Properties

Label 121.3.d.a.40.1
Level $121$
Weight $3$
Character 121.40
Analytic conductor $3.297$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [121,3,Mod(40,121)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(121, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("121.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 121.d (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-5,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.29701119876\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 40.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 121.40
Dual form 121.3.d.a.118.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.427051 - 0.587785i) q^{2} +(0.427051 - 1.31433i) q^{3} +(1.07295 + 3.30220i) q^{4} +(-3.23607 + 2.35114i) q^{5} +(-0.590170 - 0.812299i) q^{6} +(9.47214 - 3.07768i) q^{7} +(5.16312 + 1.67760i) q^{8} +(5.73607 + 4.16750i) q^{9} +2.90617i q^{10} +4.79837 q^{12} +(3.09017 - 4.25325i) q^{13} +(2.23607 - 6.88191i) q^{14} +(1.70820 + 5.25731i) q^{15} +(-8.04508 + 5.84510i) q^{16} +(-8.98278 - 12.3637i) q^{17} +(4.89919 - 1.59184i) q^{18} +(1.97214 + 0.640786i) q^{19} +(-11.2361 - 8.16348i) q^{20} -13.7638i q^{21} -2.76393 q^{23} +(4.40983 - 6.06961i) q^{24} +(-2.78115 + 8.55951i) q^{25} +(-1.18034 - 3.63271i) q^{26} +(17.9894 - 13.0700i) q^{27} +(20.3262 + 27.9767i) q^{28} +(-27.0344 + 8.78402i) q^{29} +(3.81966 + 1.24108i) q^{30} +(5.76393 + 4.18774i) q^{31} +28.9402i q^{32} -11.1033 q^{34} +(-23.4164 + 32.2299i) q^{35} +(-7.60739 + 23.4131i) q^{36} +(-12.4377 - 38.2793i) q^{37} +(1.21885 - 0.885544i) q^{38} +(-4.27051 - 5.87785i) q^{39} +(-20.6525 + 6.71040i) q^{40} +(-66.7320 - 21.6825i) q^{41} +(-8.09017 - 5.87785i) q^{42} -23.0624i q^{43} -28.3607 q^{45} +(-1.18034 + 1.62460i) q^{46} +(8.41641 - 25.9030i) q^{47} +(4.24671 + 13.0700i) q^{48} +(40.6074 - 29.5030i) q^{49} +(3.84346 + 5.29007i) q^{50} +(-20.0861 + 6.52637i) q^{51} +(17.3607 + 5.64083i) q^{52} +(9.27051 + 6.73542i) q^{53} -16.1554i q^{54} +54.0689 q^{56} +(1.68441 - 2.31838i) q^{57} +(-6.38197 + 19.6417i) q^{58} +(-0.701626 - 2.15938i) q^{59} +(-15.5279 + 11.2817i) q^{60} +(-13.2918 - 18.2946i) q^{61} +(4.92299 - 1.59958i) q^{62} +(67.1591 + 21.8213i) q^{63} +(-15.1697 - 11.0214i) q^{64} +21.0292i q^{65} -38.4934 q^{67} +(31.1894 - 42.9286i) q^{68} +(-1.18034 + 3.63271i) q^{69} +(8.94427 + 27.5276i) q^{70} +(-61.7426 + 44.8587i) q^{71} +(22.6246 + 31.1401i) q^{72} +(97.8353 - 31.7886i) q^{73} +(-27.8115 - 9.03651i) q^{74} +(10.0623 + 7.31069i) q^{75} +7.19991i q^{76} -5.27864 q^{78} +(2.31308 - 3.18368i) q^{79} +(12.2918 - 37.8303i) q^{80} +(10.2229 + 31.4629i) q^{81} +(-41.2426 + 29.9645i) q^{82} +(-48.9296 - 67.3458i) q^{83} +(45.4508 - 14.7679i) q^{84} +(58.1378 + 18.8901i) q^{85} +(-13.5557 - 9.84881i) q^{86} +39.2833i q^{87} +123.297 q^{89} +(-12.1115 + 16.6700i) q^{90} +(16.1803 - 49.7980i) q^{91} +(-2.96556 - 9.12705i) q^{92} +(7.96556 - 5.78732i) q^{93} +(-11.6312 - 16.0090i) q^{94} +(-7.88854 + 2.56314i) q^{95} +(38.0370 + 12.3590i) q^{96} +(62.6246 + 45.4994i) q^{97} -36.4677i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{2} - 5 q^{3} + 11 q^{4} - 4 q^{5} + 20 q^{6} + 20 q^{7} + 5 q^{8} + 14 q^{9} - 30 q^{12} - 10 q^{13} - 20 q^{15} - 21 q^{16} - 65 q^{17} - 5 q^{18} - 10 q^{19} - 36 q^{20} - 20 q^{23} + 40 q^{24}+ \cdots + 170 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/121\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.427051 0.587785i 0.213525 0.293893i −0.688797 0.724954i \(-0.741861\pi\)
0.902322 + 0.431062i \(0.141861\pi\)
\(3\) 0.427051 1.31433i 0.142350 0.438109i −0.854310 0.519763i \(-0.826020\pi\)
0.996661 + 0.0816539i \(0.0260202\pi\)
\(4\) 1.07295 + 3.30220i 0.268237 + 0.825549i
\(5\) −3.23607 + 2.35114i −0.647214 + 0.470228i −0.862321 0.506362i \(-0.830990\pi\)
0.215107 + 0.976590i \(0.430990\pi\)
\(6\) −0.590170 0.812299i −0.0983617 0.135383i
\(7\) 9.47214 3.07768i 1.35316 0.439669i 0.459408 0.888225i \(-0.348062\pi\)
0.893755 + 0.448556i \(0.148062\pi\)
\(8\) 5.16312 + 1.67760i 0.645390 + 0.209700i
\(9\) 5.73607 + 4.16750i 0.637341 + 0.463055i
\(10\) 2.90617i 0.290617i
\(11\) 0 0
\(12\) 4.79837 0.399864
\(13\) 3.09017 4.25325i 0.237705 0.327173i −0.673453 0.739230i \(-0.735190\pi\)
0.911158 + 0.412057i \(0.135190\pi\)
\(14\) 2.23607 6.88191i 0.159719 0.491565i
\(15\) 1.70820 + 5.25731i 0.113880 + 0.350487i
\(16\) −8.04508 + 5.84510i −0.502818 + 0.365319i
\(17\) −8.98278 12.3637i −0.528399 0.727279i 0.458487 0.888701i \(-0.348392\pi\)
−0.986885 + 0.161423i \(0.948392\pi\)
\(18\) 4.89919 1.59184i 0.272177 0.0884357i
\(19\) 1.97214 + 0.640786i 0.103797 + 0.0337256i 0.360455 0.932777i \(-0.382621\pi\)
−0.256658 + 0.966502i \(0.582621\pi\)
\(20\) −11.2361 8.16348i −0.561803 0.408174i
\(21\) 13.7638i 0.655420i
\(22\) 0 0
\(23\) −2.76393 −0.120171 −0.0600855 0.998193i \(-0.519137\pi\)
−0.0600855 + 0.998193i \(0.519137\pi\)
\(24\) 4.40983 6.06961i 0.183743 0.252900i
\(25\) −2.78115 + 8.55951i −0.111246 + 0.342380i
\(26\) −1.18034 3.63271i −0.0453977 0.139720i
\(27\) 17.9894 13.0700i 0.666272 0.484075i
\(28\) 20.3262 + 27.9767i 0.725937 + 0.999167i
\(29\) −27.0344 + 8.78402i −0.932222 + 0.302897i −0.735471 0.677556i \(-0.763039\pi\)
−0.196751 + 0.980453i \(0.563039\pi\)
\(30\) 3.81966 + 1.24108i 0.127322 + 0.0413694i
\(31\) 5.76393 + 4.18774i 0.185933 + 0.135088i 0.676858 0.736113i \(-0.263341\pi\)
−0.490925 + 0.871202i \(0.663341\pi\)
\(32\) 28.9402i 0.904382i
\(33\) 0 0
\(34\) −11.1033 −0.326568
\(35\) −23.4164 + 32.2299i −0.669040 + 0.920855i
\(36\) −7.60739 + 23.4131i −0.211316 + 0.650365i
\(37\) −12.4377 38.2793i −0.336154 1.03458i −0.966151 0.257978i \(-0.916944\pi\)
0.629997 0.776598i \(-0.283056\pi\)
\(38\) 1.21885 0.885544i 0.0320749 0.0233038i
\(39\) −4.27051 5.87785i −0.109500 0.150714i
\(40\) −20.6525 + 6.71040i −0.516312 + 0.167760i
\(41\) −66.7320 21.6825i −1.62761 0.528842i −0.653890 0.756590i \(-0.726864\pi\)
−0.973720 + 0.227747i \(0.926864\pi\)
\(42\) −8.09017 5.87785i −0.192623 0.139949i
\(43\) 23.0624i 0.536334i −0.963372 0.268167i \(-0.913582\pi\)
0.963372 0.268167i \(-0.0864180\pi\)
\(44\) 0 0
\(45\) −28.3607 −0.630237
\(46\) −1.18034 + 1.62460i −0.0256596 + 0.0353174i
\(47\) 8.41641 25.9030i 0.179073 0.551129i −0.820724 0.571326i \(-0.806429\pi\)
0.999796 + 0.0201971i \(0.00642936\pi\)
\(48\) 4.24671 + 13.0700i 0.0884731 + 0.272292i
\(49\) 40.6074 29.5030i 0.828722 0.602102i
\(50\) 3.84346 + 5.29007i 0.0768692 + 0.105801i
\(51\) −20.0861 + 6.52637i −0.393845 + 0.127968i
\(52\) 17.3607 + 5.64083i 0.333859 + 0.108477i
\(53\) 9.27051 + 6.73542i 0.174915 + 0.127083i 0.671798 0.740734i \(-0.265522\pi\)
−0.496883 + 0.867818i \(0.665522\pi\)
\(54\) 16.1554i 0.299175i
\(55\) 0 0
\(56\) 54.0689 0.965516
\(57\) 1.68441 2.31838i 0.0295510 0.0406734i
\(58\) −6.38197 + 19.6417i −0.110034 + 0.338650i
\(59\) −0.701626 2.15938i −0.0118920 0.0365997i 0.944934 0.327260i \(-0.106125\pi\)
−0.956826 + 0.290660i \(0.906125\pi\)
\(60\) −15.5279 + 11.2817i −0.258798 + 0.188028i
\(61\) −13.2918 18.2946i −0.217898 0.299911i 0.686049 0.727555i \(-0.259344\pi\)
−0.903947 + 0.427644i \(0.859344\pi\)
\(62\) 4.92299 1.59958i 0.0794030 0.0257996i
\(63\) 67.1591 + 21.8213i 1.06602 + 0.346370i
\(64\) −15.1697 11.0214i −0.237027 0.172210i
