Properties

Label 275.3.x.e.101.1
Level $275$
Weight $3$
Character 275.101
Analytic conductor $7.493$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(51,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,5,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 101.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 275.101
Dual form 275.3.x.e.226.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.690983 + 0.224514i) q^{2} +(1.11803 - 0.812299i) q^{3} +(-2.80902 - 2.04087i) q^{4} +(0.954915 - 0.310271i) q^{6} +(-5.85410 + 8.05748i) q^{7} +(-3.19098 - 4.39201i) q^{8} +(-2.19098 + 6.74315i) q^{9} +(-10.3713 - 3.66547i) q^{11} -4.79837 q^{12} +(5.00000 + 1.62460i) q^{13} +(-5.85410 + 4.25325i) q^{14} +(3.07295 + 9.45756i) q^{16} +(-14.5344 + 4.72253i) q^{17} +(-3.02786 + 4.16750i) q^{18} +(1.21885 + 1.67760i) q^{19} +13.7638i q^{21} +(-6.34346 - 4.86128i) q^{22} +2.76393 q^{23} +(-7.13525 - 2.31838i) q^{24} +(3.09017 + 2.24514i) q^{26} +(6.87132 + 21.1478i) q^{27} +(32.8885 - 10.6861i) q^{28} +(-16.7082 + 22.9969i) q^{29} +(-2.20163 + 6.77591i) q^{31} +28.9402i q^{32} +(-14.5729 + 4.32650i) q^{33} -11.1033 q^{34} +(19.9164 - 14.4701i) q^{36} +(-32.5623 - 23.6579i) q^{37} +(0.465558 + 1.43284i) q^{38} +(6.90983 - 2.24514i) q^{39} +(-41.2426 - 56.7656i) q^{41} +(-3.09017 + 9.51057i) q^{42} -23.0624i q^{43} +(21.6525 + 31.4629i) q^{44} +(1.90983 + 0.620541i) q^{46} +(22.0344 - 16.0090i) q^{47} +(11.1180 + 8.07772i) q^{48} +(-15.5106 - 47.7369i) q^{49} +(-12.4139 + 17.0863i) q^{51} +(-10.7295 - 14.7679i) q^{52} +(3.54102 - 10.8981i) q^{53} +16.1554i q^{54} +54.0689 q^{56} +(2.72542 + 0.885544i) q^{57} +(-16.7082 + 12.1392i) q^{58} +(1.83688 + 1.33457i) q^{59} +(21.5066 - 6.98791i) q^{61} +(-3.04257 + 4.18774i) q^{62} +(-41.5066 - 57.1289i) q^{63} +(5.79431 - 17.8330i) q^{64} +(-11.0410 - 0.282294i) q^{66} +38.4934 q^{67} +(50.4656 + 16.3973i) q^{68} +(3.09017 - 2.24514i) q^{69} +(23.5836 + 72.5828i) q^{71} +(36.6074 - 11.8945i) q^{72} +(-60.4656 + 83.2237i) q^{73} +(-17.1885 - 23.6579i) q^{74} -7.19991i q^{76} +(90.2492 - 62.1087i) q^{77} +5.27864 q^{78} +(-3.74265 - 1.21606i) q^{79} +(-26.7639 - 19.4451i) q^{81} +(-15.7533 - 48.4836i) q^{82} +(-79.1697 + 25.7238i) q^{83} +(28.0902 - 38.6628i) q^{84} +(5.17783 - 15.9357i) q^{86} +39.2833i q^{87} +(16.9959 + 57.2474i) q^{88} +123.297 q^{89} +(-42.3607 + 30.7768i) q^{91} +(-7.76393 - 5.64083i) q^{92} +(3.04257 + 9.36408i) q^{93} +(18.8197 - 6.11488i) q^{94} +(23.5081 + 32.3562i) q^{96} +(23.9205 - 73.6196i) q^{97} -36.4677i q^{98} +(47.4402 - 61.9044i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 9 q^{4} + 15 q^{6} - 10 q^{7} - 15 q^{8} - 11 q^{9} + q^{11} + 30 q^{12} + 20 q^{13} - 10 q^{14} + 19 q^{16} - 30 q^{18} + 25 q^{19} + 35 q^{22} + 20 q^{23} + 5 q^{24} - 10 q^{26} - 15 q^{27}+ \cdots + 31 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.690983 + 0.224514i 0.345492 + 0.112257i 0.476623 0.879108i \(-0.341861\pi\)
−0.131131 + 0.991365i \(0.541861\pi\)
\(3\) 1.11803 0.812299i 0.372678 0.270766i −0.385643 0.922648i \(-0.626020\pi\)
0.758321 + 0.651882i \(0.226020\pi\)
\(4\) −2.80902 2.04087i −0.702254 0.510218i
\(5\) 0 0
\(6\) 0.954915 0.310271i 0.159153 0.0517118i
\(7\) −5.85410 + 8.05748i −0.836300 + 1.15107i 0.150417 + 0.988623i \(0.451938\pi\)
−0.986717 + 0.162446i \(0.948062\pi\)
\(8\) −3.19098 4.39201i −0.398873 0.549001i
\(9\) −2.19098 + 6.74315i −0.243443 + 0.749239i
\(10\) 0 0
\(11\) −10.3713 3.66547i −0.942848 0.333224i
\(12\) −4.79837 −0.399864
\(13\) 5.00000 + 1.62460i 0.384615 + 0.124969i 0.494941 0.868926i \(-0.335190\pi\)
−0.110326 + 0.993895i \(0.535190\pi\)
\(14\) −5.85410 + 4.25325i −0.418150 + 0.303804i
\(15\) 0 0
\(16\) 3.07295 + 9.45756i 0.192059 + 0.591098i
\(17\) −14.5344 + 4.72253i −0.854967 + 0.277796i −0.703525 0.710670i \(-0.748392\pi\)
−0.151442 + 0.988466i \(0.548392\pi\)
\(18\) −3.02786 + 4.16750i −0.168215 + 0.231528i
\(19\) 1.21885 + 1.67760i 0.0641498 + 0.0882947i 0.839886 0.542762i \(-0.182621\pi\)
−0.775737 + 0.631057i \(0.782621\pi\)
\(20\) 0 0
