735i
\(36\) 0 0
\(37\) 32.5623 23.6579i 0.880062 0.639403i −0.0532056 0.998584i \(-0.516944\pi\)
0.933268 + 0.359181i \(0.116944\pi\)
\(38\) 0.465558 1.43284i 0.0122515 0.0377063i
\(39\) 0 0
\(40\) −12.7639 17.5680i −0.319098 0.439201i
\(41\) 41.2426 56.7656i 1.00592 1.38453i 0.0842954 0.996441i \(-0.473136\pi\)
0.921623 0.388087i \(-0.126864\pi\)
\(42\) 0 0
\(43\) 23.0624i 0.536334i −0.963372 0.268167i \(-0.913582\pi\)
0.963372 0.268167i \(-0.0864180\pi\)
\(44\) −21.6525 + 31.4629i −0.492102 + 0.715066i
\(45\) 0 0
\(46\) 1.90983 0.620541i 0.0415180 0.0134900i
\(47\) 22.0344 + 16.0090i 0.468818 + 0.340616i 0.796980 0.604005i \(-0.206429\pi\)
−0.328163 + 0.944621i \(0.606429\pi\)
\(48\) 0 0
\(49\) −15.5106 + 47.7369i −0.316544 + 0.974221i
\(50\) 6.21885 + 2.02063i 0.124377 + 0.0404125i
\(51\) 0 0
\(52\) 10.7295 14.7679i 0.206336 0.283998i
\(53\) 3.54102 + 10.8981i 0.0668117 + 0.205625i 0.978889 0.204393i \(-0.0655222\pi\)
−0.912077 + 0.410019i \(0.865522\pi\)
\(54\) 0 0
\(55\) 1.12461 + 43.9856i 0.0204475 + 0.799739i
\(56\) −54.0689 −0.965516
\(57\) 0 0
\(58\) 16.7082 + 12.1392i 0.288072 + 0.209297i
\(59\) −1.83688 + 1.33457i −0.0311336 + 0.0226199i −0.603243 0.797557i \(-0.706125\pi\)
0.572110 + 0.820177i \(0.306125\pi\)
\(60\) 0 0
\(61\) 21.5066 + 6.98791i 0.352567 + 0.114556i 0.479946 0.877298i \(-0.340656\pi\)
−0.127379 + 0.991854i \(0.540656\pi\)
\(62\) −3.04257 4.18774i −0.0490737 0.0675442i
\(63\) 0 0
\(64\) 5.79431 + 17.8330i 0.0905361 + 0.278641i
\(65\) 21.0292i 0.323527i
\(66\) 0 0
\(67\) −38.4934 −0.574529 −0.287264 0.957851i \(-0.592746\pi\)
−0.287264 + 0.957851i \(0.592746\pi\)
\(68\) 50.4656 16.3973i 0.742141 0.241136i
\(69\) 0 0
\(70\) −23.4164 + 17.0130i −0.334520 + 0.243043i
\(71\) −23.5836 + 72.5828i −0.332163 + 1.02229i 0.635939 + 0.771739i \(0.280613\pi\)
−0.968103 + 0.250554i \(0.919387\pi\)
\(72\) 0 0
\(73\) 60.4656 + 83.2237i 0.828295 + 1.14005i 0.988238 + 0.152924i \(0.0488691\pi\)
−0.159943 + 0.987126i \(0.551131\pi\)
\(74\) 17.1885 23.6579i 0.232277 0.319701i
\(75\) 0 0
\(76\) 7.19991i 0.0947357i
\(77\) 90.2492 + 62.1087i 1.17207 + 0.806606i
\(78\) 0 0
\(79\) −3.74265 + 1.21606i −0.0473753 + 0.0153932i −0.332609 0.943065i \(-0.607929\pi\)
0.285233 + 0.958458i \(0.407929\pi\)
\(80\) 32.1803 + 23.3804i 0.402254 + 0.292255i
\(81\) 0 0
\(82\) 15.7533 48.4836i 0.192113 0.591264i
\(83\) −79.1697 25.7238i −0.953852 0.309925i −0.209572 0.977793i \(-0.567207\pi\)
−0.744280 + 0.667868i \(0.767207\pi\)
\(84\) 0 0
\(85\) 35.9311 49.4549i 0.422719 0.581823i
\(86\) −5.17783 15.9357i −0.0602073 0.185299i
\(87\) 0 0
\(88\) −16.9959 + 57.2474i −0.193136 + 0.650539i
\(89\) −123.297 −1.38536 −0.692679 0.721246i \(-0.743570\pi\)
−0.692679 + 0.721246i \(0.743570\pi\)
\(90\) 0 0
\(91\) −42.3607 30.7768i −0.465502 0.338207i
\(92\) −7.76393 + 5.64083i −0.0843906 + 0.0613133i
\(93\) 0 0
\(94\) 18.8197 + 6.11488i 0.200209 + 0.0650519i
\(95\) 4.87539 + 6.71040i 0.0513199 + 0.0706357i
\(96\) 0 0
\(97\) −23.9205 73.6196i −0.246603 0.758965i −0.995369 0.0961309i \(-0.969353\pi\)
0.748766 0.662835i \(-0.230647\pi\)
\(98\) 36.4677i 0.372119i
\(99\) 0 0
\(100\) −31.2492 −0.312492
\(101\) 107.159 34.8181i 1.06098 0.344734i 0.274012 0.961726i \(-0.411649\pi\)
0.786969 + 0.616993i \(0.211649\pi\)
\(102\) 0 0
\(103\) −74.9230 + 54.4347i −0.727408 + 0.528493i −0.888742 0.458407i \(-0.848420\pi\)
0.161335 + 0.986900i \(0.448420\pi\)
\(104\) 8.81966 27.1441i 0.0848044 0.261001i
\(105\) 0 0
\(106\) 4.89357 + 6.73542i 0.0461657 + 0.0635417i
\(107\) 49.8607 68.6273i 0.465988 0.641377i −0.509749 0.860323i \(-0.670262\pi\)
0.975737 + 0.218946i \(0.0702619\pi\)
\(108\) 0 0
\(109\) 94.0766i 0.863088i −0.902092 0.431544i \(-0.857969\pi\)
0.902092 0.431544i \(-0.142031\pi\)
\(110\) 10.6525 + 30.1408i 0.0968407 + 0.274008i
\(111\) 0 0
\(112\) 94.1935 30.6053i 0.841013 0.273262i
\(113\) −6.87132 4.99231i −0.0608082 0.0441797i 0.556966 0.830535i \(-0.311965\pi\)
−0.617774 + 0.786356i \(0.711965\pi\)
\(114\) 0 0
\(115\) −3.41641 + 10.5146i −0.0297079 + 0.0914315i
\(116\) −93.8673 30.4993i −0.809200 0.262925i
\(117\) 0 0
\(118\) −0.969623 + 1.33457i −0.00821715 + 0.0113099i
\(119\) −47.0344 144.757i −0.395247 1.21645i
\(120\) 0 0
\(121\) 94.1287 76.0315i 0.777923 0.628360i
\(122\) 16.4296 0.134669
\(123\) 0 0
\(124\) 20.0132 + 14.5404i 0.161396 + 0.117261i
\(125\) −110.026 + 79.9388i −0.880210 + 0.639510i
\(126\) 0 0
\(127\) −179.039 58.1734i −1.40976 0.458059i −0.497426 0.867506i \(-0.665721\pi\)
−0.912334 + 0.409448i \(0.865721\pi\)
\(128\) 76.0501 + 104.674i 0.594141 + 0.817766i
\(129\) 0 0
\(130\) −4.72136 14.5309i −0.0363182 0.111776i
\(131\) 141.932i 1.08345i −0.840556 0.541725i \(-0.817771\pi\)
0.840556 0.541725i \(-0.182229\pi\)
\(132\) 0 0
\(133\) 20.6525 0.155282
\(134\) −26.5983 + 8.64231i −0.198495 + 0.0644949i
\(135\) 0 0
\(136\) 67.1205 48.7659i 0.493533 0.358573i
\(137\) −5.02380 + 15.4617i −0.0366701 + 0.112859i −0.967716 0.252043i \(-0.918898\pi\)
0.931046 + 0.364902i \(0.118898\pi\)
\(138\) 0 0
\(139\) −133.108 183.208i −0.957614 1.31804i −0.948061 0.318088i \(-0.896959\pi\)
−0.00955293 0.999954i \(-0.503041\pi\)
\(140\) 81.3050 111.907i 0.580750 0.799333i
\(141\) 0 0
\(142\) 55.4484i 0.390481i
\(143\) −45.9017 + 35.1766i −0.320991 + 0.245990i
\(144\) 0 0
\(145\) −108.138 + 35.1361i −0.745778 + 0.242318i
\(146\) 60.4656 + 43.9308i 0.414148 + 0.300896i
\(147\) 0 0
\(148\) −43.1854 + 132.911i −0.291793 + 0.898047i
\(149\) 63.8967 + 20.7613i 0.428837 + 0.139338i 0.515479 0.856902i \(-0.327614\pi\)
−0.0866427 + 0.996239i \(0.527614\pi\)
\(150\) 0 0
\(151\) 59.0871 81.3264i 0.391305 0.538585i −0.567230 0.823559i \(-0.691985\pi\)