\(65\) 21.0292i 0.323527i
\(66\) 0 0
\(67\) −38.4934 −0.574529 −0.287264 0.957851i \(-0.592746\pi\)
−0.287264 + 0.957851i \(0.592746\pi\)
\(68\) 31.1894 42.9286i 0.458668 0.631302i
\(69\) −1.18034 + 3.63271i −0.0171064 + 0.0526480i
\(70\) 8.94427 + 27.5276i 0.127775 + 0.393252i
\(71\) −61.7426 + 44.8587i −0.869615 + 0.631812i −0.930484 0.366334i \(-0.880613\pi\)
0.0608688 + 0.998146i \(0.480613\pi\)
\(72\) 22.6246 + 31.1401i 0.314231 + 0.432501i
\(73\) 97.8353 31.7886i 1.34021 0.435461i 0.450822 0.892614i \(-0.351131\pi\)
0.889388 + 0.457153i \(0.151131\pi\)
\(74\) −27.8115 9.03651i −0.375831 0.122115i
\(75\) 10.0623 + 7.31069i 0.134164 + 0.0974759i
\(76\) 7.19991i 0.0947357i
\(77\) 0 0
\(78\) −5.27864 −0.0676749
\(79\) 2.31308 3.18368i 0.0292795 0.0402998i −0.794126 0.607753i \(-0.792071\pi\)
0.823406 + 0.567453i \(0.192071\pi\)
\(80\) 12.2918 37.8303i 0.153647 0.472878i
\(81\) 10.2229 + 31.4629i 0.126209 + 0.388431i
\(82\) −41.2426 + 29.9645i −0.502959 + 0.365421i
\(83\) −48.9296 67.3458i −0.589513 0.811395i 0.405185 0.914235i \(-0.367207\pi\)
−0.994698 + 0.102840i \(0.967207\pi\)
\(84\) 45.4508 14.7679i 0.541082 0.175808i
\(85\) 58.1378 + 18.8901i 0.683974 + 0.222237i
\(86\) −13.5557 9.84881i −0.157625 0.114521i
\(87\) 39.2833i 0.451533i
\(88\) 0 0
\(89\) 123.297 1.38536 0.692679 0.721246i \(-0.256430\pi\)
0.692679 + 0.721246i \(0.256430\pi\)
\(90\) −12.1115 + 16.6700i −0.134572 + 0.185222i
\(91\) 16.1803 49.7980i 0.177806 0.547230i
\(92\) −2.96556 9.12705i −0.0322343 0.0992071i
\(93\) 7.96556 5.78732i 0.0856512 0.0622292i
\(94\) −11.6312 16.0090i −0.123736 0.170308i
\(95\) −7.88854 + 2.56314i −0.0830373 + 0.0269805i
\(96\) 38.0370 + 12.3590i 0.396218 + 0.128739i
\(97\) 62.6246 + 45.4994i 0.645615 + 0.469066i 0.861775 0.507292i \(-0.169353\pi\)
−0.216160 + 0.976358i \(0.569353\pi\)
\(98\) 36.4677i 0.372119i
\(99\) 0 0
\(100\) −31.2492 −0.312492
\(101\) 66.2279 91.1549i 0.655722 0.902524i −0.343608 0.939113i \(-0.611649\pi\)
0.999330 + 0.0365890i \(0.0116492\pi\)
\(102\) −4.74169 + 14.5934i −0.0464871 + 0.143073i
\(103\) 28.6180 + 88.0773i 0.277845 + 0.855119i 0.988453 + 0.151530i \(0.0484201\pi\)
−0.710608 + 0.703589i \(0.751580\pi\)
\(104\) 23.0902 16.7760i 0.222021 0.161308i
\(105\) 32.3607 + 44.5407i 0.308197 + 0.424197i
\(106\) 7.91796 2.57270i 0.0746977 0.0242708i
\(107\) −80.6763 26.2133i −0.753984 0.244984i −0.0932893 0.995639i \(-0.529738\pi\)
−0.660695 + 0.750655i \(0.729738\pi\)
\(108\) 62.4615 + 45.3809i 0.578347 + 0.420194i
\(109\) 94.0766i 0.863088i −0.902092 0.431544i \(-0.857969\pi\)
0.902092 0.431544i \(-0.142031\pi\)
\(110\) 0 0
\(111\) −55.6231 −0.501109
\(112\) −58.2148 + 80.1258i −0.519775 + 0.715409i
\(113\) −2.62461 + 8.07772i −0.0232267 + 0.0714843i −0.961998 0.273057i \(-0.911965\pi\)
0.938771 + 0.344541i \(0.111965\pi\)
\(114\) −0.643386 1.98014i −0.00564373 0.0173696i
\(115\) 8.94427 6.49839i 0.0777763 0.0565078i
\(116\) −58.0132 79.8483i −0.500113 0.688347i
\(117\) 35.4508 11.5187i 0.302999 0.0984503i
\(118\) −1.56888 0.509761i −0.0132956 0.00432001i
\(119\) −123.138 89.4648i −1.03477 0.751805i
\(120\) 30.0098i 0.250082i
\(121\) 0 0
\(122\) −16.4296 −0.134669
\(123\) −56.9959 + 78.4482i −0.463382 + 0.637790i
\(124\) −7.64435 + 23.5269i −0.0616479 + 0.189733i
\(125\) −42.0263 129.344i −0.336210 1.03475i
\(126\) 41.5066 30.1563i 0.329417 0.239336i
\(127\) 110.652 + 152.300i 0.871279 + 1.19921i 0.978761 + 0.205006i \(0.0657214\pi\)
−0.107481 + 0.994207i \(0.534279\pi\)
\(128\) −123.052 + 39.9819i −0.961341 + 0.312359i
\(129\) −30.3115 9.84881i −0.234973 0.0763474i
\(130\) 12.3607 + 8.98056i 0.0950822 + 0.0690812i
\(131\) 141.932i 1.08345i 0.840556 + 0.541725i \(0.182229\pi\)
−0.840556 + 0.541725i \(0.817771\pi\)
\(132\) 0 0
\(133\) 20.6525 0.155282
\(134\) −16.4387 + 22.6259i −0.122677 + 0.168850i
\(135\) −27.4853 + 84.5910i −0.203595 + 0.626600i
\(136\) −25.6378 78.9049i −0.188513 0.580183i
\(137\) −13.1525 + 9.55583i −0.0960035 + 0.0697506i −0.634751 0.772716i \(-0.718898\pi\)
0.538748 + 0.842467i \(0.318898\pi\)
\(138\) 1.63119 + 2.24514i 0.0118202 + 0.0162691i
\(139\) −215.374 + 69.9792i −1.54945 + 0.503447i −0.953965 0.299918i \(-0.903041\pi\)
−0.595487 + 0.803365i \(0.703041\pi\)
\(140\) −131.554 42.7445i −0.939673 0.305318i
\(141\) −30.4508 22.1238i −0.215963 0.156907i
\(142\) 55.4484i 0.390481i
\(143\) 0 0
\(144\) −70.5066 −0.489629
\(145\) 66.8328 91.9875i 0.460916 0.634396i
\(146\) 23.0958 71.0815i 0.158190 0.486860i
\(147\) −21.4352 65.9707i −0.145818 0.448780i
\(148\) 113.061 82.1434i 0.763924 0.555023i
\(149\) 39.4903 + 54.3538i 0.265036 + 0.364790i 0.920706 0.390257i \(-0.127614\pi\)
−0.655670 + 0.755047i \(0.727614\pi\)
\(150\) 8.59424 2.79244i 0.0572949 0.0186162i
\(151\) 95.6049 + 31.0639i 0.633145 + 0.205721i 0.607968 0.793962i \(-0.291985\pi\)
0.0251772 + 0.999683i \(0.491985\pi\)
\(152\) 9.10739 + 6.61691i 0.0599170 + 0.0435323i
\(153\) 108.355i 0.708202i
\(154\) 0 0
\(155\) −28.4984 −0.183861
\(156\) 14.8278 20.4087i 0.0950499 0.130825i
\(157\) −76.2098 + 234.550i −0.485412 + 1.49395i 0.345970 + 0.938246i \(0.387550\pi\)
−0.831383 + 0.555700i \(0.812450\pi\)
\(158\) −0.883519 2.71919i −0.00559189 0.0172101i
\(159\) 12.8115 9.30812i 0.0805757 0.0585416i
\(160\) −68.0426 93.6526i −0.425266 0.585329i
\(161\) −26.1803 + 8.50651i −0.162611 + 0.0528355i
\(162\) 22.8591 + 7.42738i 0.141106 + 0.0458480i
\(163\) −141.065 102.490i −0.865428 0.628770i 0.0639280 0.997955i \(-0.479637\pi\)
−0.929356 + 0.369184i \(0.879637\pi\)
\(164\) 243.627i 1.48553i
\(165\) 0 0
\(166\) −60.4803 −0.364339
\(167\) −145.154 + 199.787i −0.869186 + 1.19633i 0.110115 + 0.993919i \(0.464878\pi\)
−0.979300 + 0.202413i \(0.935122\pi\)
\(168\) 23.0902 71.0642i 0.137441 0.423001i
\(169\) 43.6829 + 134.442i 0.258478 + 0.795515i
\(170\) 35.9311 26.1055i 0.211360 0.153562i
\(171\) 8.64183 + 11.8945i 0.0505370 + 0.0695583i
\(172\) 76.1565 24.7448i 0.442771 0.143865i
\(173\) −47.3131 15.3730i −0.273486 0.0888610i 0.169063 0.985605i \(-0.445926\pi\)
−0.442549 + 0.896744i \(0.645926\pi\)
\(174\) 23.0902 + 16.7760i 0.132702 + 0.0964137i
\(175\) 89.6363i 0.512208i
\(176\) 0 0
\(177\) −3.13777 −0.0177275
\(178\) 52.6540 72.4721i 0.295809 0.407146i
\(179\) 67.6591 208.233i 0.377984 1.16331i −0.563460 0.826143i \(-0.690530\pi\)
0.941444 0.337170i \(-0.109470\pi\)
\(180\) −30.4296 93.6526i −0.169053 0.520292i
\(181\) −31.4721 + 22.8658i −0.173879 + 0.126331i −0.671321 0.741167i \(-0.734273\pi\)
0.497442 + 0.867497i \(0.334273\pi\)
\(182\) −22.3607 30.7768i −0.122861 0.169103i
\(183\) −29.7214 + 9.65706i −0.162412 + 0.0527708i
\(184\) −14.2705 4.63677i −0.0775571 0.0251998i
\(185\) 130.249 + 94.6316i 0.704050 + 0.511522i
\(186\) 7.15352i 0.0384598i
\(187\) 0 0
\(188\) 94.5673 0.503018
\(189\) 130.172 179.167i 0.688742 0.947972i
\(190\) −1.86223 + 5.73136i −0.00980122 + 0.0301651i
\(191\) 37.0213 + 113.940i 0.193829 + 0.596543i 0.999988 + 0.00484524i \(0.00154229\pi\)
−0.806160 + 0.591698i \(0.798458\pi\)
\(192\) −20.9640 + 15.2312i −0.109188 + 0.0793294i
\(193\) −17.1772 23.6424i −0.0890012 0.122500i 0.762194 0.647348i \(-0.224122\pi\)
−0.851196 + 0.524848i \(0.824122\pi\)
\(194\) 53.4878 17.3792i 0.275710 0.0895837i
\(195\) 27.6393 + 8.98056i 0.141740 + 0.0460542i