\(21\) 13.7638i 0.655420i
\(22\) −6.34346 4.86128i −0.288339 0.220967i
\(23\) 2.76393 0.120171 0.0600855 0.998193i \(-0.480863\pi\)
0.0600855 + 0.998193i \(0.480863\pi\)
\(24\) −7.13525 2.31838i −0.297302 0.0965994i
\(25\) 0 0
\(26\) 3.09017 + 2.24514i 0.118853 + 0.0863515i
\(27\) 6.87132 + 21.1478i 0.254493 + 0.783250i
\(28\) 32.8885 10.6861i 1.17459 0.381648i
\(29\) −16.7082 + 22.9969i −0.576145 + 0.792996i −0.993266 0.115855i \(-0.963039\pi\)
0.417121 + 0.908851i \(0.363039\pi\)
\(30\) 0 0
\(31\) −2.20163 + 6.77591i −0.0710202 + 0.218578i −0.980266 0.197681i \(-0.936659\pi\)
0.909246 + 0.416259i \(0.136659\pi\)
\(32\) 28.9402i 0.904382i
\(33\) −14.5729 + 4.32650i −0.441605 + 0.131106i
\(34\) −11.1033 −0.326568
\(35\) 0 0
\(36\) 19.9164 14.4701i 0.553234 0.401948i
\(37\) −32.5623 23.6579i −0.880062 0.639403i 0.0532056 0.998584i \(-0.483056\pi\)
−0.933268 + 0.359181i \(0.883056\pi\)
\(38\) 0.465558 + 1.43284i 0.0122515 + 0.0377063i
\(39\) 6.90983 2.24514i 0.177175 0.0575677i
\(40\) 0 0
\(41\) −41.2426 56.7656i −1.00592 1.38453i −0.921623 0.388087i \(-0.873136\pi\)
−0.0842954 0.996441i \(-0.526864\pi\)
\(42\) −3.09017 + 9.51057i −0.0735755 + 0.226442i
\(43\) 23.0624i 0.536334i −0.963372 0.268167i \(-0.913582\pi\)
0.963372 0.268167i \(-0.0864180\pi\)
\(44\) 21.6525 + 31.4629i 0.492102 + 0.715066i
\(45\) 0 0
\(46\) 1.90983 + 0.620541i 0.0415180 + 0.0134900i
\(47\) 22.0344 16.0090i 0.468818 0.340616i −0.328163 0.944621i \(-0.606429\pi\)
0.796980 + 0.604005i \(0.206429\pi\)
\(48\) 11.1180 + 8.07772i 0.231626 + 0.168286i
\(49\) −15.5106 47.7369i −0.316544 0.974221i
\(50\) 0 0
\(51\) −12.4139 + 17.0863i −0.243410 + 0.335025i
\(52\) −10.7295 14.7679i −0.206336 0.283998i
\(53\) 3.54102 10.8981i 0.0668117 0.205625i −0.912077 0.410019i \(-0.865522\pi\)
0.978889 + 0.204393i \(0.0655222\pi\)
\(54\) 16.1554i 0.299175i
\(55\) 0 0
\(56\) 54.0689 0.965516
\(57\) 2.72542 + 0.885544i 0.0478145 + 0.0155359i
\(58\) −16.7082 + 12.1392i −0.288072 + 0.209297i
\(59\) 1.83688 + 1.33457i 0.0311336 + 0.0226199i 0.603243 0.797557i \(-0.293875\pi\)
−0.572110 + 0.820177i \(0.693875\pi\)
\(60\) 0 0
\(61\) 21.5066 6.98791i 0.352567 0.114556i −0.127379 0.991854i \(-0.540656\pi\)
0.479946 + 0.877298i \(0.340656\pi\)
\(62\) −3.04257 + 4.18774i −0.0490737 + 0.0675442i
\(63\) −41.5066 57.1289i −0.658835 0.906808i
\(64\) 5.79431 17.8330i 0.0905361 0.278641i
\(65\) 0 0
\(66\) −11.0410 0.282294i −0.167288 0.00427718i
\(67\) 38.4934 0.574529 0.287264 0.957851i \(-0.407254\pi\)
0.287264 + 0.957851i \(0.407254\pi\)
\(68\) 50.4656 + 16.3973i 0.742141 + 0.241136i
\(69\) 3.09017 2.24514i 0.0447851 0.0325383i
\(70\) 0 0
\(71\) 23.5836 + 72.5828i 0.332163 + 1.02229i 0.968103 + 0.250554i \(0.0806129\pi\)
−0.635939 + 0.771739i \(0.719387\pi\)
\(72\) 36.6074 11.8945i 0.508436 0.165201i
\(73\) −60.4656 + 83.2237i −0.828295 + 1.14005i 0.159943 + 0.987126i \(0.448869\pi\)
−0.988238 + 0.152924i \(0.951131\pi\)
\(74\) −17.1885 23.6579i −0.232277 0.319701i
\(75\) 0 0
\(76\) 7.19991i 0.0947357i
\(77\) 90.2492 62.1087i 1.17207 0.806606i
\(78\) 5.27864 0.0676749
\(79\) −3.74265 1.21606i −0.0473753 0.0153932i 0.285233 0.958458i \(-0.407929\pi\)
−0.332609 + 0.943065i \(0.607929\pi\)
\(80\) 0 0
\(81\) −26.7639 19.4451i −0.330419 0.240063i
\(82\) −15.7533 48.4836i −0.192113 0.591264i
\(83\) −79.1697 + 25.7238i −0.953852 + 0.309925i −0.744280 0.667868i \(-0.767207\pi\)
−0.209572 + 0.977793i \(0.567207\pi\)
\(84\) 28.0902 38.6628i 0.334407 0.460271i
\(85\) 0 0
\(86\) 5.17783 15.9357i 0.0602073 0.185299i
\(87\) 39.2833i 0.451533i
\(88\) 16.9959 + 57.2474i 0.193136 + 0.650539i
\(89\) 123.297 1.38536 0.692679 0.721246i \(-0.256430\pi\)
0.692679 + 0.721246i \(0.256430\pi\)
\(90\) 0 0
\(91\) −42.3607 + 30.7768i −0.465502 + 0.338207i
\(92\) −7.76393 5.64083i −0.0843906 0.0613133i
\(93\) 3.04257 + 9.36408i 0.0327158 + 0.100689i
\(94\) 18.8197 6.11488i 0.200209 0.0650519i
\(95\) 0 0
\(96\) 23.5081 + 32.3562i 0.244876 + 0.337043i
\(97\) 23.9205 73.6196i 0.246603 0.758965i −0.748766 0.662835i \(-0.769353\pi\)