0.958535 + 0.284974i \(0.0919850\pi\)
\(152\) 3.47871 + 10.7064i 0.0228863 + 0.0704367i
\(153\) 0 0
\(154\) 76.3050 + 22.6538i 0.495487 + 0.147103i
\(155\) 28.4984 0.183861
\(156\) 0 0
\(157\) 199.520 + 144.960i 1.27083 + 0.923309i 0.999235 0.0391033i \(-0.0124502\pi\)
0.271591 + 0.962413i \(0.412450\pi\)
\(158\) −2.31308 + 1.68055i −0.0146398 + 0.0106364i
\(159\) 0 0
\(160\) 110.095 + 35.7721i 0.688095 + 0.223576i
\(161\) 16.1803 + 22.2703i 0.100499 + 0.138325i
\(162\) 0 0
\(163\) 53.8820 + 165.832i 0.330564 + 1.01737i 0.968866 + 0.247586i \(0.0796372\pi\)
−0.638302 + 0.769786i \(0.720363\pi\)
\(164\) 243.627i 1.48553i
\(165\) 0 0
\(166\) −60.4803 −0.364339
\(167\) −234.864 + 76.3120i −1.40637 + 0.456958i −0.911246 0.411863i \(-0.864878\pi\)
−0.495126 + 0.868821i \(0.664878\pi\)
\(168\) 0 0
\(169\) −114.363 + 83.0897i −0.676705 + 0.491655i
\(170\) 13.7245 42.2396i 0.0807321 0.248468i
\(171\) 0 0
\(172\) 47.0673 + 64.7826i 0.273647 + 0.376643i
\(173\) 29.2411 40.2469i 0.169024 0.232641i −0.716099 0.697999i \(-0.754074\pi\)
0.885123 + 0.465357i \(0.154074\pi\)
\(174\) 0 0
\(175\) 89.6363i 0.512208i
\(176\) −2.79586 109.351i −0.0158856 0.621314i
\(177\) 0 0
\(178\) −85.1960 + 27.6819i −0.478629 + 0.155516i
\(179\) 177.134 + 128.695i 0.989574 + 0.718967i 0.959828 0.280590i \(-0.0905301\pi\)
0.0297461 + 0.999557i \(0.490530\pi\)
\(180\) 0 0
\(181\) 12.0213 36.9977i 0.0664159 0.204407i −0.912341 0.409431i \(-0.865727\pi\)
0.978757 + 0.205024i \(0.0657272\pi\)
\(182\) −36.1803 11.7557i −0.198793 0.0645918i
\(183\) 0 0
\(184\) −8.81966 + 12.1392i −0.0479329 + 0.0659740i
\(185\) 49.7508 + 153.117i 0.268923 + 0.827660i
\(186\) 0 0
\(187\) −168.052 + 4.29670i −0.898672 + 0.0229770i
\(188\) −94.5673 −0.503018
\(189\) 0 0
\(190\) 4.87539 + 3.54218i 0.0256599 + 0.0186430i
\(191\) 96.9230 70.4187i 0.507450 0.368684i −0.304405 0.952543i \(-0.598458\pi\)
0.811855 + 0.583858i \(0.198458\pi\)
\(192\) 0 0
\(193\) 27.7933 + 9.03061i 0.144007 + 0.0467907i 0.380134 0.924932i \(-0.375878\pi\)
−0.236127 + 0.971722i \(0.575878\pi\)
\(194\) −33.0573 45.4994i −0.170398 0.234533i
\(195\) 0 0
\(196\) −53.8551 165.749i −0.274771 0.845657i
\(197\) 282.037i 1.43166i −0.698275 0.715830i \(-0.746049\pi\)
0.698275 0.715830i \(-0.253951\pi\)
\(198\) 0 0
\(199\) 177.469 0.891804 0.445902 0.895082i \(-0.352883\pi\)
0.445902 + 0.895082i \(0.352883\pi\)
\(200\) −46.4681 + 15.0984i −0.232340 + 0.0754920i
\(201\) 0 0
\(202\) 66.2279 48.1174i 0.327861 0.238205i
\(203\) −87.4853 + 269.252i −0.430962 + 1.32636i
\(204\) 0 0
\(205\) 164.971 + 227.063i 0.804735 + 1.10762i
\(206\) −39.5492 + 54.4347i −0.191986 + 0.264246i
\(207\) 0 0
\(208\) 52.2801i 0.251347i
\(209\) 6.49187 21.8666i 0.0310616 0.104625i
\(210\) 0 0
\(211\) 93.5354 30.3915i 0.443296 0.144036i −0.0788599 0.996886i \(-0.525128\pi\)
0.522156 + 0.852850i \(0.325128\pi\)
\(212\) −32.1885 23.3863i −0.151832 0.110313i
\(213\) 0 0
\(214\) 19.0451 58.6147i 0.0889957 0.273901i
\(215\) 87.7345 + 28.5067i 0.408068 + 0.132589i
\(216\) 0 0
\(217\) 41.7082 57.4064i 0.192204 0.264546i
\(218\) −21.1215 65.0053i −0.0968876 0.298190i
\(219\) 0 0
\(220\) −92.9280 121.261i −0.422400 0.551187i
\(221\) 80.3444 0.363549
\(222\) 0 0
\(223\) −215.220 156.366i −0.965111 0.701194i −0.0107791 0.999942i \(-0.503431\pi\)
−0.954332 + 0.298748i \(0.903431\pi\)
\(224\) 233.185 169.419i 1.04101 0.756335i
\(225\) 0 0
\(226\) −5.86881 1.90689i −0.0259682 0.00843758i
\(227\) −149.606 205.915i −0.659057 0.907114i 0.340393 0.940283i \(-0.389440\pi\)
−0.999450 + 0.0331697i \(0.989440\pi\)
\(228\) 0 0
\(229\) −12.4245 38.2388i −0.0542556 0.166982i 0.920257 0.391315i \(-0.127980\pi\)
−0.974513 + 0.224333i \(0.927980\pi\)
\(230\) 8.03246i 0.0349237i
\(231\) 0 0
\(232\) −154.318 −0.665164
\(233\) 219.639 71.3649i 0.942655 0.306287i 0.202928 0.979194i \(-0.434954\pi\)
0.739728 + 0.672906i \(0.234954\pi\)
\(234\) 0 0
\(235\) −88.1378 + 64.0358i −0.375054 + 0.272493i
\(236\) 2.43614 7.49767i 0.0103226 0.0317698i
\(237\) 0 0
\(238\) −65.0000 89.4648i −0.273109 0.375903i
\(239\) −185.249 + 254.974i −0.775101 + 1.06684i 0.220704 + 0.975341i \(0.429164\pi\)
−0.995806 + 0.0914947i \(0.970836\pi\)
\(240\) 0 0
\(241\) 270.933i 1.12420i −0.827069 0.562101i \(-0.809993\pi\)
0.827069 0.562101i \(-0.190007\pi\)
\(242\) 47.9712 73.6697i 0.198228 0.304420i
\(243\) 0 0
\(244\) −74.6738 + 24.2630i −0.306040 + 0.0994384i
\(245\) −162.430 118.012i −0.662978 0.481682i
\(246\) 0 0
\(247\) −3.36881 + 10.3681i −0.0136389 + 0.0419762i
\(248\) 36.7852 + 11.9522i 0.148327 + 0.0481945i
\(249\) 0 0
\(250\) −58.0789 + 79.9388i −0.232316 + 0.319755i
\(251\) −3.44080 10.5897i −0.0137084 0.0421900i 0.943968 0.330036i \(-0.107061\pi\)
−0.957677 + 0.287846i \(0.907061\pi\)
\(252\) 0 0
\(253\) 28.6656 10.1311i 0.113303 0.0400439i
\(254\) −136.774 −0.538480
\(255\) 0 0
\(256\) 15.3713 + 11.1679i 0.0600442 + 0.0436247i
\(257\) −326.261 + 237.042i −1.26950 + 0.922344i −0.999182 0.0404281i \(-0.987128\pi\)
−0.270315 + 0.962772i \(0.587128\pi\)
\(258\) 0 0
\(259\) 381.246 + 123.874i 1.47199 + 0.478279i
\(260\) 42.9180 + 59.0715i 0.165069 + 0.227198i
\(261\) 0 0
\(262\) −31.8657 98.0726i −0.121625 0.374323i
\(263\) 42.6636i 0.162219i 0.996705 + 0.0811094i \(0.0258463\pi\)
−0.996705 + 0.0811094i \(0.974154\pi\)
\(264\) 0 0
\(265\) −45.8359 −0.172966
\(266\) 14.2705 4.63677i 0.0536485 0.0174315i
\(267\) 0 0
\(268\) 108.129 78.5601i 0.403465 0.293135i
\(269\) 126.695 389.927i 0.470985 1.44954i −0.380311 0.924859i \(-0.624183\pi\)
0.851296 0.524685i \(-0.175817\pi\)
\(270\) 0 0
\(271\) −136.400 187.739i −0.503322 0.692763i 0.479454 0.877567i \(-0.340835\pi\)
