Properties

Label 99.3.k.a.46.1
Level $99$
Weight $3$
Character 99.46
Analytic conductor $2.698$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [99,3,Mod(19,99)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(99, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("99.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 99.k (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,5,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.69755461717\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 46.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 99.46
Dual form 99.3.k.a.28.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.690983 + 0.224514i) q^{2} +(-2.80902 - 2.04087i) q^{4} +(-1.23607 - 3.80423i) q^{5} +(5.85410 - 8.05748i) q^{7} +(-3.19098 - 4.39201i) q^{8} -2.90617i q^{10} +(10.3713 + 3.66547i) q^{11} +(-5.00000 - 1.62460i) q^{13} +(5.85410 - 4.25325i) q^{14} +(3.07295 + 9.45756i) q^{16} +(-14.5344 + 4.72253i) q^{17} +(1.21885 + 1.67760i) q^{19} +(-4.29180 + 13.2088i) q^{20} +(6.34346 + 4.86128i) q^{22} +2.76393 q^{23} +(7.28115 - 5.29007i) q^{25} +(-3.09017 - 2.24514i) q^{26} +(-32.8885 + 10.6861i) q^{28} +(16.7082 - 22.9969i) q^{29} +(-2.20163 + 6.77591i) q^{31} +28.9402i q^{32} -11.1033 q^{34} +(-37.8885 - 12.3107i) q^{35} +(32.5623 + 23.6579i) q^{37} +(0.465558 + 1.43284i) q^{38} +(-12.7639 + 17.5680i) q^{40} +(41.2426 + 56.7656i) q^{41} +23.0624i q^{43} +(-21.6525 - 31.4629i) q^{44} +(1.90983 + 0.620541i) q^{46} +(22.0344 - 16.0090i) q^{47} +(-15.5106 - 47.7369i) q^{49} +(6.21885 - 2.02063i) q^{50} +(10.7295 + 14.7679i) q^{52} +(3.54102 - 10.8981i) q^{53} +(1.12461 - 43.9856i) q^{55} -54.0689 q^{56} +(16.7082 - 12.1392i) q^{58} +(-1.83688 - 1.33457i) q^{59} +(21.5066 - 6.98791i) q^{61} +(-3.04257 + 4.18774i) q^{62} +(5.79431 - 17.8330i) q^{64} +21.0292i q^{65} -38.4934 q^{67} +(50.4656 + 16.3973i) q^{68} +(-23.4164 - 17.0130i) q^{70} +(-23.5836 - 72.5828i) q^{71} +(60.4656 - 83.2237i) q^{73} +(17.1885 + 23.6579i) q^{74} -7.19991i q^{76} +(90.2492 - 62.1087i) q^{77} +(-3.74265 - 1.21606i) q^{79} +(32.1803 - 23.3804i) q^{80} +(15.7533 + 48.4836i) q^{82} +(-79.1697 + 25.7238i) q^{83} +(35.9311 + 49.4549i) q^{85} +(-5.17783 + 15.9357i) q^{86} +(-16.9959 - 57.2474i) q^{88} -123.297 q^{89} +(-42.3607 + 30.7768i) q^{91} +(-7.76393 - 5.64083i) q^{92} +(18.8197 - 6.11488i) q^{94} +(4.87539 - 6.71040i) q^{95} +(-23.9205 + 73.6196i) q^{97} -36.4677i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 9 q^{4} + 4 q^{5} + 10 q^{7} - 15 q^{8} - q^{11} - 20 q^{13} + 10 q^{14} + 19 q^{16} + 25 q^{19} - 44 q^{20} - 35 q^{22} + 20 q^{23} + 9 q^{25} + 10 q^{26} - 60 q^{28} + 40 q^{29} - 58 q^{31}+ \cdots - 165 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.690983 + 0.224514i 0.345492 + 0.112257i 0.476623 0.879108i \(-0.341861\pi\)
−0.131131 + 0.991365i \(0.541861\pi\)
\(3\) 0 0
\(4\) −2.80902 2.04087i −0.702254 0.510218i
\(5\) −1.23607 3.80423i −0.247214 0.760845i −0.995264 0.0972039i \(-0.969010\pi\)
0.748051 0.663641i \(-0.230990\pi\)
\(6\) 0 0
\(7\) 5.85410 8.05748i 0.836300 1.15107i −0.150417 0.988623i \(-0.548062\pi\)
0.986717 0.162446i \(-0.0519383\pi\)
\(8\) −3.19098 4.39201i −0.398873 0.549001i
\(9\) 0 0
\(10\) 2.90617i 0.290617i
\(11\) 10.3713 + 3.66547i 0.942848 + 0.333224i
\(12\) 0 0
\(13\) −5.00000 1.62460i −0.384615 0.124969i 0.110326 0.993895i \(-0.464810\pi\)
−0.494941 + 0.868926i \(0.664810\pi\)
\(14\) 5.85410 4.25325i 0.418150 0.303804i
\(15\) 0 0
\(16\) 3.07295 + 9.45756i 0.192059 + 0.591098i
\(17\) −14.5344 + 4.72253i −0.854967 + 0.277796i −0.703525 0.710670i \(-0.748392\pi\)
−0.151442 + 0.988466i \(0.548392\pi\)
\(18\) 0 0
\(19\) 1.21885 + 1.67760i 0.0641498 + 0.0882947i 0.839886 0.542762i \(-0.182621\pi\)
−0.775737 + 0.631057i \(0.782621\pi\)
\(20\) −4.29180 + 13.2088i −0.214590 + 0.660440i
\(21\) 0 0
\(22\) 6.34346 + 4.86128i 0.288339 + 0.220967i
\(23\) 2.76393 0.120171 0.0600855 0.998193i \(-0.480863\pi\)
0.0600855 + 0.998193i \(0.480863\pi\)
\(24\) 0 0
\(25\) 7.28115 5.29007i 0.291246 0.211603i
\(26\) −3.09017 2.24514i −0.118853 0.0863515i
\(27\) 0 0
\(28\) −32.8885 + 10.6861i −1.17459 + 0.381648i
\(29\) 16.7082 22.9969i 0.576145 0.792996i −0.417121 0.908851i \(-0.636961\pi\)
0.993266 + 0.115855i \(0.0369609\pi\)
\(30\) 0 0
\(31\) −2.20163 + 6.77591i −0.0710202 + 0.218578i −0.980266 0.197681i \(-0.936659\pi\)
0.909246 + 0.416259i \(0.136659\pi\)
\(32\) 28.9402i 0.904382i
\(33\) 0 0
\(34\) −11.1033 −0.326568
\(35\) −37.8885 12.3107i −1.08253 0.351735i
\(36\) 0 0
\(37\) 32.5623 + 23.6579i 0.880062 + 0.639403i 0.933268 0.359181i \(-0.116944\pi\)
−0.0532056 + 0.998584i \(0.516944\pi\)
\(38\) 0.465558 + 1.43284i 0.0122515 + 0.0377063i
\(39\) 0 0
\(40\) −12.7639 + 17.5680i −0.319098 + 0.439201i
\(41\) 41.2426 + 56.7656i 1.00592 + 1.38453i 0.921623 + 0.388087i \(0.126864\pi\)
0.0842954 + 0.996441i \(0.473136\pi\)
\(42\) 0 0
\(43\) 23.0624i 0.536334i 0.963372 + 0.268167i \(0.0864180\pi\)
−0.963372 + 0.268167i \(0.913582\pi\)
\(44\) −21.6525 31.4629i −0.492102 0.715066i
\(45\) 0 0
\(46\) 1.90983 + 0.620541i 0.0415180 + 0.0134900i
\(47\) 22.0344 16.0090i 0.468818 0.340616i −0.328163 0.944621i \(-0.606429\pi\)
0.796980 + 0.604005i \(0.206429\pi\)
\(48\) 0 0
\(49\) −15.5106 47.7369i −0.316544 0.974221i
\(50\) 6.21885 2.02063i 0.124377 0.0404125i
\(51\) 0 0
\(52\) 10.7295 + 14.7679i 0.206336 + 0.283998i
\(53\) 3.54102 10.8981i 0.0668117 0.205625i −0.912077 0.410019i \(-0.865522\pi\)
0.978889 + 0.204393i \(0.0655222\pi\)
\(54\) 0 0
\(55\) 1.12461 43.9856i 0.0204475 0.799739i
\(56\) −54.0689 −0.965516
\(57\) 0 0
\(58\) 16.7082 12.1392i 0.288072 0.209297i
\(59\) −1.83688 1.33457i −0.0311336 0.0226199i 0.572110 0.820177i \(-0.306125\pi\)
−0.603243 + 0.797557i \(0.706125\pi\)
\(60\) 0 0
\(61\) 21.5066 6.98791i 0.352567 0.114556i −0.127379 0.991854i \(-0.540656\pi\)
0.479946 + 0.877298i \(0.340656\pi\)
\(62\) −3.04257 + 4.18774i −0.0490737 + 0.0675442i
\(63\) 0 0
\(64\) 5.79431 17.8330i 0.0905361 0.278641i
\(65\) 21.0292i 0.323527i
\(66\) 0 0
\(67\) −38.4934 −0.574529 −0.287264 0.957851i \(-0.592746\pi\)
−0.287264 + 0.957851i \(0.592746\pi\)
\(68\) 50.4656 + 16.3973i 0.742141 + 0.241136i
\(69\) 0 0
\(70\) −23.4164 17.0130i −0.334520 0.243043i