0.995369 0.0961309i \(-0.0306467\pi\)
\(98\) 36.4677i 0.372119i
\(99\) 47.4402 61.9044i 0.479194 0.625297i
\(100\) 0 0
\(101\) −107.159 34.8181i −1.06098 0.344734i −0.274012 0.961726i \(-0.588351\pi\)
−0.786969 + 0.616993i \(0.788351\pi\)
\(102\) −12.4139 + 9.01922i −0.121705 + 0.0884238i
\(103\) 74.9230 + 54.4347i 0.727408 + 0.528493i 0.888742 0.458407i \(-0.151580\pi\)
−0.161335 + 0.986900i \(0.551580\pi\)
\(104\) −8.81966 27.1441i −0.0848044 0.261001i
\(105\) 0 0
\(106\) 4.89357 6.73542i 0.0461657 0.0635417i
\(107\) 49.8607 + 68.6273i 0.465988 + 0.641377i 0.975737 0.218946i \(-0.0702619\pi\)
−0.509749 + 0.860323i \(0.670262\pi\)
\(108\) 23.8582 73.4279i 0.220909 0.679888i
\(109\) 94.0766i 0.863088i 0.902092 + 0.431544i \(0.142031\pi\)
−0.902092 + 0.431544i \(0.857969\pi\)
\(110\) 0 0
\(111\) −55.6231 −0.501109
\(112\) −94.1935 30.6053i −0.841013 0.273262i
\(113\) −6.87132 + 4.99231i −0.0608082 + 0.0441797i −0.617774 0.786356i \(-0.711965\pi\)
0.556966 + 0.830535i \(0.311965\pi\)
\(114\) 1.68441 + 1.22379i 0.0147755 + 0.0107350i
\(115\) 0 0
\(116\) 93.8673 30.4993i 0.809200 0.262925i
\(117\) −21.9098 + 30.1563i −0.187264 + 0.257746i
\(118\) 0.969623 + 1.33457i 0.00821715 + 0.0113099i
\(119\) 47.0344 144.757i 0.395247 1.21645i
\(120\) 0 0
\(121\) 94.1287 + 76.0315i 0.777923 + 0.628360i
\(122\) 16.4296 0.134669
\(123\) −92.2214 29.9645i −0.749767 0.243614i
\(124\) 20.0132 14.5404i 0.161396 0.117261i
\(125\) 0 0
\(126\) −15.8541 48.7939i −0.125826 0.387253i
\(127\) 179.039 58.1734i 1.40976 0.458059i 0.497426 0.867506i \(-0.334279\pi\)
0.912334 + 0.409448i \(0.134279\pi\)
\(128\) 76.0501 104.674i 0.594141 0.817766i
\(129\) −18.7336 25.7845i −0.145221 0.199880i
\(130\) 0 0
\(131\) 141.932i 1.08345i −0.840556 0.541725i \(-0.817771\pi\)
0.840556 0.541725i \(-0.182229\pi\)
\(132\) 49.7655 + 17.5883i 0.377011 + 0.133245i
\(133\) −20.6525 −0.155282
\(134\) 26.5983 + 8.64231i 0.198495 + 0.0644949i
\(135\) 0 0
\(136\) 67.1205 + 48.7659i 0.493533 + 0.358573i
\(137\) −5.02380 15.4617i −0.0366701 0.112859i 0.931046 0.364902i \(-0.118898\pi\)
−0.967716 + 0.252043i \(0.918898\pi\)
\(138\) 2.63932 0.857567i 0.0191255 0.00621425i
\(139\) −133.108 + 183.208i −0.957614 + 1.31804i −0.00955293 + 0.999954i \(0.503041\pi\)
−0.948061 + 0.318088i \(0.896959\pi\)
\(140\) 0 0
\(141\) 11.6312 35.7971i 0.0824907 0.253880i
\(142\) 55.4484i 0.390481i
\(143\) −45.9017 35.1766i −0.320991 0.245990i
\(144\) −70.5066 −0.489629
\(145\) 0 0
\(146\) −60.4656 + 43.9308i −0.414148 + 0.300896i
\(147\) −56.1180 40.7721i −0.381755 0.277361i
\(148\) 43.1854 + 132.911i 0.291793 + 0.898047i
\(149\) −63.8967 + 20.7613i −0.428837 + 0.139338i −0.515479 0.856902i \(-0.672386\pi\)
0.0866427 + 0.996239i \(0.472386\pi\)
\(150\) 0 0
\(151\) 59.0871 + 81.3264i 0.391305 + 0.538585i 0.958535 0.284974i \(-0.0919850\pi\)
−0.567230 + 0.823559i \(0.691985\pi\)
\(152\) 3.47871 10.7064i 0.0228863 0.0704367i
\(153\) 108.355i 0.708202i
\(154\) 76.3050 22.6538i 0.495487 0.147103i
\(155\) 0 0
\(156\) −23.9919 7.79543i −0.153794 0.0499707i
\(157\) −199.520 + 144.960i −1.27083 + 0.923309i −0.999235 0.0391033i \(-0.987550\pi\)
−0.271591 + 0.962413i \(0.587550\pi\)
\(158\) −2.31308 1.68055i −0.0146398 0.0106364i
\(159\) −4.89357 15.0609i −0.0307772 0.0947224i
\(160\) 0 0
\(161\) −16.1803 + 22.2703i −0.100499 + 0.138325i
\(162\) −14.1277 19.4451i −0.0872081 0.120032i
\(163\) −53.8820 + 165.832i −0.330564 + 1.01737i 0.638302 + 0.769786i \(0.279637\pi\)
−0.968866 + 0.247586i \(0.920363\pi\)
\(164\) 243.627i 1.48553i
\(165\) 0 0
\(166\) −60.4803 −0.364339
\(167\) −234.864 76.3120i −1.40637 0.456958i −0.495126 0.868821i \(-0.664878\pi\)
−0.911246 + 0.411863i \(0.864878\pi\)
\(168\) 60.4508 43.9201i 0.359826 0.261429i
\(169\) −114.363 83.0897i −0.676705 0.491655i
\(170\) 0 0
\(171\) −13.9828 + 4.54328i −0.0817706 + 0.0265689i
\(172\) −47.0673 + 64.7826i −0.273647 + 0.376643i
\(173\) 29.2411 + 40.2469i 0.169024 + 0.232641i 0.885123 0.465357i \(-0.154074\pi\)
−0.716099 + 0.697999i \(0.754074\pi\)
\(174\) −8.81966 + 27.1441i −0.0506877 + 0.156001i