\(196\) 140.994 + 102.438i 0.719359 + 0.522645i
\(197\) 282.037i 1.43166i 0.698275 + 0.715830i \(0.253951\pi\)
−0.698275 + 0.715830i \(0.746049\pi\)
\(198\) 0 0
\(199\) 177.469 0.891804 0.445902 0.895082i \(-0.352883\pi\)
0.445902 + 0.895082i \(0.352883\pi\)
\(200\) −28.7188 + 39.5281i −0.143594 + 0.197641i
\(201\) −16.4387 + 50.5930i −0.0817843 + 0.251706i
\(202\) −25.2968 77.8556i −0.125232 0.385424i
\(203\) −229.039 + 166.407i −1.12827 + 0.819738i
\(204\) −43.1027 59.3258i −0.211288 0.290813i
\(205\) 266.928 86.7302i 1.30209 0.423074i
\(206\) 63.9919 + 20.7922i 0.310640 + 0.100933i
\(207\) −15.8541 11.5187i −0.0765899 0.0556458i
\(208\) 52.2801i 0.251347i
\(209\) 0 0
\(210\) 40.0000 0.190476
\(211\) −57.8081 + 79.5660i −0.273972 + 0.377090i −0.923726 0.383055i \(-0.874872\pi\)
0.649754 + 0.760145i \(0.274872\pi\)
\(212\) −12.2949 + 37.8398i −0.0579948 + 0.178490i
\(213\) 32.5917 + 100.307i 0.153013 + 0.470925i
\(214\) −49.8607 + 36.2259i −0.232994 + 0.169280i
\(215\) 54.2229 + 74.6314i 0.252200 + 0.347123i
\(216\) 114.807 37.3032i 0.531516 0.172700i
\(217\) 67.4853 + 21.9273i 0.310992 + 0.101047i
\(218\) −55.2968 40.1755i −0.253655 0.184291i
\(219\) 142.163i 0.649146i
\(220\) 0 0
\(221\) −80.3444 −0.363549
\(222\) −23.7539 + 32.6944i −0.106999 + 0.147272i
\(223\) 82.2067 253.006i 0.368640 1.13456i −0.579031 0.815306i \(-0.696569\pi\)
0.947670 0.319251i \(-0.103431\pi\)
\(224\) 89.0689 + 274.126i 0.397629 + 1.22378i
\(225\) −51.6246 + 37.5075i −0.229443 + 0.166700i
\(226\) 3.62712 + 4.99231i 0.0160492 + 0.0220899i
\(227\) 242.067 78.6524i 1.06638 0.346487i 0.277301 0.960783i \(-0.410560\pi\)
0.789075 + 0.614297i \(0.210560\pi\)
\(228\) 9.46305 + 3.07473i 0.0415046 + 0.0134857i
\(229\) 32.5279 + 23.6329i 0.142043 + 0.103200i 0.656537 0.754293i \(-0.272020\pi\)
−0.514494 + 0.857494i \(0.672020\pi\)
\(230\) 8.03246i 0.0349237i
\(231\) 0 0
\(232\) −154.318 −0.665164
\(233\) 135.744 186.836i 0.582593 0.801871i −0.411384 0.911462i \(-0.634954\pi\)
0.993977 + 0.109592i \(0.0349543\pi\)
\(234\) 8.36881 25.7565i 0.0357641 0.110071i
\(235\) 33.6656 + 103.612i 0.143258 + 0.440903i
\(236\) 6.37790 4.63382i 0.0270250 0.0196348i
\(237\) −3.19660 4.39974i −0.0134878 0.0185643i
\(238\) −105.172 + 34.1725i −0.441900 + 0.143582i
\(239\) 299.740 + 97.3913i 1.25414 + 0.407495i 0.859403 0.511299i \(-0.170836\pi\)
0.394737 + 0.918794i \(0.370836\pi\)
\(240\) −44.4721 32.3109i −0.185301 0.134629i
\(241\) 270.933i 1.12420i −0.827069 0.562101i \(-0.809993\pi\)
0.827069 0.562101i \(-0.190007\pi\)
\(242\) 0 0
\(243\) 245.843 1.01170
\(244\) 46.1509 63.5213i 0.189143 0.260333i
\(245\) −62.0426 + 190.947i −0.253235 + 0.779377i
\(246\) 21.7705 + 67.0027i 0.0884980 + 0.272369i
\(247\) 8.81966 6.40786i 0.0357071 0.0259427i
\(248\) 22.7345 + 31.2914i 0.0916714 + 0.126175i
\(249\) −109.410 + 35.5494i −0.439397 + 0.142769i
\(250\) −93.9737 30.5339i −0.375895 0.122136i
\(251\) −9.00813 6.54479i −0.0358890 0.0260749i 0.569696 0.821855i \(-0.307061\pi\)
−0.605585 + 0.795781i \(0.707061\pi\)
\(252\) 245.186i 0.972959i
\(253\) 0 0
\(254\) 136.774 0.538480
\(255\) 49.6556 68.3450i 0.194728 0.268020i
\(256\) −5.87132 + 18.0701i −0.0229349 + 0.0705862i
\(257\) −124.621 383.543i −0.484905 1.49238i −0.832119 0.554598i \(-0.812872\pi\)
0.347214 0.937786i \(-0.387128\pi\)
\(258\) −18.7336 + 13.6107i −0.0726107 + 0.0527547i
\(259\) −235.623 324.307i −0.909742 1.25215i
\(260\) −69.4427 + 22.5633i −0.267087 + 0.0867820i
\(261\) −191.679 62.2802i −0.734401 0.238622i
\(262\) 83.4255 + 60.6122i 0.318418 + 0.231344i
\(263\) 42.6636i 0.162219i −0.996705 0.0811094i \(-0.974154\pi\)
0.996705 0.0811094i \(-0.0258463\pi\)
\(264\) 0 0
\(265\) −45.8359 −0.172966
\(266\) 8.81966 12.1392i 0.0331566 0.0456362i
\(267\) 52.6540 162.052i 0.197206 0.606938i
\(268\) −41.3015 127.113i −0.154110 0.474302i
\(269\) 331.692 240.988i 1.23306 0.895867i 0.235940 0.971768i \(-0.424183\pi\)
0.997115 + 0.0759003i \(0.0241831\pi\)
\(270\) 37.9837 + 52.2801i 0.140681 + 0.193630i
\(271\) −220.700 + 71.7098i −0.814391 + 0.264612i −0.686457 0.727171i \(-0.740835\pi\)
−0.127935 + 0.991783i \(0.540835\pi\)
\(272\) 144.534 + 46.9621i 0.531377 + 0.172655i
\(273\) −58.5410 42.5325i −0.214436 0.155797i
\(274\) 11.8117i 0.0431082i
\(275\) 0 0
\(276\) −13.2624 −0.0480521
\(277\) −180.036 + 247.799i −0.649951 + 0.894580i −0.999097 0.0424878i \(-0.986472\pi\)
0.349146 + 0.937068i \(0.386472\pi\)
\(278\) −50.8429 + 156.478i −0.182888 + 0.562871i
\(279\) 15.6099 + 48.0423i 0.0559495 + 0.172195i
\(280\) −174.971 + 127.124i −0.624895 + 0.454013i
\(281\) 76.0886 + 104.727i 0.270778 + 0.372694i 0.922652 0.385633i \(-0.126017\pi\)
−0.651874 + 0.758327i \(0.726017\pi\)
\(282\) −26.0081 + 8.45055i −0.0922274 + 0.0299665i
\(283\) −401.246 130.373i −1.41783 0.460681i −0.502919 0.864334i \(-0.667740\pi\)
−0.914912 + 0.403653i \(0.867740\pi\)
\(284\) −214.379 155.755i −0.754855 0.548434i
\(285\) 11.4627i 0.0402201i
\(286\) 0 0
\(287\) −698.827 −2.43494
\(288\) −120.608 + 166.003i −0.418779 + 0.576400i
\(289\) 17.1343 52.7339i 0.0592882 0.182470i
\(290\) −25.5279 78.5667i −0.0880271 0.270920i
\(291\) 86.5451 62.8787i 0.297406 0.216078i
\(292\) 209.945 + 288.964i 0.718988 + 0.989603i
\(293\) −61.3231 + 19.9251i −0.209294 + 0.0680037i −0.411788 0.911280i \(-0.635095\pi\)
0.202494 + 0.979284i \(0.435095\pi\)
\(294\) −47.9305 15.5736i −0.163029 0.0529713i
\(295\) 7.34752 + 5.33829i 0.0249069 + 0.0180959i
\(296\) 218.506i 0.738196i
\(297\) 0 0
\(298\) 48.8127 0.163801
\(299\) −8.54102 + 11.7557i −0.0285653 + 0.0393167i
\(300\) −13.3450 + 41.0717i −0.0444834 + 0.136906i
\(301\) −70.9787 218.450i −0.235810 0.725748i
\(302\) 59.0871 42.9293i 0.195653 0.142150i
\(303\) −91.5248 125.973i −0.302062 0.415753i
\(304\) −19.6115 + 6.37215i −0.0645114 + 0.0209610i
\(305\) 86.0263 + 27.9516i 0.282053 + 0.0916447i
\(306\) −63.6894 46.2731i −0.208135 0.151219i
\(307\) 356.512i 1.16128i 0.814161 + 0.580639i \(0.197197\pi\)
−0.814161 + 0.580639i \(0.802803\pi\)
\(308\) 0 0
\(309\) 127.984 0.414187
\(310\) −12.1703 + 16.7510i −0.0392590 + 0.0540354i
\(311\) −171.570 + 528.040i −0.551673 + 1.69788i 0.152897 + 0.988242i \(0.451140\pi\)
−0.704570 + 0.709634i \(0.748860\pi\)
\(312\) −12.1885 37.5123i −0.0390656 0.120232i
\(313\) 268.099 194.786i 0.856547 0.622318i −0.0703963 0.997519i \(-0.522426\pi\)
0.926943 + 0.375201i \(0.122426\pi\)
\(314\) 105.319 + 144.960i 0.335412 + 0.461655i
\(315\) −268.636 + 87.2852i −0.852813 + 0.277096i
\(316\) 12.9950 + 4.22232i 0.0411233 + 0.0133618i
\(317\) 418.204 + 303.843i 1.31925 + 0.958494i 0.999941 + 0.0108449i \(0.00345209\pi\)
0.319313 + 0.947649i \(0.396548\pi\)
\(318\) 11.5055i 0.0361807i
\(319\) 0 0
\(320\) 75.0031 0.234385
\(321\) −68.9058 + 94.8406i −0.214660 + 0.295454i
\(322\) −6.18034 + 19.0211i −0.0191936 + 0.0590718i
\(323\) −9.79276 30.1390i −0.0303181 0.0933096i
\(324\) −92.9280 + 67.5162i −0.286815 + 0.208383i
\(325\) 27.8115 + 38.2793i 0.0855739 + 0.117782i
\(326\) −120.484 + 39.1475i −0.369582 + 0.120084i
\(327\) −123.647 40.1755i −0.378127 0.122861i
\(328\) −308.171 223.899i −0.939545 0.682619i
\(329\) 271.260i 0.824499i
\(330\) 0 0
\(331\) 208.884 0.631068 0.315534 0.948914i \(-0.397816\pi\)
0.315534 + 0.948914i \(0.397816\pi\)