\(71\) −23.5836 72.5828i −0.332163 1.02229i −0.968103 0.250554i \(-0.919387\pi\)
0.635939 0.771739i \(-0.280613\pi\)
\(72\) 0 0
\(73\) 60.4656 83.2237i 0.828295 1.14005i −0.159943 0.987126i \(-0.551131\pi\)
0.988238 0.152924i \(-0.0488691\pi\)
\(74\) 17.1885 + 23.6579i 0.232277 + 0.319701i
\(75\) 0 0
\(76\) 7.19991i 0.0947357i
\(77\) 90.2492 62.1087i 1.17207 0.806606i
\(78\) 0 0
\(79\) −3.74265 1.21606i −0.0473753 0.0153932i 0.285233 0.958458i \(-0.407929\pi\)
−0.332609 + 0.943065i \(0.607929\pi\)
\(80\) 32.1803 23.3804i 0.402254 0.292255i
\(81\) 0 0
\(82\) 15.7533 + 48.4836i 0.192113 + 0.591264i
\(83\) −79.1697 + 25.7238i −0.953852 + 0.309925i −0.744280 0.667868i \(-0.767207\pi\)
−0.209572 + 0.977793i \(0.567207\pi\)
\(84\) 0 0
\(85\) 35.9311 + 49.4549i 0.422719 + 0.581823i
\(86\) −5.17783 + 15.9357i −0.0602073 + 0.185299i
\(87\) 0 0
\(88\) −16.9959 57.2474i −0.193136 0.650539i
\(89\) −123.297 −1.38536 −0.692679 0.721246i \(-0.743570\pi\)
−0.692679 + 0.721246i \(0.743570\pi\)
\(90\) 0 0
\(91\) −42.3607 + 30.7768i −0.465502 + 0.338207i
\(92\) −7.76393 5.64083i −0.0843906 0.0613133i
\(93\) 0 0
\(94\) 18.8197 6.11488i 0.200209 0.0650519i
\(95\) 4.87539 6.71040i 0.0513199 0.0706357i
\(96\) 0 0
\(97\) −23.9205 + 73.6196i −0.246603 + 0.758965i 0.748766 + 0.662835i \(0.230647\pi\)
−0.995369 + 0.0961309i \(0.969353\pi\)
\(98\) 36.4677i 0.372119i
\(99\) 0 0
\(100\) −31.2492 −0.312492
\(101\) 107.159 + 34.8181i 1.06098 + 0.344734i 0.786969 0.616993i \(-0.211649\pi\)
0.274012 + 0.961726i \(0.411649\pi\)
\(102\) 0 0
\(103\) −74.9230 54.4347i −0.727408 0.528493i 0.161335 0.986900i \(-0.448420\pi\)
−0.888742 + 0.458407i \(0.848420\pi\)
\(104\) 8.81966 + 27.1441i 0.0848044 + 0.261001i
\(105\) 0 0
\(106\) 4.89357 6.73542i 0.0461657 0.0635417i
\(107\) 49.8607 + 68.6273i 0.465988 + 0.641377i 0.975737 0.218946i \(-0.0702619\pi\)
−0.509749 + 0.860323i \(0.670262\pi\)
\(108\) 0 0
\(109\) 94.0766i 0.863088i 0.902092 + 0.431544i \(0.142031\pi\)
−0.902092 + 0.431544i \(0.857969\pi\)
\(110\) 10.6525 30.1408i 0.0968407 0.274008i
\(111\) 0 0
\(112\) 94.1935 + 30.6053i 0.841013 + 0.273262i
\(113\) −6.87132 + 4.99231i −0.0608082 + 0.0441797i −0.617774 0.786356i \(-0.711965\pi\)
0.556966 + 0.830535i \(0.311965\pi\)
\(114\) 0 0
\(115\) −3.41641 10.5146i −0.0297079 0.0914315i
\(116\) −93.8673 + 30.4993i −0.809200 + 0.262925i
\(117\) 0 0
\(118\) −0.969623 1.33457i −0.00821715 0.0113099i
\(119\) −47.0344 + 144.757i −0.395247 + 1.21645i
\(120\) 0 0
\(121\) 94.1287 + 76.0315i 0.777923 + 0.628360i
\(122\) 16.4296 0.134669
\(123\) 0 0
\(124\) 20.0132 14.5404i 0.161396 0.117261i
\(125\) −110.026 79.9388i −0.880210 0.639510i
\(126\) 0 0
\(127\) −179.039 + 58.1734i −1.40976 + 0.458059i −0.912334 0.409448i \(-0.865721\pi\)
−0.497426 + 0.867506i \(0.665721\pi\)
\(128\) 76.0501 104.674i 0.594141 0.817766i
\(129\) 0 0
\(130\) −4.72136 + 14.5309i −0.0363182 + 0.111776i
\(131\) 141.932i 1.08345i 0.840556 + 0.541725i \(0.182229\pi\)
−0.840556 + 0.541725i \(0.817771\pi\)
\(132\) 0 0
\(133\) 20.6525 0.155282
\(134\) −26.5983 8.64231i −0.198495 0.0644949i
\(135\) 0 0
\(136\) 67.1205 + 48.7659i 0.493533 + 0.358573i
\(137\) −5.02380 15.4617i −0.0366701 0.112859i 0.931046 0.364902i \(-0.118898\pi\)
−0.967716 + 0.252043i \(0.918898\pi\)
\(138\) 0 0
\(139\) −133.108 + 183.208i −0.957614 + 1.31804i −0.00955293 + 0.999954i \(0.503041\pi\)
−0.948061 + 0.318088i \(0.896959\pi\)
\(140\) 81.3050 + 111.907i 0.580750 + 0.799333i
\(141\) 0 0
\(142\) 55.4484i 0.390481i
\(143\) −45.9017 35.1766i −0.320991 0.245990i
\(144\) 0 0
\(145\) −108.138 35.1361i −0.745778 0.242318i
\(146\) 60.4656 43.9308i 0.414148 0.300896i
\(147\) 0 0
\(148\) −43.1854 132.911i −0.291793 0.898047i
\(149\) 63.8967 20.7613i 0.428837 0.139338i −0.0866427 0.996239i \(-0.527614\pi\)
0.515479 + 0.856902i \(0.327614\pi\)
\(150\) 0 0
\(151\) 59.0871 + 81.3264i 0.391305 + 0.538585i 0.958535 0.284974i \(-0.0919850\pi\)
−0.567230 + 0.823559i \(0.691985\pi\)
\(152\) 3.47871 10.7064i 0.0228863 0.0704367i
\(153\) 0 0
\(154\) 76.3050 22.6538i 0.495487 0.147103i
\(155\) 28.4984 0.183861
\(156\) 0 0
\(157\) 199.520 144.960i 1.27083 0.923309i 0.271591 0.962413i \(-0.412450\pi\)
0.999235 + 0.0391033i \(0.0124502\pi\)
\(158\) −2.31308 1.68055i −0.0146398 0.0106364i
\(159\) 0 0
\(160\) 110.095 35.7721i 0.688095 0.223576i
\(161\) 16.1803 22.2703i 0.100499 0.138325i
\(162\) 0 0
\(163\) 53.8820 165.832i 0.330564 1.01737i −0.638302 0.769786i \(-0.720363\pi\)
0.968866 0.247586i \(-0.0796372\pi\)
\(164\) 243.627i 1.48553i
\(165\) 0 0
\(166\) −60.4803 −0.364339
\(167\) −234.864 76.3120i −1.40637 0.456958i −0.495126 0.868821i \(-0.664878\pi\)
−0.911246 + 0.411863i \(0.864878\pi\)
\(168\) 0 0
\(169\) −114.363 83.0897i −0.676705 0.491655i
\(170\) 13.7245 + 42.2396i 0.0807321 + 0.248468i
\(171\) 0 0
\(172\) 47.0673 64.7826i 0.273647 0.376643i
\(173\) 29.2411 + 40.2469i 0.169024 + 0.232641i 0.885123 0.465357i \(-0.154074\pi\)
−0.716099 + 0.697999i \(0.754074\pi\)
\(174\) 0 0
\(175\) 89.6363i 0.512208i
\(176\) −2.79586 + 109.351i −0.0158856 + 0.621314i
\(177\) 0 0
\(178\) −85.1960 27.6819i −0.478629 0.155516i
\(179\) 177.134 128.695i 0.989574 0.718967i 0.0297461 0.999557i \(-0.490530\pi\)
0.959828 + 0.280590i \(0.0905301\pi\)
\(180\) 0 0
\(181\) 12.0213 + 36.9977i 0.0664159 + 0.204407i 0.978757 0.205024i \(-0.0657272\pi\)
−0.912341 + 0.409431i \(0.865727\pi\)
\(182\) −36.1803 + 11.7557i −0.198793 + 0.0645918i
\(183\) 0 0
\(184\) −8.81966 12.1392i −0.0479329 0.0659740i
\(185\) 49.7508 153.117i 0.268923 0.827660i
\(186\) 0 0
\(187\) −168.052 4.29670i −0.898672 0.0229770i
\(188\) −94.5673 −0.503018
\(189\) 0 0
\(190\) 4.87539 3.54218i 0.0256599 0.0186430i
\(191\) 96.9230 + 70.4187i 0.507450 + 0.368684i 0.811855 0.583858i \(-0.198458\pi\)
−0.304405 + 0.952543i \(0.598458\pi\)
\(192\) 0 0
\(193\) 27.7933 9.03061i 0.144007 0.0467907i −0.236127 0.971722i \(-0.575878\pi\)
0.380134 + 0.924932i \(0.375878\pi\)
\(194\) −33.0573 + 45.4994i −0.170398 + 0.234533i
\(195\) 0 0
\(196\) −53.8551 + 165.749i −0.274771 + 0.845657i
\(197\) 282.037i 1.43166i 0.698275 + 0.715830i \(0.253951\pi\)
−0.698275 + 0.715830i \(0.746049\pi\)
\(198\) 0 0
\(199\) 177.469 0.891804 0.445902 0.895082i \(-0.352883\pi\)