\(175\) 0 0
\(176\) 2.79586 109.351i 0.0158856 0.621314i
\(177\) 3.13777 0.0177275
\(178\) 85.1960 + 27.6819i 0.478629 + 0.155516i
\(179\) −177.134 + 128.695i −0.989574 + 0.718967i −0.959828 0.280590i \(-0.909470\pi\)
−0.0297461 + 0.999557i \(0.509470\pi\)
\(180\) 0 0
\(181\) 12.0213 + 36.9977i 0.0664159 + 0.204407i 0.978757 0.205024i \(-0.0657272\pi\)
−0.912341 + 0.409431i \(0.865727\pi\)
\(182\) −36.1803 + 11.7557i −0.198793 + 0.0645918i
\(183\) 18.3688 25.2825i 0.100376 0.138156i
\(184\) −8.81966 12.1392i −0.0479329 0.0659740i
\(185\) 0 0
\(186\) 7.15352i 0.0384598i
\(187\) 168.052 + 4.29670i 0.898672 + 0.0229770i
\(188\) −94.5673 −0.503018
\(189\) −210.623 68.4356i −1.11441 0.362093i
\(190\) 0 0
\(191\) −96.9230 70.4187i −0.507450 0.368684i 0.304405 0.952543i \(-0.401542\pi\)
−0.811855 + 0.583858i \(0.801542\pi\)
\(192\) −8.00754 24.6447i −0.0417059 0.128358i
\(193\) −27.7933 + 9.03061i −0.144007 + 0.0467907i −0.380134 0.924932i \(-0.624122\pi\)
0.236127 + 0.971722i \(0.424122\pi\)
\(194\) 33.0573 45.4994i 0.170398 0.234533i
\(195\) 0 0
\(196\) −53.8551 + 165.749i −0.274771 + 0.845657i
\(197\) 282.037i 1.43166i 0.698275 + 0.715830i \(0.253951\pi\)
−0.698275 + 0.715830i \(0.746049\pi\)
\(198\) 46.6788 32.1239i 0.235751 0.162242i
\(199\) 177.469 0.891804 0.445902 0.895082i \(-0.352883\pi\)
0.445902 + 0.895082i \(0.352883\pi\)
\(200\) 0 0
\(201\) 43.0370 31.2682i 0.214114 0.155563i
\(202\) −66.2279 48.1174i −0.327861 0.238205i
\(203\) −87.4853 269.252i −0.430962 1.32636i
\(204\) 69.7417 22.6604i 0.341871 0.111081i
\(205\) 0 0
\(206\) 39.5492 + 54.4347i 0.191986 + 0.264246i
\(207\) −6.05573 + 18.6376i −0.0292547 + 0.0900368i
\(208\) 52.2801i 0.251347i
\(209\) −6.49187 21.8666i −0.0310616 0.104625i
\(210\) 0 0
\(211\) 93.5354 + 30.3915i 0.443296 + 0.144036i 0.522156 0.852850i \(-0.325128\pi\)
−0.0788599 + 0.996886i \(0.525128\pi\)
\(212\) −32.1885 + 23.3863i −0.151832 + 0.110313i
\(213\) 85.3262 + 61.9931i 0.400593 + 0.291048i
\(214\) 19.0451 + 58.6147i 0.0889957 + 0.273901i
\(215\) 0 0
\(216\) 70.9549 97.6611i 0.328495 0.452135i
\(217\) −41.7082 57.4064i −0.192204 0.264546i
\(218\) −21.1215 + 65.0053i −0.0968876 + 0.298190i
\(219\) 142.163i 0.649146i
\(220\) 0 0
\(221\) −80.3444 −0.363549
\(222\) −38.4346 12.4882i −0.173129 0.0562529i
\(223\) 215.220 156.366i 0.965111 0.701194i 0.0107791 0.999942i \(-0.496569\pi\)
0.954332 + 0.298748i \(0.0965689\pi\)
\(224\) −233.185 169.419i −1.04101 0.756335i
\(225\) 0 0
\(226\) −5.86881 + 1.90689i −0.0259682 + 0.00843758i
\(227\) −149.606 + 205.915i −0.659057 + 0.907114i −0.999450 0.0331697i \(-0.989440\pi\)
0.340393 + 0.940283i \(0.389440\pi\)
\(228\) −5.84848 8.04975i −0.0256512 0.0353059i
\(229\) −12.4245 + 38.2388i −0.0542556 + 0.166982i −0.974513 0.224333i \(-0.927980\pi\)
0.920257 + 0.391315i \(0.127980\pi\)
\(230\) 0 0
\(231\) 50.4508 142.749i 0.218402 0.617961i
\(232\) 154.318 0.665164
\(233\) 219.639 + 71.3649i 0.942655 + 0.306287i 0.739728 0.672906i \(-0.234954\pi\)
0.202928 + 0.979194i \(0.434954\pi\)
\(234\) −21.9098 + 15.9184i −0.0936318 + 0.0680275i
\(235\) 0 0
\(236\) −2.43614 7.49767i −0.0103226 0.0317698i
\(237\) −5.17221 + 1.68055i −0.0218237 + 0.00709094i
\(238\) 65.0000 89.4648i 0.273109 0.375903i
\(239\) 185.249 + 254.974i 0.775101 + 1.06684i 0.995806 + 0.0914947i \(0.0291645\pi\)
−0.220704 + 0.975341i \(0.570836\pi\)
\(240\) 0 0
\(241\) 270.933i 1.12420i 0.827069 + 0.562101i \(0.190007\pi\)
−0.827069 + 0.562101i \(0.809993\pi\)
\(242\) 47.9712 + 73.6697i 0.198228 + 0.304420i
\(243\) −245.843 −1.01170
\(244\) −74.6738 24.2630i −0.306040 0.0994384i
\(245\) 0 0
\(246\) −56.9959 41.4100i −0.231691 0.168333i
\(247\) 3.36881 + 10.3681i 0.0136389 + 0.0419762i
\(248\) 36.7852 11.9522i 0.148327 0.0481945i
\(249\) −67.6190 + 93.0696i −0.271562 + 0.373773i
\(250\) 0 0
\(251\) 3.44080 10.5897i 0.0137084 0.0421900i −0.943968 0.330036i \(-0.892939\pi\)
0.957677 + 0.287846i \(0.0929391\pi\)
\(252\) 245.186i 0.972959i
\(253\) −28.6656 10.1311i −0.113303 0.0400439i
\(254\) 136.774 0.538480
\(255\) 0 0