\(332\) 169.890 233.834i 0.511717 0.704318i
\(333\) 88.1854 271.407i 0.264821 0.815035i
\(334\) 55.4439 + 170.639i 0.166000 + 0.510895i
\(335\) 124.567 90.5035i 0.371843 0.270160i
\(336\) 80.4508 + 110.731i 0.239437 + 0.329557i
\(337\) −128.325 + 41.6952i −0.380785 + 0.123725i −0.493154 0.869942i \(-0.664156\pi\)
0.112369 + 0.993667i \(0.464156\pi\)
\(338\) 97.6778 + 31.7375i 0.288988 + 0.0938978i
\(339\) 9.49593 + 6.89920i 0.0280116 + 0.0203516i
\(340\) 212.251i 0.624266i
\(341\) 0 0
\(342\) 10.6819 0.0312336
\(343\) 6.98684 9.61657i 0.0203698 0.0280366i
\(344\) 38.6894 119.074i 0.112469 0.346145i
\(345\) −4.72136 14.5309i −0.0136851 0.0421184i
\(346\) −29.2411 + 21.2449i −0.0845118 + 0.0614014i
\(347\) 55.7092 + 76.6771i 0.160545 + 0.220971i 0.881710 0.471792i \(-0.156393\pi\)
−0.721165 + 0.692764i \(0.756393\pi\)
\(348\) −129.721 + 42.1490i −0.372763 + 0.121118i
\(349\) −163.416 53.0972i −0.468242 0.152141i 0.0653866 0.997860i \(-0.479172\pi\)
−0.533628 + 0.845719i \(0.679172\pi\)
\(350\) 52.6869 + 38.2793i 0.150534 + 0.109369i
\(351\) 116.902i 0.333054i
\(352\) 0 0
\(353\) −119.644 −0.338936 −0.169468 0.985536i \(-0.554205\pi\)
−0.169468 + 0.985536i \(0.554205\pi\)
\(354\) −1.33999 + 1.84433i −0.00378527 + 0.00520998i
\(355\) 94.3344 290.331i 0.265731 0.817835i
\(356\) 132.291 + 407.150i 0.371605 + 1.14368i
\(357\) −170.172 + 123.637i −0.476673 + 0.346323i
\(358\) −93.5025 128.695i −0.261180 0.359484i
\(359\) 444.443 144.408i 1.23800 0.402251i 0.384395 0.923169i \(-0.374410\pi\)
0.853607 + 0.520917i \(0.174410\pi\)
\(360\) −146.430 47.5778i −0.406749 0.132161i
\(361\) −288.576 209.663i −0.799381 0.580784i
\(362\) 28.2637i 0.0780766i
\(363\) 0 0
\(364\) 181.803 0.499460
\(365\) −241.862 + 332.895i −0.662636 + 0.912041i
\(366\) −7.01626 + 21.5938i −0.0191701 + 0.0589995i
\(367\) −101.613 312.733i −0.276875 0.852133i −0.988717 0.149794i \(-0.952139\pi\)
0.711843 0.702339i \(-0.247861\pi\)
\(368\) 22.2361 16.1554i 0.0604241 0.0439007i
\(369\) −292.417 402.478i −0.792459 1.09073i
\(370\) 111.246 36.1461i 0.300665 0.0976920i
\(371\) 108.541 + 35.2671i 0.292563 + 0.0950596i
\(372\) 27.6575 + 20.0944i 0.0743481 + 0.0540171i
\(373\) 214.135i 0.574088i −0.957917 0.287044i \(-0.907327\pi\)
0.957917 0.287044i \(-0.0926726\pi\)
\(374\) 0 0
\(375\) −187.947 −0.501193
\(376\) 86.9098 119.621i 0.231143 0.318141i
\(377\) −46.1803 + 142.128i −0.122494 + 0.376999i
\(378\) −49.7214 153.027i −0.131538 0.404832i
\(379\) −259.089 + 188.239i −0.683611 + 0.496673i −0.874554 0.484929i \(-0.838846\pi\)
0.190943 + 0.981601i \(0.438846\pi\)
\(380\) −16.9280 23.2994i −0.0445474 0.0613142i
\(381\) 247.426 80.3937i 0.649413 0.211007i
\(382\) 82.7821 + 26.8975i 0.216707 + 0.0704124i
\(383\) 442.984 + 321.847i 1.15662 + 0.840330i 0.989346 0.145581i \(-0.0465051\pi\)
0.167269 + 0.985911i \(0.446505\pi\)
\(384\) 178.805i 0.465637i
\(385\) 0 0
\(386\) −21.2322 −0.0550058
\(387\) 96.1124 132.287i 0.248352 0.341828i
\(388\) −83.0551 + 255.617i −0.214060 + 0.658808i
\(389\) 103.994 + 320.060i 0.267336 + 0.822776i 0.991146 + 0.132777i \(0.0423893\pi\)
−0.723810 + 0.690000i \(0.757611\pi\)
\(390\) 17.0820 12.4108i 0.0438001 0.0318226i
\(391\) 24.8278 + 34.1725i 0.0634982 + 0.0873978i
\(392\) 259.155 84.2046i 0.661110 0.214808i
\(393\) 186.545 + 60.6122i 0.474669 + 0.154229i
\(394\) 165.777 + 120.444i 0.420754 + 0.305696i
\(395\) 15.7410i 0.0398506i
\(396\) 0 0
\(397\) 115.374 0.290614 0.145307 0.989387i \(-0.453583\pi\)
0.145307 + 0.989387i \(0.453583\pi\)
\(398\) 75.7883 104.314i 0.190423 0.262095i
\(399\) 8.81966 27.1441i 0.0221044 0.0680304i
\(400\) −27.6565 85.1181i −0.0691414 0.212795i
\(401\) −51.6115 + 37.4979i −0.128707 + 0.0935110i −0.650276 0.759698i \(-0.725347\pi\)
0.521569 + 0.853209i \(0.325347\pi\)
\(402\) 22.7177 + 31.2682i 0.0565116 + 0.0777815i
\(403\) 35.6231 11.5746i 0.0883947 0.0287212i
\(404\) 372.071 + 120.893i 0.920967 + 0.299240i
\(405\) −107.056 77.7805i −0.264335 0.192051i
\(406\) 205.690i 0.506626i
\(407\) 0 0
\(408\) −114.656 −0.281019
\(409\) 359.538 494.861i 0.879066 1.20993i −0.0976130 0.995224i \(-0.531121\pi\)
0.976679 0.214706i \(-0.0688793\pi\)
\(410\) 63.0132 193.935i 0.153691 0.473011i
\(411\) 6.94272 + 21.3675i 0.0168923 + 0.0519890i
\(412\) −260.143 + 189.005i −0.631415 + 0.458750i
\(413\) −13.2918 18.2946i −0.0321835 0.0442968i
\(414\) −13.5410 + 4.39974i −0.0327078 + 0.0106274i
\(415\) 316.679 + 102.895i 0.763081 + 0.247940i
\(416\) 123.090 + 89.4302i 0.295890 + 0.214977i
\(417\) 312.957i 0.750495i
\(418\) 0 0
\(419\) 146.156 0.348821 0.174410 0.984673i \(-0.444198\pi\)
0.174410 + 0.984673i \(0.444198\pi\)
\(420\) −112.361 + 154.651i −0.267525 + 0.368217i
\(421\) 183.374 564.367i 0.435567 1.34054i −0.456937 0.889499i \(-0.651053\pi\)
0.892504 0.451039i \(-0.148947\pi\)
\(422\) 22.0807 + 67.9574i 0.0523240 + 0.161037i
\(423\) 156.228 113.506i 0.369333 0.268336i
\(424\) 36.5654 + 50.3280i 0.0862392 + 0.118698i
\(425\) 130.810 42.5027i 0.307788 0.100006i
\(426\) 72.8773 + 23.6793i 0.171073 + 0.0555851i
\(427\) −182.207 132.381i −0.426713 0.310025i
\(428\) 294.535i 0.688165i
\(429\) 0 0
\(430\) 67.0232 0.155868
\(431\) −102.474 + 141.043i −0.237759 + 0.327247i −0.911177 0.412015i \(-0.864825\pi\)
0.673418 + 0.739262i \(0.264825\pi\)
\(432\) −68.3303 + 210.299i −0.158172 + 0.486803i
\(433\) 191.789 + 590.265i 0.442930 + 1.36320i 0.884738 + 0.466089i \(0.154337\pi\)
−0.441808 + 0.897110i \(0.645663\pi\)
\(434\) 41.7082 30.3028i 0.0961019 0.0698221i
\(435\) −92.3607 127.124i −0.212323 0.292238i
\(436\) 310.659 100.939i 0.712522 0.231512i
\(437\) −5.45085 1.77109i −0.0124733 0.00405283i
\(438\) −83.5613 60.7109i −0.190779 0.138609i
\(439\) 676.778i 1.54164i −0.637055 0.770818i \(-0.719848\pi\)
0.637055 0.770818i \(-0.280152\pi\)
\(440\) 0 0
\(441\) 355.880 0.806985
\(442\) −34.3112 + 47.2253i −0.0776271 + 0.106844i
\(443\) −80.1302 + 246.615i −0.180881 + 0.556694i −0.999853 0.0171390i \(-0.994544\pi\)
0.818972 + 0.573833i \(0.194544\pi\)
\(444\) −59.6807 183.678i −0.134416 0.413690i
\(445\) −398.997 + 289.888i −0.896622 + 0.651434i
\(446\) −113.607 156.366i −0.254724 0.350597i
\(447\) 88.3030 28.6914i 0.197546 0.0641866i
\(448\) −177.610 57.7090i −0.396451 0.128815i
\(449\) −325.550 236.526i −0.725056 0.526784i 0.162940 0.986636i \(-0.447902\pi\)
−0.887996 + 0.459852i \(0.847902\pi\)
\(450\) 46.3618i 0.103026i
\(451\) 0 0
\(452\) −29.4903 −0.0652441
\(453\) 81.6563 112.390i 0.180257 0.248102i
\(454\) 57.1443 175.872i 0.125869 0.387384i
\(455\) 64.7214 + 199.192i 0.142245 + 0.437784i
\(456\) 12.5861 9.14434i 0.0276011 0.0200534i
\(457\) −150.312 206.886i −0.328909 0.452705i 0.612252 0.790663i \(-0.290264\pi\)
−0.941161 + 0.337958i \(0.890264\pi\)
\(458\) 27.7821 9.02696i 0.0606596 0.0197095i
\(459\) −323.189 105.010i −0.704115 0.228781i
\(460\) 31.0557 + 22.5633i 0.0675125 + 0.0490507i
\(461\) 446.274i 0.968056i 0.875053 + 0.484028i \(0.160827\pi\)
−0.875053 + 0.484028i \(0.839173\pi\)
\(462\) 0 0
\(463\) 73.1308 0.157950 0.0789750 0.996877i \(-0.474835\pi\)
0.0789750 + 0.996877i \(0.474835\pi\)
\(464\) 166.151 228.687i 0.358084 0.492860i
\(465\) −12.1703 + 37.4563i −0.0261727 + 0.0805512i
\(466\) −51.8497 159.577i −0.111265 0.342440i