0.445902 + 0.895082i \(0.352883\pi\)
\(200\) −46.4681 15.0984i −0.232340 0.0754920i
\(201\) 0 0
\(202\) 66.2279 + 48.1174i 0.327861 + 0.238205i
\(203\) −87.4853 269.252i −0.430962 1.32636i
\(204\) 0 0
\(205\) 164.971 227.063i 0.804735 1.10762i
\(206\) −39.5492 54.4347i −0.191986 0.264246i
\(207\) 0 0
\(208\) 52.2801i 0.251347i
\(209\) 6.49187 + 21.8666i 0.0310616 + 0.104625i
\(210\) 0 0
\(211\) 93.5354 + 30.3915i 0.443296 + 0.144036i 0.522156 0.852850i \(-0.325128\pi\)
−0.0788599 + 0.996886i \(0.525128\pi\)
\(212\) −32.1885 + 23.3863i −0.151832 + 0.110313i
\(213\) 0 0
\(214\) 19.0451 + 58.6147i 0.0889957 + 0.273901i
\(215\) 87.7345 28.5067i 0.408068 0.132589i
\(216\) 0 0
\(217\) 41.7082 + 57.4064i 0.192204 + 0.264546i
\(218\) −21.1215 + 65.0053i −0.0968876 + 0.298190i
\(219\) 0 0
\(220\) −92.9280 + 121.261i −0.422400 + 0.551187i
\(221\) 80.3444 0.363549
\(222\) 0 0
\(223\) −215.220 + 156.366i −0.965111 + 0.701194i −0.954332 0.298748i \(-0.903431\pi\)
−0.0107791 + 0.999942i \(0.503431\pi\)
\(224\) 233.185 + 169.419i 1.04101 + 0.756335i
\(225\) 0 0
\(226\) −5.86881 + 1.90689i −0.0259682 + 0.00843758i
\(227\) −149.606 + 205.915i −0.659057 + 0.907114i −0.999450 0.0331697i \(-0.989440\pi\)
0.340393 + 0.940283i \(0.389440\pi\)
\(228\) 0 0
\(229\) −12.4245 + 38.2388i −0.0542556 + 0.166982i −0.974513 0.224333i \(-0.927980\pi\)
0.920257 + 0.391315i \(0.127980\pi\)
\(230\) 8.03246i 0.0349237i
\(231\) 0 0
\(232\) −154.318 −0.665164
\(233\) 219.639 + 71.3649i 0.942655 + 0.306287i 0.739728 0.672906i \(-0.234954\pi\)
0.202928 + 0.979194i \(0.434954\pi\)
\(234\) 0 0
\(235\) −88.1378 64.0358i −0.375054 0.272493i
\(236\) 2.43614 + 7.49767i 0.0103226 + 0.0317698i
\(237\) 0 0
\(238\) −65.0000 + 89.4648i −0.273109 + 0.375903i
\(239\) −185.249 254.974i −0.775101 1.06684i −0.995806 0.0914947i \(-0.970836\pi\)
0.220704 0.975341i \(-0.429164\pi\)
\(240\) 0 0
\(241\) 270.933i 1.12420i 0.827069 + 0.562101i \(0.190007\pi\)
−0.827069 + 0.562101i \(0.809993\pi\)
\(242\) 47.9712 + 73.6697i 0.198228 + 0.304420i
\(243\) 0 0
\(244\) −74.6738 24.2630i −0.306040 0.0994384i
\(245\) −162.430 + 118.012i −0.662978 + 0.481682i
\(246\) 0 0
\(247\) −3.36881 10.3681i −0.0136389 0.0419762i
\(248\) 36.7852 11.9522i 0.148327 0.0481945i
\(249\) 0 0
\(250\) −58.0789 79.9388i −0.232316 0.319755i
\(251\) −3.44080 + 10.5897i −0.0137084 + 0.0421900i −0.957677 0.287846i \(-0.907061\pi\)
0.943968 + 0.330036i \(0.107061\pi\)
\(252\) 0 0
\(253\) 28.6656 + 10.1311i 0.113303 + 0.0400439i
\(254\) −136.774 −0.538480
\(255\) 0 0
\(256\) 15.3713 11.1679i 0.0600442 0.0436247i
\(257\) −326.261 237.042i −1.26950 0.922344i −0.270315 0.962772i \(-0.587128\pi\)
−0.999182 + 0.0404281i \(0.987128\pi\)
\(258\) 0 0
\(259\) 381.246 123.874i 1.47199 0.478279i
\(260\) 42.9180 59.0715i 0.165069 0.227198i
\(261\) 0 0
\(262\) −31.8657 + 98.0726i −0.121625 + 0.374323i
\(263\) 42.6636i 0.162219i −0.996705 0.0811094i \(-0.974154\pi\)
0.996705 0.0811094i \(-0.0258463\pi\)
\(264\) 0 0
\(265\) −45.8359 −0.172966
\(266\) 14.2705 + 4.63677i 0.0536485 + 0.0174315i
\(267\) 0 0
\(268\) 108.129 + 78.5601i 0.403465 + 0.293135i
\(269\) 126.695 + 389.927i 0.470985 + 1.44954i 0.851296 + 0.524685i \(0.175817\pi\)
−0.380311 + 0.924859i \(0.624183\pi\)
\(270\) 0 0
\(271\) −136.400 + 187.739i −0.503322 + 0.692763i −0.982775 0.184804i \(-0.940835\pi\)
0.479454 + 0.877567i \(0.340835\pi\)
\(272\) −89.3272 122.948i −0.328409 0.452016i
\(273\) 0 0
\(274\) 11.8117i 0.0431082i
\(275\) 94.9058 28.1762i 0.345112 0.102459i
\(276\) 0 0
\(277\) 291.305 + 94.6507i 1.05164 + 0.341699i 0.783313 0.621628i \(-0.213528\pi\)
0.268330 + 0.963327i \(0.413528\pi\)
\(278\) −133.108 + 96.7089i −0.478807 + 0.347874i
\(279\) 0 0
\(280\) 66.8328 + 205.690i 0.238689 + 0.734608i
\(281\) 123.114 40.0022i 0.438128 0.142356i −0.0816438 0.996662i \(-0.526017\pi\)
0.519772 + 0.854305i \(0.326017\pi\)
\(282\) 0 0
\(283\) −247.984 341.320i −0.876268 1.20608i −0.977441 0.211210i \(-0.932260\pi\)
0.101173 0.994869i \(-0.467740\pi\)
\(284\) −81.8854 + 252.017i −0.288329 + 0.887385i
\(285\) 0 0
\(286\) −23.8197 34.6120i −0.0832855 0.121021i
\(287\) 698.827 2.43494
\(288\) 0 0
\(289\) −44.8582 + 32.5914i −0.155219 + 0.112773i
\(290\) −66.8328 48.5569i −0.230458 0.167438i
\(291\) 0 0
\(292\) −339.698 + 110.374i −1.16335 + 0.377995i
\(293\) 37.8998 52.1646i 0.129351 0.178036i −0.739429 0.673234i \(-0.764905\pi\)
0.868780 + 0.495198i \(0.164905\pi\)
\(294\) 0 0
\(295\) −2.80650 + 8.63753i −0.00951357 + 0.0292798i
\(296\) 218.506i 0.738196i
\(297\) 0 0
\(298\) 48.8127 0.163801
\(299\) −13.8197 4.49028i −0.0462196 0.0150177i
\(300\) 0 0
\(301\) 185.825 + 135.010i 0.617358 + 0.448537i
\(302\) 22.5693 + 69.4610i 0.0747326 + 0.230003i
\(303\) 0 0
\(304\) −12.1205 + 16.6825i −0.0398702 + 0.0548766i
\(305\) −53.1672 73.1784i −0.174319 0.239929i
\(306\) 0 0
\(307\) 356.512i 1.16128i −0.814161 0.580639i \(-0.802803\pi\)
0.814161 0.580639i \(-0.197197\pi\)
\(308\) −380.267 9.72257i −1.23463 0.0315668i
\(309\) 0 0
\(310\) 19.6919 + 6.39830i 0.0635224 + 0.0206397i
\(311\) −449.177 + 326.346i −1.44430 + 1.04935i −0.457178 + 0.889375i \(0.651140\pi\)
−0.987122 + 0.159970i \(0.948860\pi\)
\(312\) 0 0
\(313\) −102.405 315.170i −0.327172 1.00693i −0.970451 0.241300i \(-0.922426\pi\)
0.643279 0.765632i \(-0.277574\pi\)
\(314\) 170.410 55.3696i 0.542708 0.176336i
\(315\) 0 0
\(316\) 8.03134 + 11.0542i 0.0254156 + 0.0349816i
\(317\) 159.740 491.628i 0.503910 1.55088i −0.298685 0.954352i \(-0.596548\pi\)
0.802595 0.596524i \(-0.203452\pi\)
\(318\) 0 0
\(319\) 257.580 177.265i 0.807462 0.555688i
\(320\) −75.0031 −0.234385
\(321\) 0 0
\(322\) 16.1803 11.7557i 0.0502495 0.0365084i
\(323\) −25.6378 18.6269i −0.0793739 0.0576685i
\(324\) 0 0
\(325\) −45.0000 + 14.6214i −0.138462 + 0.0449889i
\(326\) 74.4630 102.490i 0.228414 0.314385i
\(327\) 0 0
\(328\) 117.711 362.276i 0.358874 1.10450i
\(329\) 271.260i 0.824499i
\(330\) 0 0
\(331\) 208.884 0.631068 0.315534 0.948914i \(-0.397816\pi\)
0.315534 + 0.948914i \(0.397816\pi\)
\(332\) 274.888 + 89.3165i 0.827976 + 0.269026i
\(333\) 0 0
\(334\) −145.154 105.461i −0.434593 0.315750i
\(335\) 47.5805 + 146.438i 0.142031 + 0.437127i
\(336\) 0 0