\(256\) 15.3713 11.1679i 0.0600442 0.0436247i
\(257\) −326.261 237.042i −1.26950 0.922344i −0.270315 0.962772i \(-0.587128\pi\)
−0.999182 + 0.0404281i \(0.987128\pi\)
\(258\) −7.15558 22.0226i −0.0277348 0.0853590i
\(259\) 381.246 123.874i 1.47199 0.478279i
\(260\) 0 0
\(261\) −118.464 163.052i −0.453885 0.624719i
\(262\) 31.8657 98.0726i 0.121625 0.374323i
\(263\) 42.6636i 0.162219i −0.996705 0.0811094i \(-0.974154\pi\)
0.996705 0.0811094i \(-0.0258463\pi\)
\(264\) 65.5041 + 50.1988i 0.248121 + 0.190147i
\(265\) 0 0
\(266\) −14.2705 4.63677i −0.0536485 0.0174315i
\(267\) 137.850 100.154i 0.516292 0.375108i
\(268\) −108.129 78.5601i −0.403465 0.293135i
\(269\) −126.695 389.927i −0.470985 1.44954i −0.851296 0.524685i \(-0.824183\pi\)
0.380311 0.924859i \(-0.375817\pi\)
\(270\) 0 0
\(271\) −136.400 + 187.739i −0.503322 + 0.692763i −0.982775 0.184804i \(-0.940835\pi\)
0.479454 + 0.877567i \(0.340835\pi\)
\(272\) −89.3272 122.948i −0.328409 0.452016i
\(273\) −22.3607 + 68.8191i −0.0819073 + 0.252085i
\(274\) 11.8117i 0.0431082i
\(275\) 0 0
\(276\) −13.2624 −0.0480521
\(277\) −291.305 94.6507i −1.05164 0.341699i −0.268330 0.963327i \(-0.586472\pi\)
−0.783313 + 0.621628i \(0.786472\pi\)
\(278\) −133.108 + 96.7089i −0.478807 + 0.347874i
\(279\) −40.8673 29.6918i −0.146478 0.106422i
\(280\) 0 0
\(281\) −123.114 + 40.0022i −0.438128 + 0.142356i −0.519772 0.854305i \(-0.673983\pi\)
0.0816438 + 0.996662i \(0.473983\pi\)
\(282\) 16.0739 22.1238i 0.0569997 0.0784533i
\(283\) 247.984 + 341.320i 0.876268 + 1.20608i 0.977441 + 0.211210i \(0.0677404\pi\)
−0.101173 + 0.994869i \(0.532260\pi\)
\(284\) 81.8854 252.017i 0.288329 0.887385i
\(285\) 0 0
\(286\) −23.8197 34.6120i −0.0832855 0.121021i
\(287\) 698.827 2.43494
\(288\) −195.148 63.4076i −0.677599 0.220165i
\(289\) −44.8582 + 32.5914i −0.155219 + 0.112773i
\(290\) 0 0
\(291\) −33.0573 101.740i −0.113599 0.349621i
\(292\) 339.698 110.374i 1.16335 0.377995i
\(293\) 37.8998 52.1646i 0.129351 0.178036i −0.739429 0.673234i \(-0.764905\pi\)
0.868780 + 0.495198i \(0.164905\pi\)
\(294\) −29.6227 40.7721i −0.100757 0.138681i
\(295\) 0 0
\(296\) 218.506i 0.738196i
\(297\) 6.25174 244.517i 0.0210496 0.823289i
\(298\) −48.8127 −0.163801
\(299\) 13.8197 + 4.49028i 0.0462196 + 0.0150177i
\(300\) 0 0
\(301\) 185.825 + 135.010i 0.617358 + 0.448537i
\(302\) 22.5693 + 69.4610i 0.0747326 + 0.230003i
\(303\) −148.090 + 48.1174i −0.488746 + 0.158803i
\(304\) −12.1205 + 16.6825i −0.0398702 + 0.0548766i
\(305\) 0 0
\(306\) 24.3272 74.8714i 0.0795006 0.244678i
\(307\) 356.512i 1.16128i 0.814161 + 0.580639i \(0.197197\pi\)
−0.814161 + 0.580639i \(0.802803\pi\)
\(308\) −380.267 9.72257i −1.23463 0.0315668i
\(309\) 127.984 0.414187
\(310\) 0 0
\(311\) 449.177 326.346i 1.44430 1.04935i 0.457178 0.889375i \(-0.348860\pi\)
0.987122 0.159970i \(-0.0511397\pi\)
\(312\) −31.9098 23.1838i −0.102275 0.0743072i
\(313\) 102.405 + 315.170i 0.327172 + 1.00693i 0.970451 + 0.241300i \(0.0775736\pi\)
−0.643279 + 0.765632i \(0.722426\pi\)
\(314\) −170.410 + 55.3696i −0.542708 + 0.176336i
\(315\) 0 0
\(316\) 8.03134 + 11.0542i 0.0254156 + 0.0349816i
\(317\) 159.740 491.628i 0.503910 1.55088i −0.298685 0.954352i \(-0.596548\pi\)
0.802595 0.596524i \(-0.203452\pi\)
\(318\) 11.5055i 0.0361807i
\(319\) 257.580 177.265i 0.807462 0.555688i
\(320\) 0 0
\(321\) 111.492 + 36.2259i 0.347327 + 0.112853i
\(322\) −16.1803 + 11.7557i −0.0502495 + 0.0365084i
\(323\) −25.6378 18.6269i −0.0793739 0.0576685i
\(324\) 35.4953 + 109.243i 0.109554 + 0.337171i
\(325\) 0 0
\(326\) −74.4630 + 102.490i −0.228414 + 0.314385i
\(327\) 76.4183 + 105.181i 0.233695 + 0.321654i
\(328\) −117.711 + 362.276i −0.358874 + 1.10450i
\(329\) 271.260i 0.824499i
\(330\) 0 0
\(331\) 208.884 0.631068 0.315534 0.948914i \(-0.397816\pi\)
0.315534 + 0.948914i \(0.397816\pi\)
\(332\) 274.888 + 89.3165i 0.827976 + 0.269026i
\(333\) 230.872 167.739i 0.693310 0.503719i
\(334\) −145.154 105.461i −0.434593 0.315750i
\(335\) 0 0
\(336\) −130.172 + 42.2955i −0.387417 + 0.125880i