−0.982775 + 0.184804i \(0.940835\pi\)
\(272\) −89.3272 + 122.948i −0.328409 + 0.452016i
\(273\) 0 0
\(274\) 11.8117i 0.0431082i
\(275\) 94.9058 + 28.1762i 0.345112 + 0.102459i
\(276\) 0 0
\(277\) 291.305 94.6507i 1.05164 0.341699i 0.268330 0.963327i \(-0.413528\pi\)
0.783313 + 0.621628i \(0.213528\pi\)
\(278\) −133.108 96.7089i −0.478807 0.347874i
\(279\) 0 0
\(280\) 66.8328 205.690i 0.238689 0.734608i
\(281\) 123.114 + 40.0022i 0.438128 + 0.142356i 0.519772 0.854305i \(-0.326017\pi\)
−0.0816438 + 0.996662i \(0.526017\pi\)
\(282\) 0 0
\(283\) −247.984 + 341.320i −0.876268 + 1.20608i 0.101173 + 0.994869i \(0.467740\pi\)
−0.977441 + 0.211210i \(0.932260\pi\)
\(284\) −81.8854 252.017i −0.288329 0.887385i
\(285\) 0 0
\(286\) −23.8197 + 34.6120i −0.0832855 + 0.121021i
\(287\) 698.827 2.43494
\(288\) 0 0
\(289\) −44.8582 32.5914i −0.155219 0.112773i
\(290\) −66.8328 + 48.5569i −0.230458 + 0.167438i
\(291\) 0 0
\(292\) −339.698 110.374i −1.16335 0.377995i
\(293\) 37.8998 + 52.1646i 0.129351 + 0.178036i 0.868780 0.495198i \(-0.164905\pi\)
−0.739429 + 0.673234i \(0.764905\pi\)
\(294\) 0 0
\(295\) −2.80650 8.63753i −0.00951357 0.0292798i
\(296\) 218.506i 0.738196i
\(297\) 0 0
\(298\) 48.8127 0.163801
\(299\) −13.8197 + 4.49028i −0.0462196 + 0.0150177i
\(300\) 0 0
\(301\) 185.825 135.010i 0.617358 0.448537i
\(302\) 22.5693 69.4610i 0.0747326 0.230003i
\(303\) 0 0
\(304\) −12.1205 16.6825i −0.0398702 0.0548766i
\(305\) −53.1672 + 73.1784i −0.174319 + 0.239929i
\(306\) 0 0
\(307\) 356.512i 1.16128i 0.814161 + 0.580639i \(0.197197\pi\)
−0.814161 + 0.580639i \(0.802803\pi\)
\(308\) −380.267 + 9.72257i −1.23463 + 0.0315668i
\(309\) 0 0
\(310\) 19.6919 6.39830i 0.0635224 0.0206397i
\(311\) −449.177 326.346i −1.44430 1.04935i −0.987122 0.159970i \(-0.948860\pi\)
−0.457178 0.889375i \(-0.651140\pi\)
\(312\) 0 0
\(313\) −102.405 + 315.170i −0.327172 + 1.00693i 0.643279 + 0.765632i \(0.277574\pi\)
−0.970451 + 0.241300i \(0.922426\pi\)
\(314\) 170.410 + 55.3696i 0.542708 + 0.176336i
\(315\) 0 0
\(316\) 8.03134 11.0542i 0.0254156 0.0349816i
\(317\) 159.740 + 491.628i 0.503910 + 1.55088i 0.802595 + 0.596524i \(0.203452\pi\)
−0.298685 + 0.954352i \(0.596548\pi\)
\(318\) 0 0
\(319\) 257.580 + 177.265i 0.807462 + 0.555688i
\(320\) −75.0031 −0.234385
\(321\) 0 0
\(322\) 16.1803 + 11.7557i 0.0502495 + 0.0365084i
\(323\) −25.6378 + 18.6269i −0.0793739 + 0.0576685i
\(324\) 0 0
\(325\) −45.0000 14.6214i −0.138462 0.0449889i
\(326\) 74.4630 + 102.490i 0.228414 + 0.314385i
\(327\) 0 0
\(328\) 117.711 + 362.276i 0.358874 + 1.10450i
\(329\) 271.260i 0.824499i
\(330\) 0 0
\(331\) 208.884 0.631068 0.315534 0.948914i \(-0.397816\pi\)
0.315534 + 0.948914i \(0.397816\pi\)
\(332\) 274.888 89.3165i 0.827976 0.269026i
\(333\) 0 0
\(334\) −145.154 + 105.461i −0.434593 + 0.315750i
\(335\) 47.5805 146.438i 0.142031 0.437127i
\(336\) 0 0
\(337\) −79.3090 109.159i −0.235338 0.323915i 0.674971 0.737844i \(-0.264156\pi\)
−0.910309 + 0.413929i \(0.864156\pi\)
\(338\) −60.3682 + 83.0897i −0.178604 + 0.245828i
\(339\) 0 0
\(340\) 212.251i 0.624266i
\(341\) −47.6707 62.2051i −0.139797 0.182420i
\(342\) 0 0
\(343\) −11.3050 + 3.67320i −0.0329590 + 0.0107090i
\(344\) 101.290 + 73.5917i 0.294448 + 0.213929i
\(345\) 0 0
\(346\) 11.1691 34.3750i 0.0322806 0.0993496i
\(347\) 90.1393 + 29.2880i 0.259767 + 0.0844036i 0.436005 0.899944i \(-0.356393\pi\)
−0.176238 + 0.984348i \(0.556393\pi\)
\(348\) 0 0
\(349\) −100.997 + 139.010i −0.289389 + 0.398310i −0.928816 0.370542i \(-0.879172\pi\)
0.639426 + 0.768852i \(0.279172\pi\)
\(350\) 20.1246 + 61.9372i 0.0574989 + 0.176963i
\(351\) 0 0
\(352\) −106.080 300.149i −0.301362 0.852695i
\(353\) 119.644 0.338936 0.169468 0.985536i \(-0.445795\pi\)
0.169468 + 0.985536i \(0.445795\pi\)
\(354\) 0 0
\(355\) −246.971 179.435i −0.695692 0.505450i
\(356\) 346.343 251.633i 0.972873 0.706834i
\(357\) 0 0
\(358\) 151.290 + 49.1572i 0.422598 + 0.137311i
\(359\) −274.681 378.066i −0.765127 1.05311i −0.996770 0.0803065i \(-0.974410\pi\)
0.231643 0.972801i \(-0.425590\pi\)
\(360\) 0 0
\(361\) 110.226 + 339.242i 0.305336 + 0.939728i
\(362\) 28.2637i 0.0780766i
\(363\) 0 0
\(364\) 181.803 0.499460
\(365\) −391.341 + 127.155i −1.07217 + 0.348368i
\(366\) 0 0
\(367\) 266.026 193.279i 0.724867 0.526647i −0.163068 0.986615i \(-0.552139\pi\)
0.887936 + 0.459968i \(0.152139\pi\)
\(368\) 8.49342 26.1401i 0.0230800 0.0710328i
\(369\) 0 0
\(370\) 68.7539 + 94.6316i 0.185821 + 0.255761i
\(371\) −67.0820 + 92.3305i −0.180814 + 0.248869i
\(372\) 0 0
\(373\) 214.135i 0.574088i −0.957917 0.287044i \(-0.907327\pi\)
0.957917 0.287044i \(-0.0926726\pi\)
\(374\) −115.156 + 40.6989i −0.307904 + 0.108821i
\(375\) 0 0
\(376\) −140.623 + 45.6912i −0.373997 + 0.121519i
\(377\) −120.902 87.8402i −0.320694 0.232998i
\(378\) 0 0
\(379\) 98.9630 304.577i 0.261116 0.803633i −0.731447 0.681899i \(-0.761154\pi\)
0.992563 0.121734i \(-0.0388456\pi\)
\(380\) −27.3901 8.89958i −0.0720792 0.0234200i
\(381\) 0 0
\(382\) 51.1622 70.4187i 0.133932 0.184342i
\(383\) 169.205 + 520.759i 0.441788 + 1.35968i 0.885968 + 0.463746i \(0.153495\pi\)
−0.444181 + 0.895937i \(0.646505\pi\)
\(384\) 0 0
\(385\) −347.830 + 266.558i −0.903454 + 0.692358i
\(386\) 21.2322 0.0550058
\(387\) 0 0
\(388\) 217.441 + 157.980i 0.560415 + 0.407166i
\(389\) 272.259 197.808i 0.699895 0.508504i −0.180003 0.983666i \(-0.557611\pi\)
0.879898 + 0.475162i \(0.157611\pi\)
\(390\) 0 0
\(391\) −40.1722 13.0527i −0.102742 0.0333830i
\(392\) −160.167 220.450i −0.408588 0.562373i
\(393\) 0 0
\(394\) −63.3212 194.883i −0.160714 0.494626i
\(395\) 15.7410i 0.0398506i
\(396\) 0 0
\(397\) 115.374 0.290614 0.145307 0.989387i \(-0.453583\pi\)