\(337\) −79.3090 + 109.159i −0.235338 + 0.323915i −0.910309 0.413929i \(-0.864156\pi\)
0.674971 + 0.737844i \(0.264156\pi\)
\(338\) −60.3682 83.0897i −0.178604 0.245828i
\(339\) 0 0
\(340\) 212.251i 0.624266i
\(341\) −47.6707 + 62.2051i −0.139797 + 0.182420i
\(342\) 0 0
\(343\) −11.3050 3.67320i −0.0329590 0.0107090i
\(344\) 101.290 73.5917i 0.294448 0.213929i
\(345\) 0 0
\(346\) 11.1691 + 34.3750i 0.0322806 + 0.0993496i
\(347\) 90.1393 29.2880i 0.259767 0.0844036i −0.176238 0.984348i \(-0.556393\pi\)
0.436005 + 0.899944i \(0.356393\pi\)
\(348\) 0 0
\(349\) −100.997 139.010i −0.289389 0.398310i 0.639426 0.768852i \(-0.279172\pi\)
−0.928816 + 0.370542i \(0.879172\pi\)
\(350\) 20.1246 61.9372i 0.0574989 0.176963i
\(351\) 0 0
\(352\) −106.080 + 300.149i −0.301362 + 0.852695i
\(353\) 119.644 0.338936 0.169468 0.985536i \(-0.445795\pi\)
0.169468 + 0.985536i \(0.445795\pi\)
\(354\) 0 0
\(355\) −246.971 + 179.435i −0.695692 + 0.505450i
\(356\) 346.343 + 251.633i 0.972873 + 0.706834i
\(357\) 0 0
\(358\) 151.290 49.1572i 0.422598 0.137311i
\(359\) −274.681 + 378.066i −0.765127 + 1.05311i 0.231643 + 0.972801i \(0.425590\pi\)
−0.996770 + 0.0803065i \(0.974410\pi\)
\(360\) 0 0
\(361\) 110.226 339.242i 0.305336 0.939728i
\(362\) 28.2637i 0.0780766i
\(363\) 0 0
\(364\) 181.803 0.499460
\(365\) −391.341 127.155i −1.07217 0.348368i
\(366\) 0 0
\(367\) 266.026 + 193.279i 0.724867 + 0.526647i 0.887936 0.459968i \(-0.152139\pi\)
−0.163068 + 0.986615i \(0.552139\pi\)
\(368\) 8.49342 + 26.1401i 0.0230800 + 0.0710328i
\(369\) 0 0
\(370\) 68.7539 94.6316i 0.185821 0.255761i
\(371\) −67.0820 92.3305i −0.180814 0.248869i
\(372\) 0 0
\(373\) 214.135i 0.574088i 0.957917 + 0.287044i \(0.0926726\pi\)
−0.957917 + 0.287044i \(0.907327\pi\)
\(374\) −115.156 40.6989i −0.307904 0.108821i
\(375\) 0 0
\(376\) −140.623 45.6912i −0.373997 0.121519i
\(377\) −120.902 + 87.8402i −0.320694 + 0.232998i
\(378\) 0 0
\(379\) 98.9630 + 304.577i 0.261116 + 0.803633i 0.992563 + 0.121734i \(0.0388456\pi\)
−0.731447 + 0.681899i \(0.761154\pi\)
\(380\) −27.3901 + 8.89958i −0.0720792 + 0.0234200i
\(381\) 0 0
\(382\) 51.1622 + 70.4187i 0.133932 + 0.184342i
\(383\) 169.205 520.759i 0.441788 1.35968i −0.444181 0.895937i \(-0.646505\pi\)
0.885968 0.463746i \(-0.153495\pi\)
\(384\) 0 0
\(385\) −347.830 266.558i −0.903454 0.692358i
\(386\) 21.2322 0.0550058
\(387\) 0 0
\(388\) 217.441 157.980i 0.560415 0.407166i
\(389\) 272.259 + 197.808i 0.699895 + 0.508504i 0.879898 0.475162i \(-0.157611\pi\)
−0.180003 + 0.983666i \(0.557611\pi\)
\(390\) 0 0
\(391\) −40.1722 + 13.0527i −0.102742 + 0.0333830i
\(392\) −160.167 + 220.450i −0.408588 + 0.562373i
\(393\) 0 0
\(394\) −63.3212 + 194.883i −0.160714 + 0.494626i
\(395\) 15.7410i 0.0398506i
\(396\) 0 0
\(397\) 115.374 0.290614 0.145307 0.989387i \(-0.453583\pi\)
0.145307 + 0.989387i \(0.453583\pi\)
\(398\) 122.628 + 39.8443i 0.308111 + 0.100111i
\(399\) 0 0
\(400\) 72.4058 + 52.6059i 0.181014 + 0.131515i
\(401\) −19.7138 60.6729i −0.0491617 0.151304i 0.923462 0.383690i \(-0.125347\pi\)
−0.972624 + 0.232386i \(0.925347\pi\)
\(402\) 0 0
\(403\) 22.0163 30.3028i 0.0546309 0.0751930i
\(404\) −229.952 316.502i −0.569189 0.783422i
\(405\) 0 0
\(406\) 205.690i 0.506626i
\(407\) 250.997 + 364.720i 0.616700 + 0.896118i
\(408\) 0 0
\(409\) −581.745 189.020i −1.42236 0.462152i −0.506008 0.862529i \(-0.668879\pi\)
−0.916351 + 0.400377i \(0.868879\pi\)
\(410\) 164.971 119.858i 0.402367 0.292337i
\(411\) 0 0
\(412\) 99.3657 + 305.816i 0.241179 + 0.742272i
\(413\) −21.5066 + 6.98791i −0.0520740 + 0.0169199i
\(414\) 0 0
\(415\) 195.718 + 269.383i 0.471610 + 0.649116i
\(416\) 47.0163 144.701i 0.113020 0.347839i
\(417\) 0 0
\(418\) −0.423579 + 16.5669i −0.00101335 + 0.0396338i
\(419\) −146.156 −0.348821 −0.174410 0.984673i \(-0.555802\pi\)
−0.174410 + 0.984673i \(0.555802\pi\)
\(420\) 0 0
\(421\) −480.079 + 348.798i −1.14033 + 0.828498i −0.987165 0.159702i \(-0.948947\pi\)
−0.153165 + 0.988201i \(0.548947\pi\)
\(422\) 57.8081 + 42.0000i 0.136986 + 0.0995261i
\(423\) 0 0
\(424\) −59.1641 + 19.2236i −0.139538 + 0.0453386i
\(425\) −80.8450 + 111.274i −0.190224 + 0.261820i
\(426\) 0 0
\(427\) 69.5967 214.197i 0.162990 0.501632i
\(428\) 294.535i 0.688165i
\(429\) 0 0
\(430\) 67.0232 0.155868
\(431\) −165.807 53.8738i −0.384702 0.124997i 0.110280 0.993901i \(-0.464825\pi\)
−0.494982 + 0.868903i \(0.664825\pi\)
\(432\) 0 0
\(433\) −502.109 364.804i −1.15961 0.842503i −0.169878 0.985465i \(-0.554337\pi\)
−0.989728 + 0.142962i \(0.954337\pi\)
\(434\) 15.9311 + 49.0309i 0.0367076 + 0.112975i
\(435\) 0 0
\(436\) 191.998 264.263i 0.440363 0.606107i
\(437\) 3.36881 + 4.63677i 0.00770895 + 0.0106105i
\(438\) 0 0
\(439\) 676.778i 1.54164i 0.637055 + 0.770818i \(0.280152\pi\)
−0.637055 + 0.770818i \(0.719848\pi\)
\(440\) −196.774 + 135.418i −0.447214 + 0.307768i
\(441\) 0 0
\(442\) 55.5166 + 18.0384i 0.125603 + 0.0408110i
\(443\) −209.784 + 152.417i −0.473552 + 0.344056i −0.798824 0.601565i \(-0.794544\pi\)
0.325272 + 0.945621i \(0.394544\pi\)
\(444\) 0 0
\(445\) 152.403 + 469.049i 0.342479 + 1.05404i
\(446\) −183.820 + 59.7266i −0.412152 + 0.133916i
\(447\) 0 0
\(448\) −109.769 151.084i −0.245020 0.337241i
\(449\) −124.349 + 382.707i −0.276947 + 0.852354i 0.711751 + 0.702432i \(0.247902\pi\)
−0.988698 + 0.149923i \(0.952098\pi\)
\(450\) 0 0
\(451\) 219.668 + 739.908i 0.487069 + 1.64059i
\(452\) 29.4903 0.0652441
\(453\) 0 0
\(454\) −149.606 + 108.695i −0.329528 + 0.239416i
\(455\) 169.443 + 123.107i 0.372402 + 0.270566i
\(456\) 0 0
\(457\) 243.209 79.0234i 0.532186 0.172918i −0.0305823 0.999532i \(-0.509736\pi\)
0.562769 + 0.826614i \(0.309736\pi\)
\(458\) −17.1703 + 23.6329i −0.0374897 + 0.0516002i
\(459\) 0 0
\(460\) −11.8622 + 36.5082i −0.0257875 + 0.0793656i
\(461\) 446.274i 0.968056i 0.875053 + 0.484028i \(0.160827\pi\)
−0.875053 + 0.484028i \(0.839173\pi\)
\(462\) 0 0
\(463\) 73.1308 0.157950 0.0789750 0.996877i \(-0.474835\pi\)
0.0789750 + 0.996877i \(0.474835\pi\)
\(464\) 268.838 + 87.3507i 0.579392 + 0.188256i
\(465\) 0 0
\(466\) 135.744 + 98.6239i 0.291297 + 0.211639i
\(467\) −3.43459 10.5706i −0.00735458 0.0226351i 0.947312 0.320313i \(-0.103788\pi\)
−0.954666 + 0.297678i \(0.903788\pi\)
\(468\) 0 0
\(469\) −225.344 + 310.160i −0.480479 + 0.661322i