\(337\) 79.3090 109.159i 0.235338 0.323915i −0.674971 0.737844i \(-0.735844\pi\)
0.910309 + 0.413929i \(0.135844\pi\)
\(338\) −60.3682 83.0897i −0.178604 0.245828i
\(339\) −3.62712 + 11.1631i −0.0106995 + 0.0329296i
\(340\) 0 0
\(341\) 47.6707 62.2051i 0.139797 0.182420i
\(342\) −10.6819 −0.0312336
\(343\) 11.3050 + 3.67320i 0.0329590 + 0.0107090i
\(344\) −101.290 + 73.5917i −0.294448 + 0.213929i
\(345\) 0 0
\(346\) 11.1691 + 34.3750i 0.0322806 + 0.0993496i
\(347\) 90.1393 29.2880i 0.259767 0.0844036i −0.176238 0.984348i \(-0.556393\pi\)
0.436005 + 0.899944i \(0.356393\pi\)
\(348\) 80.1722 110.348i 0.230380 0.317091i
\(349\) −100.997 139.010i −0.289389 0.398310i 0.639426 0.768852i \(-0.279172\pi\)
−0.928816 + 0.370542i \(0.879172\pi\)
\(350\) 0 0
\(351\) 116.902i 0.333054i
\(352\) 106.080 300.149i 0.301362 0.852695i
\(353\) 119.644 0.338936 0.169468 0.985536i \(-0.445795\pi\)
0.169468 + 0.985536i \(0.445795\pi\)
\(354\) 2.16814 + 0.704473i 0.00612470 + 0.00199004i
\(355\) 0 0
\(356\) −346.343 251.633i −0.972873 0.706834i
\(357\) −65.0000 200.049i −0.182073 0.560363i
\(358\) −151.290 + 49.1572i −0.422598 + 0.137311i
\(359\) 274.681 378.066i 0.765127 1.05311i −0.231643 0.972801i \(-0.574410\pi\)
0.996770 0.0803065i \(-0.0255899\pi\)
\(360\) 0 0
\(361\) 110.226 339.242i 0.305336 0.939728i
\(362\) 28.2637i 0.0780766i
\(363\) 166.999 + 8.54517i 0.460053 + 0.0235404i
\(364\) 181.803 0.499460
\(365\) 0 0
\(366\) 18.3688 13.3457i 0.0501880 0.0364637i
\(367\) −266.026 193.279i −0.724867 0.526647i 0.163068 0.986615i \(-0.447861\pi\)
−0.887936 + 0.459968i \(0.847861\pi\)
\(368\) 8.49342 + 26.1401i 0.0230800 + 0.0710328i
\(369\) 473.141 153.733i 1.28223 0.416620i
\(370\) 0 0
\(371\) 67.0820 + 92.3305i 0.180814 + 0.248869i
\(372\) 10.5642 32.5133i 0.0283985 0.0874015i
\(373\) 214.135i 0.574088i −0.957917 0.287044i \(-0.907327\pi\)
0.957917 0.287044i \(-0.0926726\pi\)
\(374\) 115.156 + 40.6989i 0.307904 + 0.108821i
\(375\) 0 0
\(376\) −140.623 45.6912i −0.373997 0.121519i
\(377\) −120.902 + 87.8402i −0.320694 + 0.232998i
\(378\) −130.172 94.5756i −0.344371 0.250200i
\(379\) 98.9630 + 304.577i 0.261116 + 0.803633i 0.992563 + 0.121734i \(0.0388456\pi\)
−0.731447 + 0.681899i \(0.761154\pi\)
\(380\) 0 0
\(381\) 152.918 210.474i 0.401359 0.552424i
\(382\) −51.1622 70.4187i −0.133932 0.184342i
\(383\) 169.205 520.759i 0.441788 1.35968i −0.444181 0.895937i \(-0.646505\pi\)
0.885968 0.463746i \(-0.153495\pi\)
\(384\) 178.805i 0.465637i
\(385\) 0 0
\(386\) −21.2322 −0.0550058
\(387\) 155.513 + 50.5293i 0.401843 + 0.130567i
\(388\) −217.441 + 157.980i −0.560415 + 0.407166i
\(389\) −272.259 197.808i −0.699895 0.508504i 0.180003 0.983666i \(-0.442389\pi\)
−0.879898 + 0.475162i \(0.842389\pi\)
\(390\) 0 0
\(391\) −40.1722 + 13.0527i −0.102742 + 0.0333830i
\(392\) −160.167 + 220.450i −0.408588 + 0.562373i
\(393\) −115.291 158.685i −0.293362 0.403778i
\(394\) −63.3212 + 194.883i −0.160714 + 0.494626i
\(395\) 0 0
\(396\) −259.599 + 77.0713i −0.655554 + 0.194624i
\(397\) −115.374 −0.290614 −0.145307 0.989387i \(-0.546417\pi\)
−0.145307 + 0.989387i \(0.546417\pi\)
\(398\) 122.628 + 39.8443i 0.308111 + 0.100111i
\(399\) −23.0902 + 16.7760i −0.0578701 + 0.0420451i
\(400\) 0 0
\(401\) 19.7138 + 60.6729i 0.0491617 + 0.151304i 0.972624 0.232386i \(-0.0746532\pi\)
−0.923462 + 0.383690i \(0.874653\pi\)
\(402\) 36.7579 11.9434i 0.0914377 0.0297099i
\(403\) −22.0163 + 30.3028i −0.0546309 + 0.0751930i
\(404\) 229.952 + 316.502i 0.569189 + 0.783422i
\(405\) 0 0
\(406\) 205.690i 0.506626i
\(407\) 250.997 + 364.720i 0.616700 + 0.896118i
\(408\) 114.656 0.281019
\(409\) −581.745 189.020i −1.42236 0.462152i −0.506008 0.862529i \(-0.668879\pi\)
−0.916351 + 0.400377i \(0.868879\pi\)
\(410\) 0 0
\(411\) −18.1763 13.2058i −0.0442245 0.0321310i
\(412\) −99.3657 305.816i −0.241179 0.742272i
\(413\) −21.5066 + 6.98791i −0.0520740 + 0.0169199i
\(414\) −8.36881 + 11.5187i −0.0202145 + 0.0278229i
\(415\) 0 0
\(416\) −47.0163 + 144.701i −0.113020 + 0.347839i
\(417\) 312.957i 0.750495i
\(418\) 0.423579 16.5669i 0.00101335 0.0396338i