0.145307 + 0.989387i \(0.453583\pi\)
\(398\) 122.628 39.8443i 0.308111 0.100111i
\(399\) 0 0
\(400\) 72.4058 52.6059i 0.181014 0.131515i
\(401\) −19.7138 + 60.6729i −0.0491617 + 0.151304i −0.972624 0.232386i \(-0.925347\pi\)
0.923462 + 0.383690i \(0.125347\pi\)
\(402\) 0 0
\(403\) 22.0163 + 30.3028i 0.0546309 + 0.0751930i
\(404\) −229.952 + 316.502i −0.569189 + 0.783422i
\(405\) 0 0
\(406\) 205.690i 0.506626i
\(407\) 250.997 364.720i 0.616700 0.896118i
\(408\) 0 0
\(409\) −581.745 + 189.020i −1.42236 + 0.462152i −0.916351 0.400377i \(-0.868879\pi\)
−0.506008 + 0.862529i \(0.668879\pi\)
\(410\) 164.971 + 119.858i 0.402367 + 0.292337i
\(411\) 0 0
\(412\) 99.3657 305.816i 0.241179 0.742272i
\(413\) −21.5066 6.98791i −0.0520740 0.0169199i
\(414\) 0 0
\(415\) 195.718 269.383i 0.471610 0.649116i
\(416\) 47.0163 + 144.701i 0.113020 + 0.347839i
\(417\) 0 0
\(418\) −0.423579 16.5669i −0.00101335 0.0396338i
\(419\) −146.156 −0.348821 −0.174410 0.984673i \(-0.555802\pi\)
−0.174410 + 0.984673i \(0.555802\pi\)
\(420\) 0 0
\(421\) −480.079 348.798i −1.14033 0.828498i −0.153165 0.988201i \(-0.548947\pi\)
−0.987165 + 0.159702i \(0.948947\pi\)
\(422\) 57.8081 42.0000i 0.136986 0.0995261i
\(423\) 0 0
\(424\) −59.1641 19.2236i −0.139538 0.0453386i
\(425\) −80.8450 111.274i −0.190224 0.261820i
\(426\) 0 0
\(427\) 69.5967 + 214.197i 0.162990 + 0.501632i
\(428\) 294.535i 0.688165i
\(429\) 0 0
\(430\) 67.0232 0.155868
\(431\) −165.807 + 53.8738i −0.384702 + 0.124997i −0.494982 0.868903i \(-0.664825\pi\)
0.110280 + 0.993901i \(0.464825\pi\)
\(432\) 0 0
\(433\) −502.109 + 364.804i −1.15961 + 0.842503i −0.989728 0.142962i \(-0.954337\pi\)
−0.169878 + 0.985465i \(0.554337\pi\)
\(434\) 15.9311 49.0309i 0.0367076 0.112975i
\(435\) 0 0
\(436\) 191.998 + 264.263i 0.440363 + 0.606107i
\(437\) 3.36881 4.63677i 0.00770895 0.0106105i
\(438\) 0 0
\(439\) 676.778i 1.54164i −0.637055 0.770818i \(-0.719848\pi\)
0.637055 0.770818i \(-0.280152\pi\)
\(440\) −196.774 135.418i −0.447214 0.307768i
\(441\) 0 0
\(442\) 55.5166 18.0384i 0.125603 0.0408110i
\(443\) −209.784 152.417i −0.473552 0.344056i 0.325272 0.945621i \(-0.394544\pi\)
−0.798824 + 0.601565i \(0.794544\pi\)
\(444\) 0 0
\(445\) 152.403 469.049i 0.342479 1.05404i
\(446\) −183.820 59.7266i −0.412152 0.133916i
\(447\) 0 0
\(448\) −109.769 + 151.084i −0.245020 + 0.337241i
\(449\) −124.349 382.707i −0.276947 0.852354i −0.988698 0.149923i \(-0.952098\pi\)
0.711751 0.702432i \(-0.247902\pi\)
\(450\) 0 0
\(451\) 219.668 739.908i 0.487069 1.64059i
\(452\) 29.4903 0.0652441
\(453\) 0 0
\(454\) −149.606 108.695i −0.329528 0.239416i
\(455\) 169.443 123.107i 0.372402 0.270566i
\(456\) 0 0
\(457\) 243.209 + 79.0234i 0.532186 + 0.172918i 0.562769 0.826614i \(-0.309736\pi\)
−0.0305823 + 0.999532i \(0.509736\pi\)
\(458\) −17.1703 23.6329i −0.0374897 0.0516002i
\(459\) 0 0
\(460\) −11.8622 36.5082i −0.0257875 0.0793656i
\(461\) 446.274i 0.968056i −0.875053 0.484028i \(-0.839173\pi\)
0.875053 0.484028i \(-0.160827\pi\)
\(462\) 0 0
\(463\) 73.1308 0.157950 0.0789750 0.996877i \(-0.474835\pi\)
0.0789750 + 0.996877i \(0.474835\pi\)
\(464\) 268.838 87.3507i 0.579392 0.188256i
\(465\) 0 0
\(466\) 135.744 98.6239i 0.291297 0.211639i
\(467\) −3.43459 + 10.5706i −0.00735458 + 0.0226351i −0.954666 0.297678i \(-0.903788\pi\)
0.947312 + 0.320313i \(0.103788\pi\)
\(468\) 0 0
\(469\) −225.344 310.160i −0.480479 0.661322i
\(470\) −46.5248 + 64.0358i −0.0989888 + 0.136246i
\(471\) 0 0
\(472\) 12.3262i 0.0261148i
\(473\) −84.5344 239.187i −0.178720 0.505682i
\(474\) 0 0
\(475\) 17.7492 5.76707i 0.0373668 0.0121412i
\(476\) 427.551 + 310.634i 0.898217 + 0.652593i
\(477\) 0 0
\(478\) −70.7589 + 217.774i −0.148031 + 0.455593i
\(479\) 545.546 + 177.259i 1.13893 + 0.370060i 0.816962 0.576692i \(-0.195657\pi\)
0.321965 + 0.946752i \(0.395657\pi\)
\(480\) 0 0
\(481\) −124.377 + 171.190i −0.258580 + 0.355905i
\(482\) −60.8282 187.210i −0.126199 0.388402i
\(483\) 0 0
\(484\) −109.239 + 405.678i −0.225700 + 0.838178i
\(485\) 309.633 0.638419
\(486\) 0 0
\(487\) 510.363 + 370.800i 1.04797 + 0.761397i 0.971826 0.235700i \(-0.0757383\pi\)
0.0761466 + 0.997097i \(0.475738\pi\)
\(488\) −99.3181 + 72.1588i −0.203521 + 0.147866i
\(489\) 0 0
\(490\) −138.731 45.0766i −0.283125 0.0919930i
\(491\) 256.297 + 352.763i 0.521990 + 0.718458i 0.985883 0.167433i \(-0.0535479\pi\)
−0.463893 + 0.885891i \(0.653548\pi\)
\(492\) 0 0
\(493\) −134.241 413.152i −0.272294 0.838036i
\(494\) 7.92055i 0.0160335i
\(495\) 0 0
\(496\) −70.8491 −0.142841
\(497\) −722.895 + 234.883i −1.45452 + 0.472602i
\(498\) 0 0
\(499\) 376.446 273.504i 0.754401 0.548105i −0.142787 0.989753i \(-0.545606\pi\)
0.897188 + 0.441649i \(0.145606\pi\)
\(500\) 145.921 449.099i 0.291842 0.898198i
\(501\) 0 0
\(502\) −4.75507 6.54479i −0.00947225 0.0130374i
\(503\) −270.059 + 371.704i −0.536896 + 0.738974i −0.988162 0.153415i \(-0.950973\pi\)
0.451265 + 0.892390i \(0.350973\pi\)
\(504\) 0 0
\(505\) 450.695i 0.892465i
\(506\) 17.5329 13.4363i 0.0346500 0.0265539i
\(507\) 0 0
\(508\) 621.649 201.986i 1.22372 0.397610i
\(509\) −194.705 141.462i −0.382525 0.277920i 0.379861 0.925044i \(-0.375972\pi\)
−0.762385 + 0.647123i \(0.775972\pi\)
\(510\) 0 0
\(511\) −316.602 + 974.400i −0.619573 + 1.90685i
\(512\) −479.078 155.662i −0.935699 0.304027i
\(513\) 0 0
\(514\) −172.221 + 237.042i −0.335061 + 0.461172i
\(515\) −114.472 352.309i −0.222276 0.684095i
\(516\) 0 0
\(517\) 287.207 + 85.2675i 0.555525 + 0.164928i
\(518\) 291.246 0.562251
\(519\) 0 0
\(520\) 92.3607 + 67.1040i 0.177617 + 0.129046i
\(521\) −564.504 + 410.136i −1.08350 + 0.787210i −0.978290 0.207240i \(-0.933552\pi\)