\(470\) −46.5248 64.0358i −0.0989888 0.136246i
\(471\) 0 0
\(472\) 12.3262i 0.0261148i
\(473\) −84.5344 + 239.187i −0.178720 + 0.505682i
\(474\) 0 0
\(475\) 17.7492 + 5.76707i 0.0373668 + 0.0121412i
\(476\) 427.551 310.634i 0.898217 0.652593i
\(477\) 0 0
\(478\) −70.7589 217.774i −0.148031 0.455593i
\(479\) 545.546 177.259i 1.13893 0.370060i 0.321965 0.946752i \(-0.395657\pi\)
0.816962 + 0.576692i \(0.195657\pi\)
\(480\) 0 0
\(481\) −124.377 171.190i −0.258580 0.355905i
\(482\) −60.8282 + 187.210i −0.126199 + 0.388402i
\(483\) 0 0
\(484\) −109.239 405.678i −0.225700 0.838178i
\(485\) 309.633 0.638419
\(486\) 0 0
\(487\) 510.363 370.800i 1.04797 0.761397i 0.0761466 0.997097i \(-0.475738\pi\)
0.971826 + 0.235700i \(0.0757383\pi\)
\(488\) −99.3181 72.1588i −0.203521 0.147866i
\(489\) 0 0
\(490\) −138.731 + 45.0766i −0.283125 + 0.0919930i
\(491\) 256.297 352.763i 0.521990 0.718458i −0.463893 0.885891i \(-0.653548\pi\)
0.985883 + 0.167433i \(0.0535479\pi\)
\(492\) 0 0
\(493\) −134.241 + 413.152i −0.272294 + 0.838036i
\(494\) 7.92055i 0.0160335i
\(495\) 0 0
\(496\) −70.8491 −0.142841
\(497\) −722.895 234.883i −1.45452 0.472602i
\(498\) 0 0
\(499\) 376.446 + 273.504i 0.754401 + 0.548105i 0.897188 0.441649i \(-0.145606\pi\)
−0.142787 + 0.989753i \(0.545606\pi\)
\(500\) 145.921 + 449.099i 0.291842 + 0.898198i
\(501\) 0 0
\(502\) −4.75507 + 6.54479i −0.00947225 + 0.0130374i
\(503\) −270.059 371.704i −0.536896 0.738974i 0.451265 0.892390i \(-0.350973\pi\)
−0.988162 + 0.153415i \(0.950973\pi\)
\(504\) 0 0
\(505\) 450.695i 0.892465i
\(506\) 17.5329 + 13.4363i 0.0346500 + 0.0265539i
\(507\) 0 0
\(508\) 621.649 + 201.986i 1.22372 + 0.397610i
\(509\) −194.705 + 141.462i −0.382525 + 0.277920i −0.762385 0.647123i \(-0.775972\pi\)
0.379861 + 0.925044i \(0.375972\pi\)
\(510\) 0 0
\(511\) −316.602 974.400i −0.619573 1.90685i
\(512\) −479.078 + 155.662i −0.935699 + 0.304027i
\(513\) 0 0
\(514\) −172.221 237.042i −0.335061 0.461172i
\(515\) −114.472 + 352.309i −0.222276 + 0.684095i
\(516\) 0 0
\(517\) 287.207 85.2675i 0.555525 0.164928i
\(518\) 291.246 0.562251
\(519\) 0 0
\(520\) 92.3607 67.1040i 0.177617 0.129046i
\(521\) −564.504 410.136i −1.08350 0.787210i −0.105212 0.994450i \(-0.533552\pi\)
−0.978290 + 0.207240i \(0.933552\pi\)
\(522\) 0 0
\(523\) −353.526 + 114.868i −0.675959 + 0.219632i −0.626825 0.779160i \(-0.715646\pi\)
−0.0491334 + 0.998792i \(0.515646\pi\)
\(524\) 289.665 398.689i 0.552795 0.760857i
\(525\) 0 0
\(526\) 9.57857 29.4798i 0.0182102 0.0560452i
\(527\) 108.881i 0.206606i
\(528\) 0 0
\(529\) −521.361 −0.985559
\(530\) −31.6718 10.2908i −0.0597582 0.0194166i
\(531\) 0 0
\(532\) −58.0132 42.1490i −0.109047 0.0792275i
\(533\) −113.992 350.831i −0.213868 0.658219i
\(534\) 0 0
\(535\) 199.443 274.509i 0.372790 0.513102i
\(536\) 122.832 + 169.064i 0.229164 + 0.315417i
\(537\) 0 0
\(538\) 297.878i 0.553676i
\(539\) 14.1120 551.948i 0.0261819 1.02402i
\(540\) 0 0
\(541\) −64.3657 20.9137i −0.118975 0.0386575i 0.248924 0.968523i \(-0.419923\pi\)
−0.367900 + 0.929866i \(0.619923\pi\)
\(542\) −136.400 + 99.1005i −0.251661 + 0.182842i
\(543\) 0 0
\(544\) −136.671 420.630i −0.251233 0.773217i
\(545\) 357.889 116.285i 0.656676 0.213367i
\(546\) 0 0
\(547\) −436.380 600.625i −0.797769 1.09804i −0.993097 0.117297i \(-0.962577\pi\)
0.195328 0.980738i \(-0.437423\pi\)
\(548\) −17.4433 + 53.6850i −0.0318309 + 0.0979653i
\(549\) 0 0
\(550\) 71.9042 + 1.83843i 0.130735 + 0.00334259i
\(551\) 58.9443 0.106977
\(552\) 0 0
\(553\) −31.7082 + 23.0374i −0.0573385 + 0.0416589i
\(554\) 180.036 + 130.804i 0.324975 + 0.236108i
\(555\) 0 0
\(556\) 747.807 242.977i 1.34498 0.437010i
\(557\) 441.323 607.429i 0.792322 1.09054i −0.201494 0.979490i \(-0.564579\pi\)
0.993815 0.111047i \(-0.0354205\pi\)
\(558\) 0 0
\(559\) 37.4671 115.312i 0.0670252 0.206282i
\(560\) 396.164i 0.707435i
\(561\) 0 0
\(562\) 94.0507 0.167350
\(563\) 991.673 + 322.214i 1.76141 + 0.572316i 0.997345 0.0728240i \(-0.0232011\pi\)
0.764064 + 0.645140i \(0.223201\pi\)
\(564\) 0 0
\(565\) 27.4853 + 19.9692i 0.0486465 + 0.0353438i
\(566\) −94.7214 291.522i −0.167352 0.515057i
\(567\) 0 0
\(568\) −243.530 + 335.190i −0.428750 + 0.590123i
\(569\) 136.967 + 188.518i 0.240714 + 0.331315i 0.912232 0.409673i \(-0.134357\pi\)
−0.671518 + 0.740988i \(0.734357\pi\)
\(570\) 0 0
\(571\) 196.324i 0.343825i −0.985112 0.171912i \(-0.945005\pi\)
0.985112 0.171912i \(-0.0549946\pi\)
\(572\) 57.1478 + 192.491i 0.0999088 + 0.336523i
\(573\) 0 0
\(574\) 482.877 + 156.896i 0.841250 + 0.273339i
\(575\) 20.1246 14.6214i 0.0349993 0.0254285i
\(576\) 0 0
\(577\) 43.9884 + 135.382i 0.0762364 + 0.234631i 0.981911 0.189341i \(-0.0606352\pi\)
−0.905675 + 0.423973i \(0.860635\pi\)
\(578\) −38.3134 + 12.4488i −0.0662862 + 0.0215377i
\(579\) 0 0
\(580\) 232.053 + 319.393i 0.400091 + 0.550678i
\(581\) −256.199 + 788.498i −0.440961 + 1.35714i
\(582\) 0 0
\(583\) 76.6718 100.049i 0.131513 0.171610i
\(584\) −558.464 −0.956274
\(585\) 0 0
\(586\) 37.8998 27.5358i 0.0646754 0.0469894i
\(587\) −193.847 140.838i −0.330233 0.239929i 0.410296 0.911952i \(-0.365425\pi\)
−0.740530 + 0.672024i \(0.765425\pi\)
\(588\) 0 0
\(589\) −14.0507 + 4.56535i −0.0238552 + 0.00775102i
\(590\) −3.87849 + 5.33829i −0.00657372 + 0.00904795i
\(591\) 0 0
\(592\) −123.684 + 380.660i −0.208925 + 0.643006i
\(593\) 598.782i 1.00975i 0.863192 + 0.504875i \(0.168462\pi\)
−0.863192 + 0.504875i \(0.831538\pi\)
\(594\) 0 0
\(595\) 608.827 1.02324
\(596\) −221.858 72.0860i −0.372245 0.120950i
\(597\) 0 0
\(598\) −8.54102 6.20541i −0.0142826 0.0103769i
\(599\) −93.8359 288.797i −0.156654 0.482132i 0.841670 0.539992i \(-0.181573\pi\)
−0.998325 + 0.0578592i \(0.981573\pi\)
\(600\) 0 0
\(601\) −107.416 + 147.845i −0.178729 + 0.245999i −0.888977 0.457953i \(-0.848583\pi\)
0.710248 + 0.703952i \(0.248583\pi\)
\(602\) 98.0902 + 135.010i 0.162940 + 0.224268i
\(603\) 0 0
\(604\) 349.036i 0.577874i
\(605\) 172.892 452.067i 0.285771 0.747218i
\(606\) 0 0
\(607\) −769.237 249.940i −1.26728 0.411763i −0.403195 0.915114i \(-0.632100\pi\)
−0.864082 + 0.503351i \(0.832100\pi\)
\(608\) −48.5501 + 35.2737i −0.0798522 + 0.0580160i
\(609\) 0 0
\(610\) −20.3081 62.5018i −0.0332919 0.102462i