\(419\) 146.156 0.348821 0.174410 0.984673i \(-0.444198\pi\)
0.174410 + 0.984673i \(0.444198\pi\)
\(420\) 0 0
\(421\) −480.079 + 348.798i −1.14033 + 0.828498i −0.987165 0.159702i \(-0.948947\pi\)
−0.153165 + 0.988201i \(0.548947\pi\)
\(422\) 57.8081 + 42.0000i 0.136986 + 0.0995261i
\(423\) 59.6738 + 183.657i 0.141073 + 0.434177i
\(424\) −59.1641 + 19.2236i −0.139538 + 0.0453386i
\(425\) 0 0
\(426\) 45.0407 + 61.9931i 0.105729 + 0.145524i
\(427\) −69.5967 + 214.197i −0.162990 + 0.501632i
\(428\) 294.535i 0.688165i
\(429\) −79.8936 2.04270i −0.186232 0.00476153i
\(430\) 0 0
\(431\) 165.807 + 53.8738i 0.384702 + 0.124997i 0.494982 0.868903i \(-0.335175\pi\)
−0.110280 + 0.993901i \(0.535175\pi\)
\(432\) −178.891 + 129.972i −0.414100 + 0.300861i
\(433\) 502.109 + 364.804i 1.15961 + 0.842503i 0.989728 0.142962i \(-0.0456627\pi\)
0.169878 + 0.985465i \(0.445663\pi\)
\(434\) −15.9311 49.0309i −0.0367076 0.112975i
\(435\) 0 0
\(436\) 191.998 264.263i 0.440363 0.606107i
\(437\) 3.36881 + 4.63677i 0.00770895 + 0.0106105i
\(438\) −31.9176 + 98.2323i −0.0728712 + 0.224275i
\(439\) 676.778i 1.54164i 0.637055 + 0.770818i \(0.280152\pi\)
−0.637055 + 0.770818i \(0.719848\pi\)
\(440\) 0 0
\(441\) 355.880 0.806985
\(442\) −55.5166 18.0384i −0.125603 0.0408110i
\(443\) −209.784 + 152.417i −0.473552 + 0.344056i −0.798824 0.601565i \(-0.794544\pi\)
0.325272 + 0.945621i \(0.394544\pi\)
\(444\) 156.246 + 113.519i 0.351906 + 0.255674i
\(445\) 0 0
\(446\) 183.820 59.7266i 0.412152 0.133916i
\(447\) −54.5743 + 75.1150i −0.122090 + 0.168043i
\(448\) 109.769 + 151.084i 0.245020 + 0.337241i
\(449\) 124.349 382.707i 0.276947 0.852354i −0.711751 0.702432i \(-0.752098\pi\)
0.988698 0.149923i \(-0.0479024\pi\)
\(450\) 0 0
\(451\) 219.668 + 739.908i 0.487069 + 1.64059i
\(452\) 29.4903 0.0652441
\(453\) 132.123 + 42.9293i 0.291662 + 0.0947666i
\(454\) −149.606 + 108.695i −0.329528 + 0.239416i
\(455\) 0 0
\(456\) −4.80746 14.7959i −0.0105427 0.0324470i
\(457\) −243.209 + 79.0234i −0.532186 + 0.172918i −0.562769 0.826614i \(-0.690264\pi\)
0.0305823 + 0.999532i \(0.490264\pi\)
\(458\) −17.1703 + 23.6329i −0.0374897 + 0.0516002i
\(459\) −199.742 274.921i −0.435167 0.598956i
\(460\) 0 0
\(461\) 446.274i 0.968056i −0.875053 0.484028i \(-0.839173\pi\)
0.875053 0.484028i \(-0.160827\pi\)
\(462\) 66.9098 87.3102i 0.144826 0.188983i
\(463\) −73.1308 −0.157950 −0.0789750 0.996877i \(-0.525165\pi\)
−0.0789750 + 0.996877i \(0.525165\pi\)
\(464\) −268.838 87.3507i −0.579392 0.188256i
\(465\) 0 0
\(466\) 135.744 + 98.6239i 0.291297 + 0.211639i
\(467\) −3.43459 10.5706i −0.00735458 0.0226351i 0.947312 0.320313i \(-0.103788\pi\)
−0.954666 + 0.297678i \(0.903788\pi\)
\(468\) 123.090 39.9944i 0.263013 0.0854582i
\(469\) −225.344 + 310.160i −0.480479 + 0.661322i
\(470\) 0 0
\(471\) −105.319 + 324.139i −0.223608 + 0.688194i
\(472\) 12.3262i 0.0261148i
\(473\) −84.5344 + 239.187i −0.178720 + 0.505682i
\(474\) −3.95122 −0.00833590
\(475\) 0 0
\(476\) −427.551 + 310.634i −0.898217 + 0.652593i
\(477\) 65.7295 + 47.7553i 0.137798 + 0.100116i
\(478\) 70.7589 + 217.774i 0.148031 + 0.455593i
\(479\) −545.546 + 177.259i −1.13893 + 0.370060i −0.816962 0.576692i \(-0.804343\pi\)
−0.321965 + 0.946752i \(0.604343\pi\)
\(480\) 0 0
\(481\) −124.377 171.190i −0.258580 0.355905i
\(482\) −60.8282 + 187.210i −0.126199 + 0.388402i
\(483\) 38.0423i 0.0787624i
\(484\) −109.239 405.678i −0.225700 0.838178i
\(485\) 0 0
\(486\) −169.873 55.1952i −0.349533 0.113570i
\(487\) −510.363 + 370.800i −1.04797 + 0.761397i −0.971826 0.235700i \(-0.924262\pi\)
−0.0761466 + 0.997097i \(0.524262\pi\)
\(488\) −99.3181 72.1588i −0.203521 0.147866i
\(489\) 74.4630 + 229.174i 0.152276 + 0.468658i
\(490\) 0 0
\(491\) −256.297 + 352.763i −0.521990 + 0.718458i −0.985883 0.167433i \(-0.946452\pi\)
0.463893 + 0.885891i \(0.346452\pi\)
\(492\) 197.898 + 272.383i 0.402231 + 0.553623i
\(493\) 134.241 413.152i 0.272294 0.838036i
\(494\) 7.92055i 0.0160335i
\(495\) 0 0
\(496\) −70.8491 −0.142841
\(497\) −722.895 234.883i −1.45452 0.472602i