\(467\) −8.99187 + 6.53298i −0.0192545 + 0.0139892i −0.597371 0.801965i \(-0.703788\pi\)
0.578116 + 0.815954i \(0.303788\pi\)
\(468\) 76.0739 + 104.707i 0.162551 + 0.223732i
\(469\) −364.615 + 118.471i −0.777431 + 0.252602i
\(470\) 75.2786 + 24.4595i 0.160167 + 0.0520415i
\(471\) 275.729 + 200.329i 0.585413 + 0.425327i
\(472\) 12.3262i 0.0261148i
\(473\) 0 0
\(474\) −3.95122 −0.00833590
\(475\) −10.9696 + 15.0984i −0.0230939 + 0.0317861i
\(476\) 163.310 502.616i 0.343088 1.05592i
\(477\) 25.1064 + 77.2696i 0.0526340 + 0.161991i
\(478\) 185.249 134.591i 0.387551 0.281572i
\(479\) 337.166 + 464.069i 0.703896 + 0.968829i 0.999907 + 0.0136448i \(0.00434339\pi\)
−0.296011 + 0.955184i \(0.595657\pi\)
\(480\) −152.148 + 49.4358i −0.316975 + 0.102991i
\(481\) −201.246 65.3888i −0.418391 0.135944i
\(482\) −159.250 115.702i −0.330395 0.240046i
\(483\) 38.0423i 0.0787624i
\(484\) 0 0
\(485\) −309.633 −0.638419
\(486\) 104.987 144.503i 0.216024 0.297331i
\(487\) −194.941 + 599.967i −0.400290 + 1.23197i 0.524475 + 0.851426i \(0.324262\pi\)
−0.924765 + 0.380540i \(0.875738\pi\)
\(488\) −37.9361 116.755i −0.0777380 0.239253i
\(489\) −194.947 + 141.637i −0.398664 + 0.289646i
\(490\) 85.7407 + 118.012i 0.174981 + 0.240841i
\(491\) −414.698 + 134.743i −0.844598 + 0.274426i −0.699182 0.714944i \(-0.746452\pi\)
−0.145416 + 0.989371i \(0.546452\pi\)
\(492\) −320.205 104.041i −0.650823 0.211465i
\(493\) 351.448 + 255.342i 0.712876 + 0.517935i
\(494\) 7.92055i 0.0160335i
\(495\) 0 0
\(496\) −70.8491 −0.142841
\(497\) −446.774 + 614.932i −0.898942 + 1.23729i
\(498\) −25.8282 + 79.4909i −0.0518638 + 0.159620i
\(499\) −143.790 442.539i −0.288156 0.886852i −0.985435 0.170052i \(-0.945606\pi\)
0.697279 0.716799i \(-0.254394\pi\)
\(500\) 382.026 277.558i 0.764053 0.555117i
\(501\) 200.598 + 276.099i 0.400395 + 0.551097i
\(502\) −7.69386 + 2.49989i −0.0153264 + 0.00497986i
\(503\) 436.964 + 141.978i 0.868716 + 0.282263i 0.709264 0.704943i \(-0.249027\pi\)
0.159452 + 0.987206i \(0.449027\pi\)
\(504\) 310.143 + 225.332i 0.615363 + 0.447087i
\(505\) 450.695i 0.892465i
\(506\) 0 0
\(507\) 195.356 0.385317
\(508\) −384.200 + 528.807i −0.756300 + 1.04096i
\(509\) −74.3707 + 228.890i −0.146111 + 0.449685i −0.997152 0.0754148i \(-0.975972\pi\)
0.851041 + 0.525100i \(0.175972\pi\)
\(510\) −18.9667 58.3736i −0.0371897 0.114458i
\(511\) 828.874 602.212i 1.62206 1.17850i
\(512\) −296.086 407.528i −0.578294 0.795953i
\(513\) 43.8525 14.2486i 0.0854826 0.0277750i
\(514\) −278.660 90.5421i −0.542140 0.176152i
\(515\) −299.692 217.739i −0.581926 0.422794i
\(516\) 110.662i 0.214461i
\(517\) 0 0
\(518\) −291.246 −0.562251
\(519\) −40.4102 + 55.6199i −0.0778617 + 0.107167i
\(520\) −35.2786 + 108.576i −0.0678435 + 0.208801i
\(521\) −215.622 663.615i −0.413861 1.27373i −0.913266 0.407364i \(-0.866448\pi\)
0.499405 0.866369i \(-0.333552\pi\)
\(522\) −118.464 + 86.0691i −0.226943 + 0.164883i
\(523\) 218.491 + 300.727i 0.417765 + 0.575005i 0.965091 0.261915i \(-0.0843540\pi\)
−0.547326 + 0.836920i \(0.684354\pi\)
\(524\) −468.687 + 152.286i −0.894441 + 0.290622i
\(525\) 117.812 + 38.2793i 0.224403 + 0.0729129i
\(526\) −25.0770 18.2195i −0.0476749 0.0346379i
\(527\) 108.881i 0.206606i
\(528\) 0 0
\(529\) −521.361 −0.985559
\(530\) −19.5743 + 26.9417i −0.0369326 + 0.0508334i
\(531\) 4.97465 15.3104i 0.00936845 0.0288331i
\(532\) 22.1591 + 68.1986i 0.0416524 + 0.128193i
\(533\) −298.435 + 216.825i −0.559915 + 0.406802i
\(534\) −72.7661 100.154i −0.136266 0.187554i
\(535\) 322.705 104.853i 0.603187 0.195987i
\(536\) −198.746 64.5765i −0.370795 0.120479i
\(537\) −244.793 177.852i −0.455852 0.331196i
\(538\) 297.878i 0.553676i
\(539\) 0 0
\(540\) −308.827 −0.571901
\(541\) 39.7802 54.7527i 0.0735309 0.101207i −0.770667 0.637238i \(-0.780077\pi\)
0.844198 + 0.536031i \(0.180077\pi\)
\(542\) −52.1002 + 160.348i −0.0961259 + 0.295845i
\(543\) 16.6130 + 51.1296i 0.0305949 + 0.0941613i
\(544\) 357.809 259.964i 0.657738 0.477875i
\(545\) 221.187 + 304.438i 0.405848 + 0.558602i
\(546\) −50.0000 + 16.2460i −0.0915751 + 0.0297546i
\(547\) −706.077 229.418i −1.29082 0.419412i −0.418440 0.908244i \(-0.637423\pi\)
−0.872378 + 0.488832i \(0.837423\pi\)
\(548\) −45.6672 33.1792i −0.0833343 0.0605459i
\(549\) 160.333i 0.292045i
\(550\) 0 0
\(551\) −58.9443 −0.106977
\(552\) −12.1885 + 16.7760i −0.0220806 + 0.0303913i
\(553\) 12.1115 37.2752i 0.0219014 0.0674055i
\(554\) 68.7678 + 211.645i 0.124130 + 0.382031i
\(555\) 180.000 130.778i 0.324324 0.235635i
\(556\) −462.170 636.123i −0.831242 1.14411i
\(557\) −714.076 + 232.017i −1.28200 + 0.416548i −0.869285 0.494311i \(-0.835421\pi\)
−0.412718 + 0.910859i \(0.635421\pi\)
\(558\) 34.9048 + 11.3413i 0.0625534 + 0.0203248i
\(559\) −98.0902 71.2667i −0.175474 0.127490i
\(560\) 396.164i 0.707435i
\(561\) 0 0
\(562\) 94.0507 0.167350
\(563\) 612.888 843.568i 1.08861 1.49834i 0.238937 0.971035i \(-0.423201\pi\)
0.849674 0.527309i \(-0.176799\pi\)
\(564\) 40.3851 124.292i 0.0716047 0.220377i
\(565\) −10.4984 32.3109i −0.0185813 0.0571874i
\(566\) −247.984 + 180.171i −0.438134 + 0.318323i
\(567\) 193.666 + 266.558i 0.341562 + 0.470120i
\(568\) −394.039 + 128.031i −0.693731 + 0.225407i
\(569\) −221.616 72.0076i −0.389484 0.126551i 0.107727 0.994180i \(-0.465643\pi\)
−0.497211 + 0.867629i \(0.665643\pi\)
\(570\) 6.73762 + 4.89517i 0.0118204 + 0.00858801i
\(571\) 196.324i 0.343825i 0.985112 + 0.171912i \(0.0549946\pi\)
−0.985112 + 0.171912i \(0.945005\pi\)
\(572\) 0 0
\(573\) 165.564 0.288943
\(574\) −298.435 + 410.760i −0.519921 + 0.715610i
\(575\) 7.68692 23.6579i 0.0133686 0.0411442i
\(576\) −41.0826 126.439i −0.0713240 0.219513i
\(577\) −115.163 + 83.6709i −0.199589 + 0.145010i −0.683091 0.730333i \(-0.739365\pi\)
0.483502 + 0.875344i \(0.339365\pi\)
\(578\) −23.6790 32.5914i −0.0409672 0.0563864i
\(579\) −38.4095 + 12.4800i −0.0663376 + 0.0215544i
\(580\) 375.469 + 121.997i 0.647360 + 0.210340i
\(581\) −670.736 487.319i −1.15445 0.838758i
\(582\) 77.7223i 0.133544i
\(583\) 0 0
\(584\) 558.464 0.956274
\(585\) −87.6393 + 120.625i −0.149811 + 0.206197i
\(586\) −14.4764 + 44.5539i −0.0247038 + 0.0760305i
\(587\) −74.0429 227.881i −0.126138 0.388212i 0.867969 0.496619i \(-0.165425\pi\)
−0.994107 + 0.108406i \(0.965425\pi\)
\(588\) 194.849 141.566i 0.331377 0.240759i
\(589\) 8.68381 + 11.9522i 0.0147433 + 0.0202924i
\(590\) 6.27553 2.03904i 0.0106365 0.00345601i
\(591\) 370.689 + 120.444i 0.627223 + 0.203797i
\(592\) 323.808 + 235.261i 0.546974 + 0.397400i
\(593\) 598.782i 1.00975i 0.863192 + 0.504875i \(0.168462\pi\)
−0.863192 + 0.504875i \(0.831538\pi\)
\(594\) 0 0
\(595\) 608.827 1.02324
\(596\) −137.116 + 188.724i −0.230060 + 0.316650i
\(597\) 75.7883 233.252i 0.126949 0.390708i
\(598\) 3.26238 + 10.0406i 0.00545548 + 0.0167903i
\(599\) −245.666 + 178.487i −0.410126 + 0.297974i −0.773653 0.633610i \(-0.781573\pi\)
0.363527 + 0.931584i \(0.381573\pi\)
\(600\) 39.6885 + 54.6265i 0.0661475 + 0.0910442i
\(601\) −173.803 + 56.4720i −0.289189 + 0.0939633i −0.450019 0.893019i \(-0.648583\pi\)
0.160830 + 0.986982i \(0.448583\pi\)
\(602\) −158.713 51.5691i −0.263643 0.0856629i
\(603\) −220.801 160.421i −0.366171 0.266039i
\(604\) 349.036i 0.577874i
\(605\) 0 0
\(606\) −113.131 −0.186685
\(607\) 475.414 654.352i 0.783220 1.07801i −0.211699 0.977335i \(-0.567900\pi\)