−0.105212 + 0.994450i \(0.533552\pi\)
\(522\) 0 0
\(523\) −353.526 114.868i −0.675959 0.219632i −0.0491334 0.998792i \(-0.515646\pi\)
−0.626825 + 0.779160i \(0.715646\pi\)
\(524\) 289.665 + 398.689i 0.552795 + 0.760857i
\(525\) 0 0
\(526\) 9.57857 + 29.4798i 0.0182102 + 0.0560452i
\(527\) 108.881i 0.206606i
\(528\) 0 0
\(529\) −521.361 −0.985559
\(530\) −31.6718 + 10.2908i −0.0597582 + 0.0194166i
\(531\) 0 0
\(532\) −58.0132 + 42.1490i −0.109047 + 0.0792275i
\(533\) −113.992 + 350.831i −0.213868 + 0.658219i
\(534\) 0 0
\(535\) 199.443 + 274.509i 0.372790 + 0.513102i
\(536\) 122.832 169.064i 0.229164 0.315417i
\(537\) 0 0
\(538\) 297.878i 0.553676i
\(539\) 14.1120 + 551.948i 0.0261819 + 1.02402i
\(540\) 0 0
\(541\) −64.3657 + 20.9137i −0.118975 + 0.0386575i −0.367900 0.929866i \(-0.619923\pi\)
0.248924 + 0.968523i \(0.419923\pi\)
\(542\) −136.400 99.1005i −0.251661 0.182842i
\(543\) 0 0
\(544\) −136.671 + 420.630i −0.251233 + 0.773217i
\(545\) 357.889 + 116.285i 0.656676 + 0.213367i
\(546\) 0 0
\(547\) −436.380 + 600.625i −0.797769 + 1.09804i 0.195328 + 0.980738i \(0.437423\pi\)
−0.993097 + 0.117297i \(0.962577\pi\)
\(548\) −17.4433 53.6850i −0.0318309 0.0979653i
\(549\) 0 0
\(550\) 71.9042 1.83843i 0.130735 0.00334259i
\(551\) 58.9443 0.106977
\(552\) 0 0
\(553\) −31.7082 23.0374i −0.0573385 0.0416589i
\(554\) 180.036 130.804i 0.324975 0.236108i
\(555\) 0 0
\(556\) 747.807 + 242.977i 1.34498 + 0.437010i
\(557\) 441.323 + 607.429i 0.792322 + 1.09054i 0.993815 + 0.111047i \(0.0354205\pi\)
−0.201494 + 0.979490i \(0.564579\pi\)
\(558\) 0 0
\(559\) 37.4671 + 115.312i 0.0670252 + 0.206282i
\(560\) 396.164i 0.707435i
\(561\) 0 0
\(562\) 94.0507 0.167350
\(563\) 991.673 322.214i 1.76141 0.572316i 0.764064 0.645140i \(-0.223201\pi\)
0.997345 + 0.0728240i \(0.0232011\pi\)
\(564\) 0 0
\(565\) 27.4853 19.9692i 0.0486465 0.0353438i
\(566\) −94.7214 + 291.522i −0.167352 + 0.515057i
\(567\) 0 0
\(568\) −243.530 335.190i −0.428750 0.590123i
\(569\) 136.967 188.518i 0.240714 0.331315i −0.671518 0.740988i \(-0.734357\pi\)
0.912232 + 0.409673i \(0.134357\pi\)
\(570\) 0 0
\(571\) 196.324i 0.343825i 0.985112 + 0.171912i \(0.0549946\pi\)
−0.985112 + 0.171912i \(0.945005\pi\)
\(572\) 57.1478 192.491i 0.0999088 0.336523i
\(573\) 0 0
\(574\) 482.877 156.896i 0.841250 0.273339i
\(575\) 20.1246 + 14.6214i 0.0349993 + 0.0254285i
\(576\) 0 0
\(577\) 43.9884 135.382i 0.0762364 0.234631i −0.905675 0.423973i \(-0.860635\pi\)
0.981911 + 0.189341i \(0.0606352\pi\)
\(578\) −38.3134 12.4488i −0.0662862 0.0215377i
\(579\) 0 0
\(580\) 232.053 319.393i 0.400091 0.550678i
\(581\) −256.199 788.498i −0.440961 1.35714i
\(582\) 0 0
\(583\) 76.6718 + 100.049i 0.131513 + 0.171610i
\(584\) −558.464 −0.956274
\(585\) 0 0
\(586\) 37.8998 + 27.5358i 0.0646754 + 0.0469894i
\(587\) −193.847 + 140.838i −0.330233 + 0.239929i −0.740530 0.672024i \(-0.765425\pi\)
0.410296 + 0.911952i \(0.365425\pi\)
\(588\) 0 0
\(589\) −14.0507 4.56535i −0.0238552 0.00775102i
\(590\) −3.87849 5.33829i −0.00657372 0.00904795i
\(591\) 0 0
\(592\) −123.684 380.660i −0.208925 0.643006i
\(593\) 598.782i 1.00975i −0.863192 0.504875i \(-0.831538\pi\)
0.863192 0.504875i \(-0.168462\pi\)
\(594\) 0 0
\(595\) 608.827 1.02324
\(596\) −221.858 + 72.0860i −0.372245 + 0.120950i
\(597\) 0 0
\(598\) −8.54102 + 6.20541i −0.0142826 + 0.0103769i
\(599\) −93.8359 + 288.797i −0.156654 + 0.482132i −0.998325 0.0578592i \(-0.981573\pi\)
0.841670 + 0.539992i \(0.181573\pi\)
\(600\) 0 0
\(601\) −107.416 147.845i −0.178729 0.245999i 0.710248 0.703952i \(-0.248583\pi\)
−0.888977 + 0.457953i \(0.848583\pi\)
\(602\) 98.0902 135.010i 0.162940 0.224268i
\(603\) 0 0
\(604\) 349.036i 0.577874i
\(605\) 172.892 + 452.067i 0.285771 + 0.747218i
\(606\) 0 0
\(607\) −769.237 + 249.940i −1.26728 + 0.411763i −0.864082 0.503351i \(-0.832100\pi\)
−0.403195 + 0.915114i \(0.632100\pi\)
\(608\) −48.5501 35.2737i −0.0798522 0.0580160i
\(609\) 0 0
\(610\) −20.3081 + 62.5018i −0.0332919 + 0.102462i
\(611\) −136.180 44.2477i −0.222881 0.0724185i
\(612\) 0 0
\(613\) 701.597 965.666i 1.14453 1.57531i 0.387585 0.921834i \(-0.373309\pi\)
0.756946 0.653478i \(-0.226691\pi\)
\(614\) 80.0420 + 246.344i 0.130362 + 0.401212i
\(615\) 0 0
\(616\) −560.766 + 198.188i −0.910334 + 0.321733i
\(617\) −107.900 −0.174878 −0.0874390 0.996170i \(-0.527868\pi\)
−0.0874390 + 0.996170i \(0.527868\pi\)
\(618\) 0 0
\(619\) 457.719 + 332.552i 0.739449 + 0.537241i 0.892539 0.450971i \(-0.148922\pi\)
−0.153089 + 0.988212i \(0.548922\pi\)
\(620\) −80.0526 + 58.1616i −0.129117 + 0.0938091i
\(621\) 0 0
\(622\) −383.643 124.653i −0.616790 0.200407i
\(623\) −721.792 993.462i −1.15857 1.59464i
\(624\) 0 0
\(625\) −98.5764 303.387i −0.157722 0.485419i
\(626\) 240.768i 0.384614i
\(627\) 0 0
\(628\) −856.298 −1.36353
\(629\) −585.000 + 190.078i −0.930048 + 0.302191i
\(630\) 0 0
\(631\) −558.872 + 406.044i −0.885693 + 0.643494i −0.934751 0.355302i \(-0.884378\pi\)
0.0490585 + 0.998796i \(0.484378\pi\)
\(632\) 6.60177 20.3182i 0.0104458 0.0321490i
\(633\) 0 0
\(634\) 220.755 + 303.843i 0.348193 + 0.479247i
\(635\) 442.610 609.200i 0.697023 0.959371i
\(636\) 0 0
\(637\) 263.883i 0.414259i
\(638\) 217.782 + 64.6564i 0.341351 + 0.101342i
\(639\) 0 0
\(640\) −492.207 + 159.928i −0.769073 + 0.249887i
\(641\) 624.756 + 453.912i 0.974659 + 0.708131i 0.956509 0.291704i \(-0.0942223\pi\)
0.0181501 + 0.999835i \(0.494222\pi\)
\(642\) 0 0
\(643\) 291.864 898.264i 0.453909 1.39699i −0.418502 0.908216i \(-0.637445\pi\)
0.872411 0.488773i \(-0.162555\pi\)
\(644\) −90.9017 29.5358i −0.141152 0.0458630i
\(645\) 0 0
\(646\) −13.5333 + 18.6269i −0.0209493 + 0.0288343i