\(611\) −136.180 + 44.2477i −0.222881 + 0.0724185i
\(612\) 0 0
\(613\) 701.597 + 965.666i 1.14453 + 1.57531i 0.756946 + 0.653478i \(0.226691\pi\)
0.387585 + 0.921834i \(0.373309\pi\)
\(614\) 80.0420 246.344i 0.130362 0.401212i
\(615\) 0 0
\(616\) −560.766 198.188i −0.910334 0.321733i
\(617\) −107.900 −0.174878 −0.0874390 0.996170i \(-0.527868\pi\)
−0.0874390 + 0.996170i \(0.527868\pi\)
\(618\) 0 0
\(619\) 457.719 332.552i 0.739449 0.537241i −0.153089 0.988212i \(-0.548922\pi\)
0.892539 + 0.450971i \(0.148922\pi\)
\(620\) −80.0526 58.1616i −0.129117 0.0938091i
\(621\) 0 0
\(622\) −383.643 + 124.653i −0.616790 + 0.200407i
\(623\) −721.792 + 993.462i −1.15857 + 1.59464i
\(624\) 0 0
\(625\) −98.5764 + 303.387i −0.157722 + 0.485419i
\(626\) 240.768i 0.384614i
\(627\) 0 0
\(628\) −856.298 −1.36353
\(629\) −585.000 190.078i −0.930048 0.302191i
\(630\) 0 0
\(631\) −558.872 406.044i −0.885693 0.643494i 0.0490585 0.998796i \(-0.484378\pi\)
−0.934751 + 0.355302i \(0.884378\pi\)
\(632\) 6.60177 + 20.3182i 0.0104458 + 0.0321490i
\(633\) 0 0
\(634\) 220.755 303.843i 0.348193 0.479247i
\(635\) 442.610 + 609.200i 0.697023 + 0.959371i
\(636\) 0 0
\(637\) 263.883i 0.414259i
\(638\) 217.782 64.6564i 0.341351 0.101342i
\(639\) 0 0
\(640\) −492.207 159.928i −0.769073 0.249887i
\(641\) 624.756 453.912i 0.974659 0.708131i 0.0181501 0.999835i \(-0.494222\pi\)
0.956509 + 0.291704i \(0.0942223\pi\)
\(642\) 0 0
\(643\) 291.864 + 898.264i 0.453909 + 1.39699i 0.872411 + 0.488773i \(0.162555\pi\)
−0.418502 + 0.908216i \(0.637445\pi\)
\(644\) −90.9017 + 29.5358i −0.141152 + 0.0458630i
\(645\) 0 0
\(646\) −13.5333 18.6269i −0.0209493 0.0288343i
\(647\) 301.400 927.614i 0.465843 1.43372i −0.392077 0.919932i \(-0.628243\pi\)
0.857920 0.513784i \(-0.171757\pi\)
\(648\) 0 0
\(649\) −14.1591 20.5743i −0.0218167 0.0317016i
\(650\) −34.3769 −0.0528876
\(651\) 0 0
\(652\) −489.796 + 355.858i −0.751221 + 0.545794i
\(653\) 194.615 + 141.396i 0.298032 + 0.216533i 0.726744 0.686908i \(-0.241033\pi\)
−0.428712 + 0.903441i \(0.641033\pi\)
\(654\) 0 0
\(655\) 539.941 175.438i 0.824338 0.267844i
\(656\) −410.128 + 564.493i −0.625195 + 0.860507i
\(657\) 0 0
\(658\) 60.9017 187.436i 0.0925558 0.284857i
\(659\) 937.713i 1.42293i 0.702720 + 0.711467i \(0.251969\pi\)
−0.702720 + 0.711467i \(0.748031\pi\)
\(660\) 0 0
\(661\) 133.305 0.201672 0.100836 0.994903i \(-0.467848\pi\)
0.100836 + 0.994903i \(0.467848\pi\)
\(662\) 144.335 + 46.8973i 0.218029 + 0.0708418i
\(663\) 0 0
\(664\) 365.608 + 265.630i 0.550615 + 0.400045i
\(665\) −25.5279 78.5667i −0.0383878 0.118145i
\(666\) 0 0
\(667\) 46.1803 63.5618i 0.0692359 0.0952950i
\(668\) 503.995 + 693.689i 0.754483 + 1.03846i
\(669\) 0 0
\(670\) 111.868i 0.166968i
\(671\) 248.666 + 6.35781i 0.370590 + 0.00947513i
\(672\) 0 0
\(673\) 860.230 + 279.506i 1.27820 + 0.415313i 0.867947 0.496657i \(-0.165439\pi\)
0.410256 + 0.911971i \(0.365439\pi\)
\(674\) −79.3090 + 57.6214i −0.117669 + 0.0854917i
\(675\) 0 0
\(676\) 151.673 + 466.801i 0.224368 + 0.690534i
\(677\) −574.798 + 186.763i −0.849037 + 0.275869i −0.701043 0.713119i \(-0.747282\pi\)
−0.147995 + 0.988988i \(0.547282\pi\)
\(678\) 0 0
\(679\) 453.156 + 623.716i 0.667387 + 0.918580i
\(680\) 102.551 315.620i 0.150810 0.464147i
\(681\) 0 0
\(682\) −46.9055 + 32.2800i −0.0687764 + 0.0473313i
\(683\) −1261.32 −1.84673 −0.923367 0.383919i \(-0.874574\pi\)
−0.923367 + 0.383919i \(0.874574\pi\)
\(684\) 0 0
\(685\) −52.6099 + 38.2233i −0.0768028 + 0.0558005i
\(686\) −6.98684 5.07624i −0.0101849 0.00739977i
\(687\) 0 0
\(688\) −218.114 + 70.8695i −0.317026 + 0.103008i
\(689\) −35.4102 + 48.7380i −0.0513936 + 0.0707372i
\(690\) 0 0
\(691\) −132.915 + 409.071i −0.192352 + 0.591999i 0.807645 + 0.589669i \(0.200742\pi\)
−0.999997 + 0.00232993i \(0.999258\pi\)
\(692\) 172.732i 0.249612i
\(693\) 0 0
\(694\) 68.8603 0.0992224
\(695\) 861.495 + 279.917i 1.23956 + 0.402758i
\(696\) 0 0
\(697\) −867.516 630.287i −1.24464 0.904286i
\(698\) −38.5774 118.729i −0.0552685 0.170099i
\(699\) 0 0
\(700\) −182.936 + 251.790i −0.261337 + 0.359700i
\(701\) 299.098 + 411.673i 0.426674 + 0.587266i 0.967186 0.254070i \(-0.0817694\pi\)
−0.540512 + 0.841336i \(0.681769\pi\)
\(702\) 0 0
\(703\) 83.4619i 0.118722i
\(704\) 125.461 163.713i 0.178212 0.232548i
\(705\) 0 0
\(706\) 82.6722 + 26.8618i 0.117099 + 0.0380479i
\(707\) 907.866 659.603i 1.28411 0.932961i
\(708\) 0 0
\(709\) −227.956 701.577i −0.321518 0.989531i −0.972988 0.230856i \(-0.925847\pi\)
0.651470 0.758674i \(-0.274153\pi\)
\(710\) −210.938 + 68.5379i −0.297096 + 0.0965323i
\(711\) 0 0
\(712\) 393.438 + 541.521i 0.552582 + 0.760563i
\(713\) −6.08514 + 18.7282i −0.00853457 + 0.0262667i
\(714\) 0 0
\(715\) −77.0820 + 218.101i −0.107807 + 0.305036i
\(716\) −760.222 −1.06176
\(717\) 0 0
\(718\) −274.681 + 199.567i −0.382564 + 0.277949i
\(719\) −425.782 309.349i −0.592187 0.430249i 0.250910 0.968010i \(-0.419270\pi\)
−0.843097 + 0.537762i \(0.819270\pi\)
\(720\) 0 0
\(721\) −877.214 + 285.024i −1.21666 + 0.395318i
\(722\) 152.329 209.663i 0.210982 0.290392i
\(723\) 0 0
\(724\) 41.7395 128.461i 0.0576513 0.177432i
\(725\) 255.831i 0.352871i
\(726\) 0 0
\(727\) −756.122 −1.04006 −0.520029 0.854149i \(-0.674079\pi\)
−0.520029 + 0.854149i \(0.674079\pi\)
\(728\) 270.344 + 87.8402i 0.371352 + 0.120660i
\(729\) 0 0
\(730\) −241.862 175.723i −0.331318 0.240717i
\(731\) −108.913 335.199i −0.148991 0.458548i
\(732\) 0 0
\(733\) 250.381 344.620i 0.341584 0.470149i −0.603320 0.797500i \(-0.706156\pi\)
0.944903 + 0.327350i \(0.106156\pi\)
\(734\) 140.426 + 193.279i 0.191316 + 0.263323i
\(735\) 0 0
\(736\) 79.9888i 0.108680i
\(737\) −399.228 141.096i −0.541693 0.191447i
\(738\) 0 0
\(739\) 184.618 + 59.9862i 0.249822 + 0.0811721i 0.431251 0.902232i \(-0.358072\pi\)
−0.181429 + 0.983404i \(0.558072\pi\)
\(740\) −452.243 + 328.574i −0.611139 + 0.444019i
\(741\) 0 0
\(742\) −25.6231 78.8597i −0.0345324 0.106280i
\(743\) −211.584 + 68.7477i −0.284769 + 0.0925272i −0.447919 0.894074i \(-0.647835\pi\)
0.163150 + 0.986601i \(0.447835\pi\)
\(744\) 0 0
\(745\) −157.961 217.415i −0.212029 0.291832i
\(746\) −48.0763 + 147.964i −0.0644454 + 0.198343i
\(747\) 0 0
\(748\) 463.291 + 355.041i 0.619373 + 0.474654i
\(749\) 844.853 1.12797