0.994919 0.100675i \(-0.0321002\pi\)
\(608\) −18.5445 + 57.0741i −0.0305008 + 0.0938718i
\(609\) 120.902 + 372.097i 0.198525 + 0.610997i
\(610\) 53.1672 38.6282i 0.0871593 0.0633250i
\(611\) −84.1641 115.842i −0.137748 0.189594i
\(612\) 357.809 116.259i 0.584656 0.189966i
\(613\) 1135.21 + 368.852i 1.85189 + 0.601716i 0.996487 + 0.0837533i \(0.0266908\pi\)
0.855403 + 0.517962i \(0.173309\pi\)
\(614\) 209.553 + 152.249i 0.341291 + 0.247962i
\(615\) 387.869i 0.630681i
\(616\) 0 0
\(617\) 107.900 0.174878 0.0874390 0.996170i \(-0.472132\pi\)
0.0874390 + 0.996170i \(0.472132\pi\)
\(618\) 54.6556 75.2270i 0.0884395 0.121726i
\(619\) −174.833 + 538.081i −0.282445 + 0.869275i 0.704708 + 0.709497i \(0.251078\pi\)
−0.987153 + 0.159778i \(0.948922\pi\)
\(620\) −30.5774 94.1075i −0.0493184 0.151786i
\(621\) −49.7214 + 36.1247i −0.0800666 + 0.0581718i
\(622\) 237.105 + 326.346i 0.381197 + 0.524673i
\(623\) 1167.88 379.469i 1.87461 0.609099i
\(624\) 68.7132 + 22.3263i 0.110117 + 0.0357793i
\(625\) 258.076 + 187.503i 0.412922 + 0.300006i
\(626\) 240.768i 0.384614i
\(627\) 0 0
\(628\) −856.298 −1.36353
\(629\) −361.550 + 497.631i −0.574801 + 0.791146i
\(630\) −63.4164 + 195.176i −0.100661 + 0.309803i
\(631\) 213.470 + 656.994i 0.338305 + 1.04119i 0.965071 + 0.261988i \(0.0843779\pi\)
−0.626767 + 0.779207i \(0.715622\pi\)
\(632\) 17.2837 12.5573i 0.0273476 0.0198692i
\(633\) 79.8888 + 109.957i 0.126207 + 0.173708i
\(634\) 357.188 116.058i 0.563389 0.183056i
\(635\) −716.158 232.694i −1.12781 0.366447i
\(636\) 44.4834 + 32.3191i 0.0699424 + 0.0508161i
\(637\) 263.883i 0.414259i
\(638\) 0 0
\(639\) −541.108 −0.846805
\(640\) 304.200 418.696i 0.475313 0.654212i
\(641\) 238.636 734.445i 0.372286 1.14578i −0.573005 0.819552i \(-0.694222\pi\)
0.945291 0.326228i \(-0.105778\pi\)
\(642\) 26.3197 + 81.0036i 0.0409964 + 0.126174i
\(643\) −764.109 + 555.157i −1.18835 + 0.863386i −0.993089 0.117365i \(-0.962555\pi\)
−0.195261 + 0.980751i \(0.562555\pi\)
\(644\) −56.1803 77.3256i −0.0872366 0.120071i
\(645\) 121.246 39.3953i 0.187978 0.0610779i
\(646\) −21.8973 7.11485i −0.0338967 0.0110137i
\(647\) 789.076 + 573.297i 1.21959 + 0.886085i 0.996066 0.0886128i \(-0.0282434\pi\)
0.223526 + 0.974698i \(0.428243\pi\)
\(648\) 179.597i 0.277155i
\(649\) 0 0
\(650\) 34.3769 0.0528876
\(651\) 57.6393 79.3337i 0.0885397 0.121864i
\(652\) 187.086 575.790i 0.286941 0.883113i
\(653\) 74.3363 + 228.784i 0.113838 + 0.350358i 0.991703 0.128551i \(-0.0410326\pi\)
−0.877865 + 0.478909i \(0.841033\pi\)
\(654\) −76.4183 + 55.5212i −0.116848 + 0.0848947i
\(655\) −333.702 459.301i −0.509469 0.701223i
\(656\) 663.601 215.617i 1.01159 0.328685i
\(657\) 693.669 + 225.387i 1.05581 + 0.343054i
\(658\) −159.443 115.842i −0.242314 0.176052i
\(659\) 937.713i 1.42293i 0.702720 + 0.711467i \(0.251969\pi\)
−0.702720 + 0.711467i \(0.748031\pi\)
\(660\) 0 0
\(661\) 133.305 0.201672 0.100836 0.994903i \(-0.467848\pi\)
0.100836 + 0.994903i \(0.467848\pi\)
\(662\) 89.2039 122.779i 0.134749 0.185466i
\(663\) −34.3112 + 105.599i −0.0517514 + 0.159274i
\(664\) −139.650 429.798i −0.210316 0.647287i
\(665\) −66.8328 + 48.5569i −0.100500 + 0.0730179i
\(666\) −121.869 167.739i −0.182987 0.251860i
\(667\) 74.7214 24.2784i 0.112026 0.0363995i
\(668\) −815.480 264.966i −1.22078 0.396655i
\(669\) −297.426 216.093i −0.444584 0.323009i
\(670\) 111.868i 0.166968i
\(671\) 0 0
\(672\) 398.328 0.592750
\(673\) −531.652 + 731.756i −0.789973 + 1.08730i 0.204139 + 0.978942i \(0.434561\pi\)
−0.994112 + 0.108362i \(0.965439\pi\)
\(674\) −30.2933 + 93.2333i −0.0449456 + 0.138328i
\(675\) 61.8419 + 190.330i 0.0916176 + 0.281970i
\(676\) −397.085 + 288.499i −0.587403 + 0.426773i
\(677\) −355.245 488.953i −0.524734 0.722234i 0.461582 0.887097i \(-0.347282\pi\)
−0.986316 + 0.164863i \(0.947282\pi\)
\(678\) 8.11050 2.63526i 0.0119624 0.00388681i
\(679\) 733.222 + 238.238i 1.07986 + 0.350866i
\(680\) 268.482 + 195.064i 0.394827 + 0.286858i
\(681\) 351.744i 0.516512i
\(682\) 0 0
\(683\) 1261.32 1.84673 0.923367 0.383919i \(-0.125426\pi\)
0.923367 + 0.383919i \(0.125426\pi\)
\(684\) −30.0056 + 41.2992i −0.0438679 + 0.0603789i
\(685\) 20.0952 61.8467i 0.0293361 0.0902871i
\(686\) −2.66874 8.21353i −0.00389029 0.0119731i
\(687\) 44.9524 32.6598i 0.0654329 0.0475398i
\(688\) 134.802 + 185.539i 0.195933 + 0.269679i
\(689\) 57.2949 18.6162i 0.0831566 0.0270192i
\(690\) −10.5573 3.43027i −0.0153004 0.00497140i
\(691\) 347.977 + 252.820i 0.503584 + 0.365875i 0.810384 0.585899i \(-0.199258\pi\)
−0.306800 + 0.951774i \(0.599258\pi\)
\(692\) 172.732i 0.249612i
\(693\) 0 0
\(694\) 68.8603 0.0992224
\(695\) 532.433 732.832i 0.766091 1.05443i
\(696\) −65.9017 + 202.825i −0.0946863 + 0.291415i
\(697\) 331.362 + 1019.83i 0.475411 + 1.46317i
\(698\) −100.997 + 73.3785i −0.144695 + 0.105127i
\(699\) −187.594 258.201i −0.268375 0.369386i
\(700\) −295.997 + 96.1752i −0.422853 + 0.137393i
\(701\) −483.951 157.245i −0.690373 0.224316i −0.0572417 0.998360i \(-0.518231\pi\)
−0.633131 + 0.774045i \(0.718231\pi\)
\(702\) −68.7132 49.9231i −0.0978821 0.0711155i
\(703\) 83.4619i 0.118722i
\(704\) 0 0
\(705\) 150.557 0.213556
\(706\) −51.0942 + 70.3252i −0.0723714 + 0.0996107i
\(707\) 346.774 1067.26i 0.490487 1.50956i
\(708\) −3.36666 10.3615i −0.00475518 0.0146349i
\(709\) 596.797 433.599i 0.841745 0.611564i −0.0811126 0.996705i \(-0.525847\pi\)
0.922858 + 0.385141i \(0.125847\pi\)
\(710\) −130.367 179.435i −0.183615 0.252725i
\(711\) 26.5360 8.62207i 0.0373221 0.0121267i
\(712\) 636.596 + 206.843i 0.894096 + 0.290509i
\(713\) −15.9311 11.5746i −0.0223438 0.0162337i
\(714\) 152.824i 0.214039i
\(715\) 0 0
\(716\) 760.222 1.06176
\(717\) 256.008 352.365i 0.357055 0.491443i
\(718\) 104.919 322.907i 0.146126 0.449731i
\(719\) −162.634 500.537i −0.226195 0.696157i −0.998168 0.0605017i \(-0.980730\pi\)
0.771973 0.635655i \(-0.219270\pi\)
\(720\) 228.164 165.771i 0.316895 0.230237i
\(721\) 542.148 + 746.202i 0.751939 + 1.03495i
\(722\) −246.474 + 80.0842i −0.341376 + 0.110920i
\(723\) −356.094 115.702i −0.492523 0.160030i
\(724\) −109.276 79.3933i −0.150933 0.109659i
\(725\) 255.831i 0.352871i
\(726\) 0 0
\(727\) −756.122 −1.04006 −0.520029 0.854149i \(-0.674079\pi\)
−0.520029 + 0.854149i \(0.674079\pi\)
\(728\) 167.082 229.969i 0.229508 0.315891i
\(729\) 12.9812 39.9521i 0.0178069 0.0548040i
\(730\) 92.3832 + 284.326i 0.126552 + 0.389488i
\(731\) −285.137 + 207.164i −0.390065 + 0.283398i
\(732\) −63.7790 87.7843i −0.0871298 0.119924i
\(733\) 405.125 131.633i 0.552694 0.179581i −0.0193373 0.999813i \(-0.506156\pi\)
0.572031 + 0.820232i \(0.306156\pi\)
\(734\) −227.214 73.8262i −0.309555 0.100581i
\(735\) 224.472 + 163.089i 0.305404 + 0.221889i
\(736\) 79.9888i 0.108680i
\(737\) 0 0
\(738\) −361.448 −0.489767
\(739\) −114.100 + 157.046i −0.154398 + 0.212511i −0.879208 0.476438i \(-0.841928\pi\)
0.724810 + 0.688949i \(0.241928\pi\)
\(740\) −172.741 + 531.644i −0.233434 + 0.718437i
\(741\) −4.65558 14.3284i −0.00628284 0.0193366i
\(742\) 67.0820 48.7380i 0.0904071 0.0656846i
\(743\) −130.766 179.984i −0.175997 0.242239i 0.711901 0.702280i \(-0.247835\pi\)
−0.887898 + 0.460041i \(0.847835\pi\)
\(744\) 50.8359 16.5176i 0.0683279 0.0222011i
\(745\) −255.587 83.0452i −0.343069 0.111470i