\(647\) 301.400 + 927.614i 0.465843 + 1.43372i 0.857920 + 0.513784i \(0.171757\pi\)
−0.392077 + 0.919932i \(0.628243\pi\)
\(648\) 0 0
\(649\) −14.1591 + 20.5743i −0.0218167 + 0.0317016i
\(650\) −34.3769 −0.0528876
\(651\) 0 0
\(652\) −489.796 355.858i −0.751221 0.545794i
\(653\) 194.615 141.396i 0.298032 0.216533i −0.428712 0.903441i \(-0.641033\pi\)
0.726744 + 0.686908i \(0.241033\pi\)
\(654\) 0 0
\(655\) 539.941 + 175.438i 0.824338 + 0.267844i
\(656\) −410.128 564.493i −0.625195 0.860507i
\(657\) 0 0
\(658\) 60.9017 + 187.436i 0.0925558 + 0.284857i
\(659\) 937.713i 1.42293i −0.702720 0.711467i \(-0.748031\pi\)
0.702720 0.711467i \(-0.251969\pi\)
\(660\) 0 0
\(661\) 133.305 0.201672 0.100836 0.994903i \(-0.467848\pi\)
0.100836 + 0.994903i \(0.467848\pi\)
\(662\) 144.335 46.8973i 0.218029 0.0708418i
\(663\) 0 0
\(664\) 365.608 265.630i 0.550615 0.400045i
\(665\) −25.5279 + 78.5667i −0.0383878 + 0.118145i
\(666\) 0 0
\(667\) 46.1803 + 63.5618i 0.0692359 + 0.0952950i
\(668\) 503.995 693.689i 0.754483 1.03846i
\(669\) 0 0
\(670\) 111.868i 0.166968i
\(671\) 248.666 6.35781i 0.370590 0.00947513i
\(672\) 0 0
\(673\) 860.230 279.506i 1.27820 0.415313i 0.410256 0.911971i \(-0.365439\pi\)
0.867947 + 0.496657i \(0.165439\pi\)
\(674\) −79.3090 57.6214i −0.117669 0.0854917i
\(675\) 0 0
\(676\) 151.673 466.801i 0.224368 0.690534i
\(677\) −574.798 186.763i −0.849037 0.275869i −0.147995 0.988988i \(-0.547282\pi\)
−0.701043 + 0.713119i \(0.747282\pi\)
\(678\) 0 0
\(679\) 453.156 623.716i 0.667387 0.918580i
\(680\) 102.551 + 315.620i 0.150810 + 0.464147i
\(681\) 0 0
\(682\) −46.9055 32.2800i −0.0687764 0.0473313i
\(683\) −1261.32 −1.84673 −0.923367 0.383919i \(-0.874574\pi\)
−0.923367 + 0.383919i \(0.874574\pi\)
\(684\) 0 0
\(685\) −52.6099 38.2233i −0.0768028 0.0558005i
\(686\) −6.98684 + 5.07624i −0.0101849 + 0.00739977i
\(687\) 0 0
\(688\) −218.114 70.8695i −0.317026 0.103008i
\(689\) −35.4102 48.7380i −0.0513936 0.0707372i
\(690\) 0 0
\(691\) −132.915 409.071i −0.192352 0.591999i −0.999997 0.00232993i \(-0.999258\pi\)
0.807645 0.589669i \(-0.200742\pi\)
\(692\) 172.732i 0.249612i
\(693\) 0 0
\(694\) 68.8603 0.0992224
\(695\) 861.495 279.917i 1.23956 0.402758i
\(696\) 0 0
\(697\) −867.516 + 630.287i −1.24464 + 0.904286i
\(698\) −38.5774 + 118.729i −0.0552685 + 0.170099i
\(699\) 0 0
\(700\) −182.936 251.790i −0.261337 0.359700i
\(701\) 299.098 411.673i 0.426674 0.587266i −0.540512 0.841336i \(-0.681769\pi\)
0.967186 + 0.254070i \(0.0817694\pi\)
\(702\) 0 0
\(703\) 83.4619i 0.118722i
\(704\) 125.461 + 163.713i 0.178212 + 0.232548i
\(705\) 0 0
\(706\) 82.6722 26.8618i 0.117099 0.0380479i
\(707\) 907.866 + 659.603i 1.28411 + 0.932961i
\(708\) 0 0
\(709\) −227.956 + 701.577i −0.321518 + 0.989531i 0.651470 + 0.758674i \(0.274153\pi\)
−0.972988 + 0.230856i \(0.925847\pi\)
\(710\) −210.938 68.5379i −0.297096 0.0965323i
\(711\) 0 0
\(712\) 393.438 541.521i 0.552582 0.760563i
\(713\) −6.08514 18.7282i −0.00853457 0.0262667i
\(714\) 0 0
\(715\) −77.0820 218.101i −0.107807 0.305036i
\(716\) −760.222 −1.06176
\(717\) 0 0
\(718\) −274.681 199.567i −0.382564 0.277949i
\(719\) −425.782 + 309.349i −0.592187 + 0.430249i −0.843097 0.537762i \(-0.819270\pi\)
0.250910 + 0.968010i \(0.419270\pi\)
\(720\) 0 0
\(721\) −877.214 285.024i −1.21666 0.395318i
\(722\) 152.329 + 209.663i 0.210982 + 0.290392i
\(723\) 0 0
\(724\) 41.7395 + 128.461i 0.0576513 + 0.177432i
\(725\) 255.831i 0.352871i
\(726\) 0 0
\(727\) −756.122 −1.04006 −0.520029 0.854149i \(-0.674079\pi\)
−0.520029 + 0.854149i \(0.674079\pi\)
\(728\) 270.344 87.8402i 0.371352 0.120660i
\(729\) 0 0
\(730\) −241.862 + 175.723i −0.331318 + 0.240717i
\(731\) −108.913 + 335.199i −0.148991 + 0.458548i
\(732\) 0 0
\(733\) 250.381 + 344.620i 0.341584 + 0.470149i 0.944903 0.327350i \(-0.106156\pi\)
−0.603320 + 0.797500i \(0.706156\pi\)
\(734\) 140.426 193.279i 0.191316 0.263323i
\(735\) 0 0
\(736\) 79.9888i 0.108680i
\(737\) −399.228 + 141.096i −0.541693 + 0.191447i
\(738\) 0 0
\(739\) 184.618 59.9862i 0.249822 0.0811721i −0.181429 0.983404i \(-0.558072\pi\)
0.431251 + 0.902232i \(0.358072\pi\)
\(740\) −452.243 328.574i −0.611139 0.444019i
\(741\) 0 0
\(742\) −25.6231 + 78.8597i −0.0345324 + 0.106280i
\(743\) −211.584 68.7477i −0.284769 0.0925272i 0.163150 0.986601i \(-0.447835\pi\)
−0.447919 + 0.894074i \(0.647835\pi\)
\(744\) 0 0
\(745\) −157.961 + 217.415i −0.212029 + 0.291832i
\(746\) −48.0763 147.964i −0.0644454 0.198343i
\(747\) 0 0
\(748\) 463.291 355.041i 0.619373 0.474654i
\(749\) 844.853 1.12797
\(750\) 0 0
\(751\) 1186.49 + 862.033i 1.57987 + 1.14785i 0.916838 + 0.399260i \(0.130733\pi\)
0.663037 + 0.748587i \(0.269267\pi\)
\(752\) 219.116 159.197i 0.291378 0.211699i
\(753\) 0 0
\(754\) −103.262 33.5520i −0.136953 0.0444986i
\(755\) 236.348 + 325.305i 0.313044 + 0.430868i
\(756\) 0 0
\(757\) 410.832 + 1264.41i 0.542710 + 1.67029i 0.726373 + 0.687301i \(0.241205\pi\)
−0.183663 + 0.982989i \(0.558795\pi\)
\(758\) 232.676i 0.306961i
\(759\) 0 0
\(760\) −45.0294 −0.0592492
\(761\) −654.725 + 212.733i −0.860348 + 0.279544i −0.705774 0.708437i \(-0.749401\pi\)
−0.154574 + 0.987981i \(0.549401\pi\)
\(762\) 0 0
\(763\) 758.020 550.734i 0.993473 0.721801i
\(764\) −128.543 + 395.614i −0.168250 + 0.517820i
\(765\) 0 0
\(766\) 233.835 + 321.847i 0.305268 + 0.420165i
\(767\) 7.01626 9.65706i 0.00914767 0.0125907i
\(768\) 0 0
\(769\) 695.838i 0.904860i 0.891800 + 0.452430i \(0.149443\pi\)
−0.891800 + 0.452430i \(0.850557\pi\)
\(770\) −180.498 + 262.280i −0.234414 + 0.340623i
\(771\) 0 0
\(772\) −96.5023 + 31.3555i −0.125003 + 0.0406159i
\(773\) 67.1591 + 48.7939i 0.0868811 + 0.0631228i 0.630378 0.776288i \(-0.282900\pi\)