\(750\) 0 0
\(751\) 1186.49 862.033i 1.57987 1.14785i 0.663037 0.748587i \(-0.269267\pi\)
0.916838 0.399260i \(-0.130733\pi\)
\(752\) 219.116 + 159.197i 0.291378 + 0.211699i
\(753\) 0 0
\(754\) −103.262 + 33.5520i −0.136953 + 0.0444986i
\(755\) 236.348 325.305i 0.313044 0.430868i
\(756\) 0 0
\(757\) 410.832 1264.41i 0.542710 1.67029i −0.183663 0.982989i \(-0.558795\pi\)
0.726373 0.687301i \(-0.241205\pi\)
\(758\) 232.676i 0.306961i
\(759\) 0 0
\(760\) −45.0294 −0.0592492
\(761\) −654.725 212.733i −0.860348 0.279544i −0.154574 0.987981i \(-0.549401\pi\)
−0.705774 + 0.708437i \(0.749401\pi\)
\(762\) 0 0
\(763\) 758.020 + 550.734i 0.993473 + 0.721801i
\(764\) −128.543 395.614i −0.168250 0.517820i
\(765\) 0 0
\(766\) 233.835 321.847i 0.305268 0.420165i
\(767\) 7.01626 + 9.65706i 0.00914767 + 0.0125907i
\(768\) 0 0
\(769\) 695.838i 0.904860i −0.891800 0.452430i \(-0.850557\pi\)
0.891800 0.452430i \(-0.149443\pi\)
\(770\) −180.498 262.280i −0.234414 0.340623i
\(771\) 0 0
\(772\) −96.5023 31.3555i −0.125003 0.0406159i
\(773\) 67.1591 48.7939i 0.0868811 0.0631228i −0.543497 0.839411i \(-0.682900\pi\)
0.630378 + 0.776288i \(0.282900\pi\)
\(774\) 0 0
\(775\) 19.8146 + 60.9832i 0.0255673 + 0.0786880i
\(776\) 399.668 129.860i 0.515036 0.167345i
\(777\) 0 0
\(778\) 143.716 + 197.808i 0.184725 + 0.254252i
\(779\) −44.9615 + 138.377i −0.0577169 + 0.177634i
\(780\) 0 0
\(781\) 21.4571 839.225i 0.0274738 1.07455i
\(782\) −30.6888 −0.0392440
\(783\) 0 0
\(784\) 403.811 293.386i 0.515065 0.374217i
\(785\) −798.079 579.838i −1.01666 0.738647i
\(786\) 0 0
\(787\) 103.159 33.5185i 0.131079 0.0425903i −0.242743 0.970091i \(-0.578047\pi\)
0.373822 + 0.927500i \(0.378047\pi\)
\(788\) 575.601 792.246i 0.730458 1.00539i
\(789\) 0 0
\(790\) −3.53408 + 10.8768i −0.00447351 + 0.0137681i
\(791\) 84.5910i 0.106942i
\(792\) 0 0
\(793\) −118.885 −0.149919
\(794\) 79.7214 + 25.9030i 0.100405 + 0.0326235i
\(795\) 0 0
\(796\) −498.514 362.191i −0.626273 0.455014i
\(797\) 308.596 + 949.759i 0.387196 + 1.19167i 0.934874 + 0.354979i \(0.115512\pi\)
−0.547678 + 0.836689i \(0.684488\pi\)
\(798\) 0 0
\(799\) −244.656 + 336.740i −0.306202 + 0.421451i
\(800\) 153.096 + 210.718i 0.191370 + 0.263398i
\(801\) 0 0
\(802\) 46.3500i 0.0577930i
\(803\) 932.162 641.505i 1.16085 0.798886i
\(804\) 0 0
\(805\) −104.721 34.0260i −0.130089 0.0422684i
\(806\) 22.0163 15.9958i 0.0273155 0.0198458i
\(807\) 0 0
\(808\) −189.021 581.748i −0.233937 0.719985i
\(809\) −71.6823 + 23.2910i −0.0886060 + 0.0287898i −0.352985 0.935629i \(-0.614833\pi\)
0.264379 + 0.964419i \(0.414833\pi\)
\(810\) 0 0
\(811\) −583.402 802.984i −0.719361 0.990115i −0.999545 0.0301690i \(-0.990395\pi\)
0.280184 0.959946i \(-0.409605\pi\)
\(812\) −303.761 + 934.880i −0.374090 + 1.15133i
\(813\) 0 0
\(814\) 91.5499 + 308.368i 0.112469 + 0.378830i
\(815\) −697.463 −0.855783
\(816\) 0 0
\(817\) −38.6894 + 28.1095i −0.0473555 + 0.0344058i
\(818\) −359.538 261.220i −0.439533 0.319339i
\(819\) 0 0
\(820\) −926.810 + 301.139i −1.13026 + 0.367243i
\(821\) 733.079 1009.00i 0.892910 1.22898i −0.0797652 0.996814i \(-0.525417\pi\)
0.972675 0.232171i \(-0.0745830\pi\)
\(822\) 0 0
\(823\) −165.319 + 508.800i −0.200874 + 0.618227i 0.798984 + 0.601353i \(0.205371\pi\)
−0.999858 + 0.0168738i \(0.994629\pi\)
\(824\) 502.763i 0.610149i
\(825\) 0 0
\(826\) −16.4296 −0.0198905
\(827\) −53.4969 17.3822i −0.0646879 0.0210184i 0.276494 0.961016i \(-0.410827\pi\)
−0.341182 + 0.939997i \(0.610827\pi\)
\(828\) 0 0
\(829\) 660.320 + 479.751i 0.796526 + 0.578710i 0.909893 0.414843i \(-0.136164\pi\)
−0.113367 + 0.993553i \(0.536164\pi\)
\(830\) 74.7577 + 230.081i 0.0900695 + 0.277206i
\(831\) 0 0
\(832\) −57.9431 + 79.7518i −0.0696431 + 0.0958555i
\(833\) 450.877 + 620.579i 0.541269 + 0.744993i
\(834\) 0 0
\(835\) 987.803i 1.18300i
\(836\) 26.3911 74.6726i 0.0315682 0.0893213i
\(837\) 0 0
\(838\) −100.991 32.8141i −0.120515 0.0391576i
\(839\) 49.8216 36.1975i 0.0593821 0.0431436i −0.557698 0.830044i \(-0.688315\pi\)
0.617080 + 0.786900i \(0.288315\pi\)
\(840\) 0 0
\(841\) 10.1913 + 31.3657i 0.0121181 + 0.0372958i
\(842\) −410.036 + 133.229i −0.486979 + 0.158229i
\(843\) 0 0
\(844\) −200.717 276.264i −0.237817 0.327327i
\(845\) −174.731 + 537.768i −0.206783 + 0.636412i
\(846\) 0 0
\(847\) 1163.66 313.344i 1.37386 0.369945i
\(848\) 113.951 0.134376
\(849\) 0 0
\(850\) −80.8450 + 58.7373i −0.0951118 + 0.0691028i
\(851\) 90.0000 + 65.3888i 0.105758 + 0.0768376i
\(852\) 0 0
\(853\) 1347.24 437.746i 1.57942 0.513184i 0.617511 0.786562i \(-0.288141\pi\)
0.961907 + 0.273379i \(0.0881412\pi\)
\(854\) 96.1803 132.381i 0.112623 0.155013i
\(855\) 0 0
\(856\) 142.307 437.977i 0.166247 0.511656i
\(857\) 1249.64i 1.45815i −0.684432 0.729077i \(-0.739950\pi\)
0.684432 0.729077i \(-0.260050\pi\)
\(858\) 0 0
\(859\) −345.229 −0.401896 −0.200948 0.979602i \(-0.564402\pi\)
−0.200948 + 0.979602i \(0.564402\pi\)
\(860\) −304.626 98.9790i −0.354216 0.115092i
\(861\) 0 0
\(862\) −102.474 74.4518i −0.118879 0.0863710i
\(863\) 125.242 + 385.456i 0.145124 + 0.446647i 0.997027 0.0770535i \(-0.0245512\pi\)
−0.851903 + 0.523700i \(0.824551\pi\)
\(864\) 0 0
\(865\) 116.964 160.988i 0.135219 0.186113i
\(866\) −265.045 364.804i −0.306057 0.421251i
\(867\) 0 0
\(868\) 246.377i 0.283844i
\(869\) −34.3588 26.3307i −0.0395383 0.0303000i
\(870\) 0 0
\(871\) 192.467 + 62.5364i 0.220973 + 0.0717983i
\(872\) 413.185 300.197i 0.473836 0.344262i
\(873\) 0 0
\(874\) 1.28677 + 3.96027i 0.00147228 + 0.00453121i
\(875\) −1288.21 + 418.565i −1.47224 + 0.478360i
\(876\) 0 0
\(877\) 209.069 + 287.759i 0.238391 + 0.328117i 0.911403 0.411514i \(-0.135000\pi\)
−0.673012 + 0.739631i \(0.735000\pi\)
\(878\) −151.946 + 467.642i −0.173059 + 0.532622i
\(879\) 0 0
\(880\) 419.453 124.529i 0.476651 0.141511i
\(881\) 883.370 1.00269 0.501345 0.865248i \(-0.332839\pi\)
0.501345 + 0.865248i \(0.332839\pi\)
\(882\) 0 0
\(883\) −674.512 + 490.062i −0.763887 + 0.554996i −0.900100 0.435683i \(-0.856507\pi\)
0.136213 + 0.990680i \(0.456507\pi\)
\(884\) −225.689 163.973i −0.255304 0.185489i
\(885\) 0 0
\(886\) −179.177 + 58.2180i −0.202231 + 0.0657088i
\(887\) −54.3406 + 74.7934i −0.0612633 + 0.0843217i −0.838549 0.544826i \(-0.816596\pi\)