\(746\) −125.865 91.4465i −0.168720 0.122582i
\(747\) 590.214i 0.790112i
\(748\) 0 0
\(749\) −844.853 −1.12797
\(750\) −80.2631 + 110.473i −0.107017 + 0.147297i
\(751\) −453.197 + 1394.80i −0.603459 + 1.85725i −0.0964000 + 0.995343i \(0.530733\pi\)
−0.507059 + 0.861912i \(0.669267\pi\)
\(752\) 83.6950 + 257.587i 0.111297 + 0.342536i
\(753\) −12.4489 + 9.04468i −0.0165324 + 0.0120115i
\(754\) 63.8197 + 87.8402i 0.0846415 + 0.116499i
\(755\) −382.420 + 124.256i −0.506516 + 0.164577i
\(756\) 731.312 + 237.618i 0.967344 + 0.314309i
\(757\) −1075.57 781.448i −1.42083 1.03230i −0.991633 0.129087i \(-0.958795\pi\)
−0.429200 0.903209i \(-0.641205\pi\)
\(758\) 232.676i 0.306961i
\(759\) 0 0
\(760\) −45.0294 −0.0592492
\(761\) −404.642 + 556.942i −0.531724 + 0.731856i −0.987392 0.158294i \(-0.949401\pi\)
0.455668 + 0.890150i \(0.349401\pi\)
\(762\) 58.4095 179.766i 0.0766528 0.235913i
\(763\) −289.538 891.106i −0.379473 1.16790i
\(764\) −336.530 + 244.503i −0.440484 + 0.320030i
\(765\) 254.758 + 350.644i 0.333017 + 0.458358i
\(766\) 378.353 122.934i 0.493934 0.160489i
\(767\) −11.3525 3.68867i −0.0148012 0.00480921i
\(768\) 21.2426 + 15.4337i 0.0276597 + 0.0200959i
\(769\) 695.838i 0.904860i 0.891800 + 0.452430i \(0.149443\pi\)
−0.891800 + 0.452430i \(0.850557\pi\)
\(770\) 0 0
\(771\) −557.320 −0.722853
\(772\) 59.6417 82.0897i 0.0772561 0.106334i
\(773\) 25.6525 78.9502i 0.0331856 0.102135i −0.933092 0.359639i \(-0.882900\pi\)
0.966277 + 0.257504i \(0.0829000\pi\)
\(774\) −36.7117 112.987i −0.0474311 0.145978i
\(775\) −51.8754 + 37.6897i −0.0669360 + 0.0486318i
\(776\) 247.008 + 339.978i 0.318310 + 0.438116i
\(777\) −526.869 + 171.190i −0.678081 + 0.220322i
\(778\) 232.537 + 75.5559i 0.298891 + 0.0971156i
\(779\) −117.711 85.5218i −0.151105 0.109784i
\(780\) 100.906i 0.129367i
\(781\) 0 0
\(782\) 30.6888 0.0392440
\(783\) −371.525 + 511.360i −0.474489 + 0.653078i
\(784\) −154.242 + 474.708i −0.196737 + 0.605495i
\(785\) −304.839 938.198i −0.388330 1.19516i
\(786\) 115.291 83.7640i 0.146681 0.106570i
\(787\) −63.7560 87.7526i −0.0810115 0.111503i 0.766588 0.642139i \(-0.221953\pi\)
−0.847599 + 0.530637i \(0.821953\pi\)
\(788\) −931.341 + 302.611i −1.18191 + 0.384024i
\(789\) −56.0739 18.2195i −0.0710696 0.0230919i
\(790\) 9.25233 + 6.72221i 0.0117118 + 0.00850913i
\(791\) 84.5910i 0.106942i
\(792\) 0 0
\(793\) −118.885 −0.149919
\(794\) 49.2705 67.8150i 0.0620535 0.0854094i
\(795\) −19.5743 + 60.2434i −0.0246217 + 0.0757779i
\(796\) 190.415 + 586.038i 0.239215 + 0.736228i
\(797\) 807.914 586.984i 1.01369 0.736491i 0.0487129 0.998813i \(-0.484488\pi\)
0.964981 + 0.262321i \(0.0844881\pi\)
\(798\) −12.1885 16.7760i −0.0152738 0.0210225i
\(799\) −395.861 + 128.623i −0.495446 + 0.160980i
\(800\) −247.714 80.4872i −0.309643 0.100609i
\(801\) 707.239 + 513.839i 0.882945 + 0.641497i
\(802\) 46.3500i 0.0577930i
\(803\) 0 0
\(804\) −184.706 −0.229734
\(805\) 64.7214 89.0813i 0.0803992 0.110660i
\(806\) 8.40946 25.8817i 0.0104336 0.0321112i
\(807\) −175.088 538.866i −0.216962 0.667740i
\(808\) 494.864 359.540i 0.612456 0.444975i
\(809\) −44.3021 60.9766i −0.0547615 0.0753728i 0.780758 0.624834i \(-0.214833\pi\)
−0.835520 + 0.549461i \(0.814833\pi\)
\(810\) −91.4365 + 29.7095i −0.112885 + 0.0366784i
\(811\) −943.964 306.712i −1.16395 0.378190i −0.337569 0.941301i \(-0.609605\pi\)
−0.826382 + 0.563110i \(0.809605\pi\)
\(812\) −795.256 577.787i −0.979380 0.711561i
\(813\) 320.696i 0.394460i
\(814\) 0 0
\(815\) 697.463 0.855783
\(816\) 123.447 169.910i 0.151283 0.208224i
\(817\) 14.7780 45.4822i 0.0180882 0.0556697i
\(818\) −137.331 422.662i −0.167887 0.516702i
\(819\) 300.344 218.213i 0.366721 0.266438i
\(820\) 572.800 + 788.392i 0.698537 + 0.961454i
\(821\) −1186.15 + 385.402i −1.44476 + 0.469430i −0.923377 0.383894i \(-0.874583\pi\)
−0.521381 + 0.853324i \(0.674583\pi\)
\(822\) 15.5244 + 5.04418i 0.0188861 + 0.00613647i
\(823\) 432.812 + 314.456i 0.525895 + 0.382085i 0.818820 0.574050i \(-0.194629\pi\)
−0.292925 + 0.956135i \(0.594629\pi\)
\(824\) 502.763i 0.610149i
\(825\) 0 0
\(826\) −16.4296 −0.0198905
\(827\) −33.0629 + 45.5072i −0.0399793 + 0.0550268i −0.828539 0.559932i \(-0.810827\pi\)
0.788559 + 0.614959i \(0.210827\pi\)
\(828\) 21.0263 64.7123i 0.0253941 0.0781550i
\(829\) −252.220 776.253i −0.304246 0.936372i −0.979958 0.199206i \(-0.936164\pi\)
0.675712 0.737166i \(-0.263836\pi\)
\(830\) 195.718 142.198i 0.235805 0.171322i
\(831\) 248.804 + 342.450i 0.299403 + 0.412093i
\(832\) −93.7539 + 30.4625i −0.112685 + 0.0366136i
\(833\) −729.534 237.040i −0.875792 0.284562i
\(834\) 183.951 + 133.648i 0.220565 + 0.160250i
\(835\) 987.803i 1.18300i
\(836\) 0 0
\(837\) 158.423 0.189275
\(838\) 62.4160 85.9083i 0.0744821 0.102516i
\(839\) 19.0301 58.5688i 0.0226819 0.0698078i −0.939075 0.343713i \(-0.888315\pi\)
0.961757 + 0.273905i \(0.0883154\pi\)
\(840\) 92.3607 + 284.257i 0.109953 + 0.338401i
\(841\) −26.6813 + 19.3851i −0.0317257 + 0.0230501i
\(842\) −253.416 348.798i −0.300970 0.414249i
\(843\) 170.139 55.2816i 0.201826 0.0655772i
\(844\) −324.768 105.523i −0.384796 0.125028i
\(845\) −457.453 332.359i −0.541364 0.393324i
\(846\) 140.301i 0.165841i
\(847\) 0 0
\(848\) −113.951 −0.134376
\(849\) −342.705 + 471.693i −0.403657 + 0.555587i
\(850\) 30.8800 95.0390i 0.0363295 0.111811i
\(851\) 34.3769 + 105.801i 0.0403959 + 0.124326i
\(852\) −296.264 + 215.249i −0.347728 + 0.252639i
\(853\) −832.642 1146.03i −0.976134 1.34353i −0.938887 0.344227i \(-0.888141\pi\)
−0.0372470 0.999306i \(-0.511859\pi\)
\(854\) −155.623 + 50.5650i −0.182228 + 0.0592096i
\(855\) −55.9311 18.1731i −0.0654165 0.0212551i
\(856\) −372.566 270.685i −0.435240 0.316221i
\(857\) 1249.64i 1.45815i −0.684432 0.729077i \(-0.739950\pi\)
0.684432 0.729077i \(-0.260050\pi\)
\(858\) 0 0
\(859\) −345.229 −0.401896 −0.200948 0.979602i \(-0.564402\pi\)
−0.200948 + 0.979602i \(0.564402\pi\)
\(860\) −188.269 + 259.130i −0.218918 + 0.301315i
\(861\) −298.435 + 918.487i −0.346614 + 1.06677i
\(862\) 39.1416 + 120.465i 0.0454079 + 0.139751i
\(863\) 327.889 238.225i 0.379940 0.276043i −0.381380 0.924418i \(-0.624551\pi\)
0.761321 + 0.648375i \(0.224551\pi\)
\(864\) 378.250 + 520.616i 0.437789 + 0.602565i
\(865\) 189.252 61.4918i 0.218789 0.0710888i
\(866\) 428.853 + 139.343i 0.495211 + 0.160904i
\(867\) −61.9925 45.0402i −0.0715023 0.0519494i
\(868\) 246.377i 0.283844i
\(869\) 0 0
\(870\) −114.164 −0.131223
\(871\) −118.951 + 163.722i −0.136569 + 0.187970i
\(872\) 157.823 485.729i 0.180989 0.557028i
\(873\) 169.600 + 521.976i 0.194273 + 0.597910i
\(874\) −3.36881 + 2.44758i −0.00385447 + 0.00280044i
\(875\) −796.158 1095.82i −0.909895 1.25236i
\(876\) 469.450 152.534i 0.535902 0.174125i
\(877\) 338.281 + 109.914i 0.385725 + 0.125330i 0.495459 0.868631i \(-0.335000\pi\)
−0.109734 + 0.993961i \(0.535000\pi\)
\(878\) −397.800 289.019i −0.453076 0.329179i
\(879\) 89.1077i 0.101374i
\(880\) 0 0
\(881\) −883.370 −1.00269 −0.501345 0.865248i \(-0.667161\pi\)
−0.501345 + 0.865248i \(0.667161\pi\)
\(882\) 151.979 209.181i 0.172312 0.237167i
\(883\) 257.641 792.936i 0.291779 0.898003i −0.692506 0.721412i \(-0.743493\pi\)
0.984284 0.176590i \(-0.0565068\pi\)
\(884\) −86.2055 265.313i −0.0975175 0.300128i