−0.543497 + 0.839411i \(0.682900\pi\)
\(774\) 0 0
\(775\) 19.8146 60.9832i 0.0255673 0.0786880i
\(776\) 399.668 + 129.860i 0.515036 + 0.167345i
\(777\) 0 0
\(778\) 143.716 197.808i 0.184725 0.254252i
\(779\) −44.9615 138.377i −0.0577169 0.177634i
\(780\) 0 0
\(781\) 21.4571 + 839.225i 0.0274738 + 1.07455i
\(782\) −30.6888 −0.0392440
\(783\) 0 0
\(784\) 403.811 + 293.386i 0.515065 + 0.374217i
\(785\) −798.079 + 579.838i −1.01666 + 0.738647i
\(786\) 0 0
\(787\) 103.159 + 33.5185i 0.131079 + 0.0425903i 0.373822 0.927500i \(-0.378047\pi\)
−0.242743 + 0.970091i \(0.578047\pi\)
\(788\) 575.601 + 792.246i 0.730458 + 1.00539i
\(789\) 0 0
\(790\) −3.53408 10.8768i −0.00447351 0.0137681i
\(791\) 84.5910i 0.106942i
\(792\) 0 0
\(793\) −118.885 −0.149919
\(794\) 79.7214 25.9030i 0.100405 0.0326235i
\(795\) 0 0
\(796\) −498.514 + 362.191i −0.626273 + 0.455014i
\(797\) 308.596 949.759i 0.387196 1.19167i −0.547678 0.836689i \(-0.684488\pi\)
0.934874 0.354979i \(-0.115512\pi\)
\(798\) 0 0
\(799\) −244.656 336.740i −0.306202 0.421451i
\(800\) 153.096 210.718i 0.191370 0.263398i
\(801\) 0 0
\(802\) 46.3500i 0.0577930i
\(803\) 932.162 + 641.505i 1.16085 + 0.798886i
\(804\) 0 0
\(805\) −104.721 + 34.0260i −0.130089 + 0.0422684i
\(806\) 22.0163 + 15.9958i 0.0273155 + 0.0198458i
\(807\) 0 0
\(808\) −189.021 + 581.748i −0.233937 + 0.719985i
\(809\) −71.6823 23.2910i −0.0886060 0.0287898i 0.264379 0.964419i \(-0.414833\pi\)
−0.352985 + 0.935629i \(0.614833\pi\)
\(810\) 0 0
\(811\) −583.402 + 802.984i −0.719361 + 0.990115i 0.280184 + 0.959946i \(0.409605\pi\)
−0.999545 + 0.0301690i \(0.990395\pi\)
\(812\) −303.761 934.880i −0.374090 1.15133i
\(813\) 0 0
\(814\) 91.5499 308.368i 0.112469 0.378830i
\(815\) −697.463 −0.855783
\(816\) 0 0
\(817\) −38.6894 28.1095i −0.0473555 0.0344058i
\(818\) −359.538 + 261.220i −0.439533 + 0.319339i
\(819\) 0 0
\(820\) −926.810 301.139i −1.13026 0.367243i
\(821\) 733.079 + 1009.00i 0.892910 + 1.22898i 0.972675 + 0.232171i \(0.0745830\pi\)
−0.0797652 + 0.996814i \(0.525417\pi\)
\(822\) 0 0
\(823\) −165.319 508.800i −0.200874 0.618227i −0.999858 0.0168738i \(-0.994629\pi\)
0.798984 0.601353i \(-0.205371\pi\)
\(824\) 502.763i 0.610149i
\(825\) 0 0
\(826\) −16.4296 −0.0198905
\(827\) −53.4969 + 17.3822i −0.0646879 + 0.0210184i −0.341182 0.939997i \(-0.610827\pi\)
0.276494 + 0.961016i \(0.410827\pi\)
\(828\) 0 0
\(829\) 660.320 479.751i 0.796526 0.578710i −0.113367 0.993553i \(-0.536164\pi\)
0.909893 + 0.414843i \(0.136164\pi\)
\(830\) 74.7577 230.081i 0.0900695 0.277206i
\(831\) 0 0
\(832\) −57.9431 79.7518i −0.0696431 0.0958555i
\(833\) 450.877 620.579i 0.541269 0.744993i
\(834\) 0 0
\(835\) 987.803i 1.18300i
\(836\) 26.3911 + 74.6726i 0.0315682 + 0.0893213i
\(837\) 0 0
\(838\) −100.991 + 32.8141i −0.120515 + 0.0391576i
\(839\) 49.8216 + 36.1975i 0.0593821 + 0.0431436i 0.617080 0.786900i \(-0.288315\pi\)
−0.557698 + 0.830044i \(0.688315\pi\)
\(840\) 0 0
\(841\) 10.1913 31.3657i 0.0121181 0.0372958i
\(842\) −410.036 133.229i −0.486979 0.158229i
\(843\) 0 0
\(844\) −200.717 + 276.264i −0.237817 + 0.327327i
\(845\) −174.731 537.768i −0.206783 0.636412i
\(846\) 0 0
\(847\) 1163.66 + 313.344i 1.37386 + 0.369945i
\(848\) 113.951 0.134376
\(849\) 0 0
\(850\) −80.8450 58.7373i −0.0951118 0.0691028i
\(851\) 90.0000 65.3888i 0.105758 0.0768376i
\(852\) 0 0
\(853\) 1347.24 + 437.746i 1.57942 + 0.513184i 0.961907 0.273379i \(-0.0881412\pi\)
0.617511 + 0.786562i \(0.288141\pi\)
\(854\) 96.1803 + 132.381i 0.112623 + 0.155013i
\(855\) 0 0
\(856\) 142.307 + 437.977i 0.166247 + 0.511656i
\(857\) 1249.64i 1.45815i 0.684432 + 0.729077i \(0.260050\pi\)
−0.684432 + 0.729077i \(0.739950\pi\)
\(858\) 0 0
\(859\) −345.229 −0.401896 −0.200948 0.979602i \(-0.564402\pi\)
−0.200948 + 0.979602i \(0.564402\pi\)
\(860\) −304.626 + 98.9790i −0.354216 + 0.115092i
\(861\) 0 0
\(862\) −102.474 + 74.4518i −0.118879 + 0.0863710i
\(863\) 125.242 385.456i 0.145124 0.446647i −0.851903 0.523700i \(-0.824551\pi\)
0.997027 + 0.0770535i \(0.0245512\pi\)
\(864\) 0 0
\(865\) 116.964 + 160.988i 0.135219 + 0.186113i
\(866\) −265.045 + 364.804i −0.306057 + 0.421251i
\(867\) 0 0
\(868\) 246.377i 0.283844i
\(869\) −34.3588 + 26.3307i −0.0395383 + 0.0303000i
\(870\) 0 0
\(871\) 192.467 62.5364i 0.220973 0.0717983i
\(872\) 413.185 + 300.197i 0.473836 + 0.344262i
\(873\) 0 0
\(874\) 1.28677 3.96027i 0.00147228 0.00453121i
\(875\) −1288.21 418.565i −1.47224 0.478360i
\(876\) 0 0
\(877\) 209.069 287.759i 0.238391 0.328117i −0.673012 0.739631i \(-0.735000\pi\)
0.911403 + 0.411514i \(0.135000\pi\)
\(878\) −151.946 467.642i −0.173059 0.532622i
\(879\) 0 0
\(880\) 419.453 + 124.529i 0.476651 + 0.141511i
\(881\) 883.370 1.00269 0.501345 0.865248i \(-0.332839\pi\)
0.501345 + 0.865248i \(0.332839\pi\)
\(882\) 0 0
\(883\) −674.512 490.062i −0.763887 0.554996i 0.136213 0.990680i \(-0.456507\pi\)
−0.900100 + 0.435683i \(0.856507\pi\)
\(884\) −225.689 + 163.973i −0.255304 + 0.185489i
\(885\) 0 0
\(886\) −179.177 58.2180i −0.202231 0.0657088i
\(887\) −54.3406 74.7934i −0.0612633 0.0843217i 0.777286 0.629147i \(-0.216596\pi\)
−0.838549 + 0.544826i \(0.816596\pi\)
\(888\) 0 0
\(889\) −579.384 1783.16i −0.651725 2.00580i
\(890\) 358.322i 0.402608i
\(891\) 0 0
\(892\) 923.680 1.03552
\(893\) 53.7132 17.4525i 0.0601492 0.0195437i
\(894\) 0 0
\(895\) −708.535 + 514.781i −0.791659 + 0.575174i
\(896\) −398.204 + 1225.54i −0.444424 + 1.36780i
\(897\) 0 0
\(898\) −171.846 236.526i −0.191365 0.263392i
\(899\) 119.039 163.844i 0.132413 0.182251i
\(900\) 0 0
\(901\) 175.121i 0.194363i
\(902\) −14.3328 560.583i −0.0158900 0.621489i
\(903\) 0 0
\(904\) 43.8525 14.2486i 0.0485095 0.0157617i