0.777286 + 0.629147i \(0.216596\pi\)
\(888\) 0 0
\(889\) −579.384 + 1783.16i −0.651725 + 2.00580i
\(890\) 358.322i 0.402608i
\(891\) 0 0
\(892\) 923.680 1.03552
\(893\) 53.7132 + 17.4525i 0.0601492 + 0.0195437i
\(894\) 0 0
\(895\) −708.535 514.781i −0.791659 0.575174i
\(896\) −398.204 1225.54i −0.444424 1.36780i
\(897\) 0 0
\(898\) −171.846 + 236.526i −0.191365 + 0.263392i
\(899\) 119.039 + 163.844i 0.132413 + 0.182251i
\(900\) 0 0
\(901\) 175.121i 0.194363i
\(902\) −14.3328 + 560.583i −0.0158900 + 0.621489i
\(903\) 0 0
\(904\) 43.8525 + 14.2486i 0.0485095 + 0.0157617i
\(905\) 125.889 91.4634i 0.139103 0.101065i
\(906\) 0 0
\(907\) −454.784 1399.68i −0.501415 1.54320i −0.806715 0.590941i \(-0.798757\pi\)
0.305299 0.952256i \(-0.401243\pi\)
\(908\) 840.491 273.092i 0.925651 0.300762i
\(909\) 0 0
\(910\) 89.4427 + 123.107i 0.0982887 + 0.135283i
\(911\) −54.3525 + 167.280i −0.0596625 + 0.183622i −0.976446 0.215763i \(-0.930776\pi\)
0.916783 + 0.399385i \(0.130776\pi\)
\(912\) 0 0
\(913\) −915.384 23.4043i −1.00261 0.0256345i
\(914\) 185.795 0.203277
\(915\) 0 0
\(916\) 112.941 82.0566i 0.123298 0.0895814i
\(917\) 1143.61 + 830.884i 1.24713 + 0.906089i
\(918\) 0 0
\(919\) −1636.12 + 531.609i −1.78033 + 0.578465i −0.998960 0.0456019i \(-0.985479\pi\)
−0.781371 + 0.624066i \(0.785479\pi\)
\(920\) −35.2786 + 48.5569i −0.0383463 + 0.0527792i
\(921\) 0 0
\(922\) −100.195 + 308.368i −0.108671 + 0.334455i
\(923\) 401.228i 0.434700i
\(924\) 0 0
\(925\) 362.243 0.391614
\(926\) 50.5322 + 16.4189i 0.0545704 + 0.0177310i
\(927\) 0 0
\(928\) 665.535 + 483.539i 0.717171 + 0.521055i
\(929\) −288.957 889.317i −0.311040 0.957284i −0.977354 0.211612i \(-0.932129\pi\)
0.666313 0.745672i \(-0.267871\pi\)
\(930\) 0 0
\(931\) 61.1782 84.2046i 0.0657123 0.0904453i
\(932\) −471.322 648.720i −0.505711 0.696051i
\(933\) 0 0
\(934\) 8.07520i 0.00864583i
\(935\) 191.378 + 644.618i 0.204682 + 0.689431i
\(936\) 0 0
\(937\) −853.544 277.333i −0.910933 0.295980i −0.184191 0.982890i \(-0.558967\pi\)
−0.726742 + 0.686910i \(0.758967\pi\)
\(938\) −225.344 + 163.722i −0.240239 + 0.174544i
\(939\) 0 0
\(940\) 116.892 + 359.756i 0.124353 + 0.382719i
\(941\) −437.800 + 142.250i −0.465250 + 0.151169i −0.532256 0.846584i \(-0.678655\pi\)
0.0670056 + 0.997753i \(0.478655\pi\)
\(942\) 0 0
\(943\) 113.992 + 156.896i 0.120882 + 0.166380i
\(944\) 6.97716 21.4735i 0.00739106 0.0227473i
\(945\) 0 0
\(946\) −112.113 + 146.295i −0.118512 + 0.154646i
\(947\) −1781.44 −1.88114 −0.940570 0.339600i \(-0.889708\pi\)
−0.940570 + 0.339600i \(0.889708\pi\)
\(948\) 0 0
\(949\) −437.533 + 317.886i −0.461046 + 0.334970i
\(950\) 10.9696 + 7.96990i 0.0115470 + 0.00838937i
\(951\) 0 0
\(952\) 785.861 255.342i 0.825484 0.268216i
\(953\) −472.394 + 650.194i −0.495691 + 0.682260i −0.981425 0.191847i \(-0.938552\pi\)
0.485734 + 0.874107i \(0.338552\pi\)
\(954\) 0 0
\(955\) 148.085 455.759i 0.155063 0.477235i
\(956\) 1094.30i 1.14466i
\(957\) 0 0
\(958\) 416.760 0.435031
\(959\) −153.992 50.0350i −0.160575 0.0521741i
\(960\) 0 0
\(961\) 736.400 + 535.026i 0.766285 + 0.556738i
\(962\) −47.5078 146.214i −0.0493844 0.151989i
\(963\) 0 0
\(964\) 552.938 761.054i 0.573587 0.789475i
\(965\) −68.7089 94.5697i −0.0712010 0.0979997i
\(966\) 0 0
\(967\) 915.454i 0.946695i 0.880876 + 0.473347i \(0.156954\pi\)
−0.880876 + 0.473347i \(0.843046\pi\)
\(968\) 33.5683 656.030i 0.0346780 0.677716i
\(969\) 0 0
\(970\) 213.951 + 69.5170i 0.220568 + 0.0716670i
\(971\) 596.366 433.285i 0.614177 0.446226i −0.236706 0.971581i \(-0.576068\pi\)
0.850883 + 0.525356i \(0.176068\pi\)
\(972\) 0 0
\(973\) 696.964 + 2145.04i 0.716305 + 2.20456i
\(974\) 435.902 141.633i 0.447538 0.145414i
\(975\) 0 0
\(976\) 132.177 + 181.926i 0.135427 + 0.186400i
\(977\) −59.1165 + 181.942i −0.0605082 + 0.186225i −0.976742 0.214420i \(-0.931214\pi\)
0.916233 + 0.400645i \(0.131214\pi\)
\(978\) 0 0
\(979\) −1278.75 451.941i −1.30618 0.461635i
\(980\) 697.115 0.711341
\(981\) 0 0
\(982\) 256.297 186.211i 0.260995 0.189624i
\(983\) 772.503 + 561.257i 0.785863 + 0.570963i 0.906733 0.421705i \(-0.138568\pi\)
−0.120870 + 0.992668i \(0.538568\pi\)
\(984\) 0 0
\(985\) 1072.93 348.617i 1.08927 0.353926i
\(986\) −185.517 + 255.342i −0.188151 + 0.258967i
\(987\) 0 0
\(988\) −11.6970 + 35.9996i −0.0118390 + 0.0364368i
\(989\) 63.7429i 0.0644518i
\(990\) 0 0
\(991\) −1076.02 −1.08580 −0.542898 0.839799i \(-0.682673\pi\)
−0.542898 + 0.839799i \(0.682673\pi\)
\(992\) −196.096 63.7156i −0.197678 0.0642294i
\(993\) 0 0
\(994\) −446.774 324.600i −0.449471 0.326560i
\(995\) −219.364 675.132i −0.220466 0.678525i
\(996\) 0 0
\(997\) 283.439 390.120i 0.284292 0.391294i −0.642858 0.765986i \(-0.722251\pi\)
0.927150 + 0.374692i \(0.122251\pi\)
\(998\) 198.712 + 273.504i 0.199111 + 0.274052i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.3.k.a.46.1 4
3.2 odd 2 11.3.d.a.2.1 4
11.4 even 5 1089.3.c.e.604.3 4
11.6 odd 10 inner 99.3.k.a.28.1 4
11.7 odd 10 1089.3.c.e.604.2 4
12.11 even 2 176.3.n.a.145.1 4
15.2 even 4 275.3.q.d.24.2 8
15.8 even 4 275.3.q.d.24.1 8
15.14 odd 2 275.3.x.e.101.1 4
33.2 even 10 121.3.d.c.118.1 4
33.5 odd 10 121.3.d.d.94.1 4
33.8 even 10 121.3.d.a.40.1 4
33.14 odd 10 121.3.d.c.40.1 4
33.17 even 10 11.3.d.a.6.1 yes 4
33.20 odd 10 121.3.d.a.118.1 4
33.26 odd 10 121.3.b.b.120.2 4
33.29 even 10 121.3.b.b.120.3 4
33.32 even 2 121.3.d.d.112.1 4
132.83 odd 10 176.3.n.a.17.1 4
165.17 odd 20 275.3.q.d.149.1 8
165.83 odd 20 275.3.q.d.149.2 8
165.149 even 10 275.3.x.e.226.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.3.d.a.2.1 4 3.2 odd 2
11.3.d.a.6.1 yes 4 33.17 even 10
99.3.k.a.28.1 4 11.6 odd 10 inner
99.3.k.a.46.1 4 1.1 even 1 trivial
121.3.b.b.120.2 4 33.26 odd 10
121.3.b.b.120.3 4 33.29 even 10
121.3.d.a.40.1 4 33.8 even 10
121.3.d.a.118.1 4 33.20 odd 10
121.3.d.c.40.1 4 33.14 odd 10
121.3.d.c.118.1 4 33.2 even 10
121.3.d.d.94.1 4 33.5 odd 10
121.3.d.d.112.1 4 33.32 even 2
176.3.n.a.17.1 4 132.83 odd 10
176.3.n.a.145.1 4 12.11 even 2
275.3.q.d.24.1 8 15.8 even 4
275.3.q.d.24.2 8 15.2 even 4
275.3.q.d.149.1 8 165.17 odd 20
275.3.q.d.149.2 8 165.83 odd 20
275.3.x.e.101.1 4 15.14 odd 2
275.3.x.e.226.1 4 165.149 even 10
1089.3.c.e.604.2 4 11.7 odd 10
1089.3.c.e.604.3 4 11.4 even 5