\(885\) 10.1540 7.37733i 0.0114735 0.00833597i
\(886\) 110.737 + 152.417i 0.124986 + 0.172028i
\(887\) 87.9249 28.5685i 0.0991262 0.0322080i −0.259034 0.965868i \(-0.583404\pi\)
0.358160 + 0.933660i \(0.383404\pi\)
\(888\) −287.188 93.3132i −0.323410 0.105082i
\(889\) 1516.85 + 1102.05i 1.70624 + 1.23966i
\(890\) 358.322i 0.402608i
\(891\) 0 0
\(892\) 923.680 1.03552
\(893\) 33.1966 45.6912i 0.0371742 0.0511660i
\(894\) 20.8455 64.1559i 0.0233171 0.0717628i
\(895\) 270.636 + 832.933i 0.302387 + 0.930651i
\(896\) −1042.51 + 757.428i −1.16352 + 0.845344i
\(897\) 11.8034 + 16.2460i 0.0131588 + 0.0181115i
\(898\) −278.053 + 90.3449i −0.309636 + 0.100607i
\(899\) −192.610 62.5828i −0.214249 0.0696137i
\(900\) −179.248 130.231i −0.199164 0.144701i
\(901\) 175.121i 0.194363i
\(902\) 0 0
\(903\) −317.426 −0.351524
\(904\) −27.1024 + 37.3032i −0.0299805 + 0.0412646i
\(905\) 48.0851 147.991i 0.0531328 0.163526i
\(906\) −31.1899 95.9928i −0.0344260 0.105952i
\(907\) 1190.64 865.050i 1.31272 0.953749i 0.312730 0.949842i \(-0.398757\pi\)
0.999992 0.00390645i \(-0.00124347\pi\)
\(908\) 519.452 + 714.964i 0.572083 + 0.787405i
\(909\) 759.776 246.866i 0.835837 0.271580i
\(910\) 144.721 + 47.0228i 0.159034 + 0.0516734i
\(911\) −142.297 103.385i −0.156198 0.113485i 0.506941 0.861981i \(-0.330776\pi\)
−0.663139 + 0.748496i \(0.730776\pi\)
\(912\) 28.4971i 0.0312468i
\(913\) 0 0
\(914\) −185.795 −0.203277
\(915\) 73.4752 101.130i 0.0803008 0.110525i
\(916\) −43.1397 + 132.770i −0.0470957 + 0.144946i
\(917\) 436.822 + 1344.40i 0.476359 + 1.46608i
\(918\) −199.742 + 145.121i −0.217584 + 0.158084i
\(919\) 1011.18 + 1391.77i 1.10031 + 1.51444i 0.834979 + 0.550281i \(0.185479\pi\)
0.265326 + 0.964159i \(0.414521\pi\)
\(920\) 57.0820 18.5471i 0.0620457 0.0201599i
\(921\) 468.574 + 152.249i 0.508766 + 0.165308i
\(922\) 262.313 + 190.582i 0.284504 + 0.206705i
\(923\) 401.228i 0.434700i
\(924\) 0 0
\(925\) 362.243 0.391614
\(926\) 31.2306 42.9852i 0.0337263 0.0464203i
\(927\) −202.907 + 624.483i −0.218885 + 0.673660i
\(928\) −254.212 782.383i −0.273935 0.843085i
\(929\) −756.498 + 549.628i −0.814315 + 0.591634i −0.915078 0.403276i \(-0.867871\pi\)
0.100764 + 0.994910i \(0.467871\pi\)
\(930\) 16.8189 + 23.1493i 0.0180849 + 0.0248917i
\(931\) 98.9884 32.1633i 0.106325 0.0345470i
\(932\) 762.616 + 247.789i 0.818257 + 0.265868i
\(933\) 620.748 + 451.000i 0.665324 + 0.483386i
\(934\) 8.07520i 0.00864583i
\(935\) 0 0
\(936\) 202.361 0.216197
\(937\) 527.520 726.068i 0.562988 0.774886i −0.428715 0.903440i \(-0.641033\pi\)
0.991703 + 0.128554i \(0.0410335\pi\)
\(938\) −86.0739 + 264.908i −0.0917632 + 0.282418i
\(939\) −141.520 435.554i −0.150713 0.463848i
\(940\) −306.026 + 222.341i −0.325560 + 0.236533i
\(941\) −270.575 372.415i −0.287540 0.395765i 0.640673 0.767814i \(-0.278655\pi\)
−0.928213 + 0.372049i \(0.878655\pi\)
\(942\) 235.501 76.5189i 0.250001 0.0812303i
\(943\) 184.443 + 59.9291i 0.195591 + 0.0635515i
\(944\) 18.2664 + 13.2713i 0.0193500 + 0.0140586i
\(945\) 885.849i 0.937406i
\(946\) 0 0
\(947\) 1781.44 1.88114 0.940570 0.339600i \(-0.110292\pi\)
0.940570 + 0.339600i \(0.110292\pi\)
\(948\) 11.0990 15.2765i 0.0117078 0.0161145i
\(949\) 167.123 514.351i 0.176104 0.541992i
\(950\) 4.19002 + 12.8956i 0.00441055 + 0.0135743i
\(951\) 577.943 419.900i 0.607721 0.441535i
\(952\) −485.689 668.493i −0.510177 0.702199i
\(953\) 764.349 248.352i 0.802045 0.260600i 0.120820 0.992674i \(-0.461448\pi\)
0.681225 + 0.732074i \(0.261448\pi\)
\(954\) 56.1397 + 18.2409i 0.0588466 + 0.0191204i
\(955\) −387.692 281.675i −0.405960 0.294947i
\(956\) 1094.30i 1.14466i
\(957\) 0 0
\(958\) 416.760 0.435031
\(959\) −95.1722 + 130.993i −0.0992411 + 0.136594i
\(960\) 32.0301 98.5787i 0.0333647 0.102686i
\(961\) −281.280 865.690i −0.292695 0.900822i
\(962\) −124.377 + 90.3651i −0.129290 + 0.0939347i
\(963\) −353.521 486.579i −0.367104 0.505275i
\(964\) 894.673 290.697i 0.928084 0.301553i
\(965\) 111.173 + 36.1224i 0.115206 + 0.0374326i
\(966\) 22.3607 + 16.2460i 0.0231477 + 0.0168178i
\(967\) 915.454i 0.946695i −0.880876 0.473347i \(-0.843046\pi\)
0.880876 0.473347i \(-0.156954\pi\)
\(968\) 0 0
\(969\) −43.7945 −0.0451956
\(970\) −132.229 + 181.998i −0.136319 + 0.187627i
\(971\) 227.791 701.070i 0.234595 0.722008i −0.762580 0.646894i \(-0.776068\pi\)
0.997175 0.0751145i \(-0.0239322\pi\)
\(972\) 263.777 + 811.822i 0.271375 + 0.835208i
\(973\) −1824.68 + 1325.71i −1.87531 + 1.36249i
\(974\) 269.402 + 370.800i 0.276593 + 0.380698i
\(975\) 62.1885 20.2063i 0.0637830 0.0207244i
\(976\) 213.867 + 69.4897i 0.219126 + 0.0711984i
\(977\) −154.769 112.446i −0.158412 0.115093i 0.505755 0.862677i \(-0.331214\pi\)
−0.664168 + 0.747584i \(0.731214\pi\)
\(978\) 175.073i 0.179011i
\(979\) 0 0
\(980\) −697.115 −0.711341
\(981\) 392.064 539.630i 0.399657 0.550081i
\(982\) −97.8968 + 301.295i −0.0996913 + 0.306818i
\(983\) 295.070 + 908.132i 0.300173 + 0.923838i 0.981435 + 0.191797i \(0.0614317\pi\)
−0.681262 + 0.732040i \(0.738568\pi\)
\(984\) −425.881 + 309.421i −0.432806 + 0.314452i
\(985\) −663.108 912.690i −0.673206 0.926589i
\(986\) 300.172 97.5319i 0.304434 0.0989167i
\(987\) −356.525 115.842i −0.361221 0.117368i
\(988\) 30.6231 + 22.2490i 0.0309950 + 0.0225192i
\(989\) 63.7429i 0.0644518i
\(990\) 0 0
\(991\) −1076.02 −1.08580 −0.542898 0.839799i \(-0.682673\pi\)
−0.542898 + 0.839799i \(0.682673\pi\)
\(992\) −121.194 + 166.810i −0.122172 + 0.168155i
\(993\) 89.2039 274.541i 0.0898327 0.276477i
\(994\) 170.652 + 525.214i 0.171683 + 0.528385i
\(995\) −574.302 + 417.255i −0.577188 + 0.419351i
\(996\) −234.782 323.150i −0.235725 0.324448i
\(997\) 458.614 149.013i 0.459994 0.149461i −0.0698479 0.997558i \(-0.522251\pi\)
0.529842 + 0.848097i \(0.322251\pi\)
\(998\) −321.523 104.469i −0.322168 0.104679i
\(999\) −724.058 526.059i −0.724782 0.526585i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 121.3.d.a.40.1 4
11.2 odd 10 121.3.d.d.94.1 4
11.3 even 5 121.3.d.c.118.1 4
11.4 even 5 121.3.d.d.112.1 4
11.5 even 5 121.3.b.b.120.3 4
11.6 odd 10 121.3.b.b.120.2 4
11.7 odd 10 11.3.d.a.2.1 4
11.8 odd 10 inner 121.3.d.a.118.1 4
11.9 even 5 11.3.d.a.6.1 yes 4
11.10 odd 2 121.3.d.c.40.1 4
33.5 odd 10 1089.3.c.e.604.2 4
33.17 even 10 1089.3.c.e.604.3 4
33.20 odd 10 99.3.k.a.28.1 4
33.29 even 10 99.3.k.a.46.1 4
44.7 even 10 176.3.n.a.145.1 4
44.31 odd 10 176.3.n.a.17.1 4
55.7 even 20 275.3.q.d.24.2 8
55.9 even 10 275.3.x.e.226.1 4
55.18 even 20 275.3.q.d.24.1 8
55.29 odd 10 275.3.x.e.101.1 4
55.42 odd 20 275.3.q.d.149.1 8
55.53 odd 20 275.3.q.d.149.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.3.d.a.2.1 4 11.7 odd 10
11.3.d.a.6.1 yes 4 11.9 even 5
99.3.k.a.28.1 4 33.20 odd 10
99.3.k.a.46.1 4 33.29 even 10
121.3.b.b.120.2 4 11.6 odd 10
121.3.b.b.120.3 4 11.5 even 5
121.3.d.a.40.1 4 1.1 even 1 trivial
121.3.d.a.118.1 4 11.8 odd 10 inner
121.3.d.c.40.1 4 11.10 odd 2
121.3.d.c.118.1 4 11.3 even 5
121.3.d.d.94.1 4 11.2 odd 10
121.3.d.d.112.1 4 11.4 even 5
176.3.n.a.17.1 4 44.31 odd 10
176.3.n.a.145.1 4 44.7 even 10
275.3.q.d.24.1 8 55.18 even 20
275.3.q.d.24.2 8 55.7 even 20
275.3.q.d.149.1 8 55.42 odd 20
275.3.q.d.149.2 8 55.53 odd 20
275.3.x.e.101.1 4 55.29 odd 10
275.3.x.e.226.1 4 55.9 even 10
1089.3.c.e.604.2 4 33.5 odd 10
1089.3.c.e.604.3 4 33.17 even 10