\(905\) 125.889 + 91.4634i 0.139103 + 0.101065i
\(906\) 0 0
\(907\) −454.784 + 1399.68i −0.501415 + 1.54320i 0.305299 + 0.952256i \(0.401243\pi\)
−0.806715 + 0.590941i \(0.798757\pi\)
\(908\) 840.491 + 273.092i 0.925651 + 0.300762i
\(909\) 0 0
\(910\) 89.4427 123.107i 0.0982887 0.135283i
\(911\) −54.3525 167.280i −0.0596625 0.183622i 0.916783 0.399385i \(-0.130776\pi\)
−0.976446 + 0.215763i \(0.930776\pi\)
\(912\) 0 0
\(913\) −915.384 + 23.4043i −1.00261 + 0.0256345i
\(914\) 185.795 0.203277
\(915\) 0 0
\(916\) 112.941 + 82.0566i 0.123298 + 0.0895814i
\(917\) 1143.61 830.884i 1.24713 0.906089i
\(918\) 0 0
\(919\) −1636.12 531.609i −1.78033 0.578465i −0.781371 0.624066i \(-0.785479\pi\)
−0.998960 + 0.0456019i \(0.985479\pi\)
\(920\) −35.2786 48.5569i −0.0383463 0.0527792i
\(921\) 0 0
\(922\) −100.195 308.368i −0.108671 0.334455i
\(923\) 401.228i 0.434700i
\(924\) 0 0
\(925\) 362.243 0.391614
\(926\) 50.5322 16.4189i 0.0545704 0.0177310i
\(927\) 0 0
\(928\) 665.535 483.539i 0.717171 0.521055i
\(929\) −288.957 + 889.317i −0.311040 + 0.957284i 0.666313 + 0.745672i \(0.267871\pi\)
−0.977354 + 0.211612i \(0.932129\pi\)
\(930\) 0 0
\(931\) 61.1782 + 84.2046i 0.0657123 + 0.0904453i
\(932\) −471.322 + 648.720i −0.505711 + 0.696051i
\(933\) 0 0
\(934\) 8.07520i 0.00864583i
\(935\) 191.378 644.618i 0.204682 0.689431i
\(936\) 0 0
\(937\) −853.544 + 277.333i −0.910933 + 0.295980i −0.726742 0.686910i \(-0.758967\pi\)
−0.184191 + 0.982890i \(0.558967\pi\)
\(938\) −225.344 163.722i −0.240239 0.174544i
\(939\) 0 0
\(940\) 116.892 359.756i 0.124353 0.382719i
\(941\) −437.800 142.250i −0.465250 0.151169i 0.0670056 0.997753i \(-0.478655\pi\)
−0.532256 + 0.846584i \(0.678655\pi\)
\(942\) 0 0
\(943\) 113.992 156.896i 0.120882 0.166380i
\(944\) 6.97716 + 21.4735i 0.00739106 + 0.0227473i
\(945\) 0 0
\(946\) −112.113 146.295i −0.118512 0.154646i
\(947\) −1781.44 −1.88114 −0.940570 0.339600i \(-0.889708\pi\)
−0.940570 + 0.339600i \(0.889708\pi\)
\(948\) 0 0
\(949\) −437.533 317.886i −0.461046 0.334970i
\(950\) 10.9696 7.96990i 0.0115470 0.00838937i
\(951\) 0 0
\(952\) 785.861 + 255.342i 0.825484 + 0.268216i
\(953\) −472.394 650.194i −0.495691 0.682260i 0.485734 0.874107i \(-0.338552\pi\)
−0.981425 + 0.191847i \(0.938552\pi\)
\(954\) 0 0
\(955\) 148.085 + 455.759i 0.155063 + 0.477235i
\(956\) 1094.30i 1.14466i
\(957\) 0 0
\(958\) 416.760 0.435031
\(959\) −153.992 + 50.0350i −0.160575 + 0.0521741i
\(960\) 0 0
\(961\) 736.400 535.026i 0.766285 0.556738i
\(962\) −47.5078 + 146.214i −0.0493844 + 0.151989i
\(963\) 0 0
\(964\) 552.938 + 761.054i 0.573587 + 0.789475i
\(965\) −68.7089 + 94.5697i −0.0712010 + 0.0979997i
\(966\) 0 0
\(967\) 915.454i 0.946695i −0.880876 0.473347i \(-0.843046\pi\)
0.880876 0.473347i \(-0.156954\pi\)
\(968\) 33.5683 + 656.030i 0.0346780 + 0.677716i
\(969\) 0 0
\(970\) 213.951 69.5170i 0.220568 0.0716670i
\(971\) 596.366 + 433.285i 0.614177 + 0.446226i 0.850883 0.525356i \(-0.176068\pi\)
−0.236706 + 0.971581i \(0.576068\pi\)
\(972\) 0 0
\(973\) 696.964 2145.04i 0.716305 2.20456i
\(974\) 435.902 + 141.633i 0.447538 + 0.145414i
\(975\) 0 0
\(976\) 132.177 181.926i 0.135427 0.186400i
\(977\) −59.1165 181.942i −0.0605082 0.186225i 0.916233 0.400645i \(-0.131214\pi\)
−0.976742 + 0.214420i \(0.931214\pi\)
\(978\) 0 0
\(979\) −1278.75 + 451.941i −1.30618 + 0.461635i
\(980\) 697.115 0.711341
\(981\) 0 0
\(982\) 256.297 + 186.211i 0.260995 + 0.189624i
\(983\) 772.503 561.257i 0.785863 0.570963i −0.120870 0.992668i \(-0.538568\pi\)
0.906733 + 0.421705i \(0.138568\pi\)
\(984\) 0 0
\(985\) 1072.93 + 348.617i 1.08927 + 0.353926i
\(986\) −185.517 255.342i −0.188151 0.258967i
\(987\) 0 0
\(988\) −11.6970 35.9996i −0.0118390 0.0364368i
\(989\) 63.7429i 0.0644518i
\(990\) 0 0
\(991\) −1076.02 −1.08580 −0.542898 0.839799i \(-0.682673\pi\)
−0.542898 + 0.839799i \(0.682673\pi\)
\(992\) −196.096 + 63.7156i −0.197678 + 0.0642294i
\(993\) 0 0
\(994\) −446.774 + 324.600i −0.449471 + 0.326560i
\(995\) −219.364 + 675.132i −0.220466 + 0.678525i
\(996\) 0 0
\(997\) 283.439 + 390.120i 0.284292 + 0.391294i 0.927150 0.374692i \(-0.122251\pi\)
−0.642858 + 0.765986i \(0.722251\pi\)
\(998\) 198.712 273.504i 0.199111 0.274052i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.3.k.a.28.1 4
3.2 odd 2 11.3.d.a.6.1 yes 4
11.2 odd 10 inner 99.3.k.a.46.1 4
11.3 even 5 1089.3.c.e.604.2 4
11.8 odd 10 1089.3.c.e.604.3 4
12.11 even 2 176.3.n.a.17.1 4
15.2 even 4 275.3.q.d.149.1 8
15.8 even 4 275.3.q.d.149.2 8
15.14 odd 2 275.3.x.e.226.1 4
33.2 even 10 11.3.d.a.2.1 4
33.5 odd 10 121.3.d.a.40.1 4
33.8 even 10 121.3.b.b.120.2 4
33.14 odd 10 121.3.b.b.120.3 4
33.17 even 10 121.3.d.c.40.1 4
33.20 odd 10 121.3.d.d.112.1 4
33.26 odd 10 121.3.d.c.118.1 4
33.29 even 10 121.3.d.a.118.1 4
33.32 even 2 121.3.d.d.94.1 4
132.35 odd 10 176.3.n.a.145.1 4
165.2 odd 20 275.3.q.d.24.2 8
165.68 odd 20 275.3.q.d.24.1 8
165.134 even 10 275.3.x.e.101.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.3.d.a.2.1 4 33.2 even 10
11.3.d.a.6.1 yes 4 3.2 odd 2
99.3.k.a.28.1 4 1.1 even 1 trivial
99.3.k.a.46.1 4 11.2 odd 10 inner
121.3.b.b.120.2 4 33.8 even 10
121.3.b.b.120.3 4 33.14 odd 10
121.3.d.a.40.1 4 33.5 odd 10
121.3.d.a.118.1 4 33.29 even 10
121.3.d.c.40.1 4 33.17 even 10
121.3.d.c.118.1 4 33.26 odd 10
121.3.d.d.94.1 4 33.32 even 2
121.3.d.d.112.1 4 33.20 odd 10
176.3.n.a.17.1 4 12.11 even 2
176.3.n.a.145.1 4 132.35 odd 10
275.3.q.d.24.1 8 165.68 odd 20
275.3.q.d.24.2 8 165.2 odd 20
275.3.q.d.149.1 8 15.2 even 4
275.3.q.d.149.2 8 15.8 even 4
275.3.x.e.101.1 4 165.134 even 10
275.3.x.e.226.1 4 15.14 odd 2
1089.3.c.e.604.2 4 11.3 even 5
1089.3.c.e.604.3 4 11.8 odd 10