Defining parameters
Level: | \( N \) | = | \( 99 = 3^{2} \cdot 11 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 8 \) | ||
Newform subspaces: | \( 13 \) | ||
Sturm bound: | \(2160\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(99))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 800 | 603 | 197 |
Cusp forms | 640 | 521 | 119 |
Eisenstein series | 160 | 82 | 78 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(99))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(99))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(99)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 2}\)