\(498\) −67.6190 + 49.1281i −0.135781 + 0.0986508i
\(499\) 376.446 + 273.504i 0.754401 + 0.548105i 0.897188 0.441649i \(-0.145606\pi\)
−0.142787 + 0.989753i \(0.545606\pi\)
\(500\) 0 0
\(501\) −324.574 + 105.461i −0.647853 + 0.210500i
\(502\) 4.75507 6.54479i 0.00947225 0.0130374i
\(503\) −270.059 371.704i −0.536896 0.738974i 0.451265 0.892390i \(-0.350973\pi\)
−0.988162 + 0.153415i \(0.950973\pi\)
\(504\) −118.464 + 364.595i −0.235048 + 0.723402i
\(505\) 0 0
\(506\) −17.5329 13.4363i −0.0346500 0.0265539i
\(507\) −195.356 −0.385317
\(508\) −621.649 201.986i −1.22372 0.397610i
\(509\) 194.705 141.462i 0.382525 0.277920i −0.379861 0.925044i \(-0.624028\pi\)
0.762385 + 0.647123i \(0.224028\pi\)
\(510\) 0 0
\(511\) −316.602 974.400i −0.619573 1.90685i
\(512\) −479.078 + 155.662i −0.935699 + 0.304027i
\(513\) −27.1024 + 37.3032i −0.0528311 + 0.0727158i
\(514\) −172.221 237.042i −0.335061 0.461172i
\(515\) 0 0
\(516\) 110.662i 0.214461i
\(517\) −287.207 + 85.2675i −0.555525 + 0.164928i
\(518\) 291.246 0.562251
\(519\) 65.3851 + 21.2449i 0.125983 + 0.0409343i
\(520\) 0 0
\(521\) 564.504 + 410.136i 1.08350 + 0.787210i 0.978290 0.207240i \(-0.0664480\pi\)
0.105212 + 0.994450i \(0.466448\pi\)
\(522\) −45.2492 139.263i −0.0866843 0.266787i
\(523\) 353.526 114.868i 0.675959 0.219632i 0.0491334 0.998792i \(-0.484354\pi\)
0.626825 + 0.779160i \(0.284354\pi\)
\(524\) −289.665 + 398.689i −0.552795 + 0.760857i
\(525\) 0 0
\(526\) 9.57857 29.4798i 0.0182102 0.0560452i
\(527\) 108.881i 0.206606i
\(528\) −85.7001 124.529i −0.162311 0.235851i
\(529\) −521.361 −0.985559
\(530\) 0 0
\(531\) −13.0238 + 9.46234i −0.0245269 + 0.0178199i
\(532\) 58.0132 + 42.1490i 0.109047 + 0.0792275i
\(533\) −113.992 350.831i −0.213868 0.658219i
\(534\) 117.738 38.2554i 0.220483 0.0716393i
\(535\) 0 0
\(536\) −122.832 169.064i −0.229164 0.315417i
\(537\) −93.5025 + 287.771i −0.174120 + 0.535887i
\(538\) 297.878i 0.553676i
\(539\) −14.1120 + 551.948i −0.0261819 + 1.02402i
\(540\) 0 0
\(541\) −64.3657 20.9137i −0.118975 0.0386575i 0.248924 0.968523i \(-0.419923\pi\)
−0.367900 + 0.929866i \(0.619923\pi\)
\(542\) −136.400 + 99.1005i −0.251661 + 0.182842i
\(543\) 43.4934 + 31.5998i 0.0800984 + 0.0581949i
\(544\) −136.671 420.630i −0.251233 0.773217i
\(545\) 0 0
\(546\) −30.9017 + 42.5325i −0.0565965 + 0.0778984i
\(547\) 436.380 + 600.625i 0.797769 + 1.09804i 0.993097 + 0.117297i \(0.0374230\pi\)
−0.195328 + 0.980738i \(0.562577\pi\)
\(548\) −17.4433 + 53.6850i −0.0318309 + 0.0979653i
\(549\) 160.333i 0.292045i
\(550\) 0 0
\(551\) −58.9443 −0.106977
\(552\) −19.7214 6.40786i −0.0357271 0.0116084i
\(553\) 31.7082 23.0374i 0.0573385 0.0416589i
\(554\) −180.036 130.804i −0.324975 0.236108i
\(555\) 0 0
\(556\) 747.807 242.977i 1.34498 0.437010i
\(557\) 441.323 607.429i 0.792322 1.09054i −0.201494 0.979490i \(-0.564579\pi\)
0.993815 0.111047i \(-0.0354205\pi\)
\(558\) −21.5724 29.6918i −0.0386601 0.0532111i
\(559\) 37.4671 115.312i 0.0670252 0.206282i
\(560\) 0 0
\(561\) 191.378 131.704i 0.341137 0.234767i
\(562\) −94.0507 −0.167350
\(563\) 991.673 + 322.214i 1.76141 + 0.572316i 0.997345 0.0728240i \(-0.0232011\pi\)
0.764064 + 0.645140i \(0.223201\pi\)
\(564\) −105.729 + 76.8170i −0.187464 + 0.136200i
\(565\) 0 0
\(566\) 94.7214 + 291.522i 0.167352 + 0.515057i
\(567\) 313.358 101.816i 0.552659 0.179570i
\(568\) 243.530 335.190i 0.428750 0.590123i
\(569\) −136.967 188.518i −0.240714 0.331315i 0.671518 0.740988i \(-0.265643\pi\)
−0.912232 + 0.409673i \(0.865643\pi\)
\(570\) 0 0
\(571\) 196.324i 0.343825i −0.985112 0.171912i \(-0.945005\pi\)
0.985112 0.171912i \(-0.0549946\pi\)
\(572\) 57.1478 + 192.491i 0.0999088 + 0.336523i
\(573\) −165.564 −0.288943
\(574\) 482.877 + 156.896i 0.841250 + 0.273339i
\(575\) 0 0
\(576\) 107.556 + 78.1438i 0.186729 + 0.135666i
\(577\) −43.9884 135.382i −0.0762364 0.234631i 0.905675 0.423973i \(-0.139365\pi\)
−0.981911 + 0.189341i \(0.939365\pi\)
\(578\) −38.3134 + 12.4488i −0.0662862 + 0.0215377i
\(579\) −23.7384 + 32.6730i −0.0409989 + 0.0564301i
\(580\) 0 0
\(581\) 256.199 788.498i 0.440961 1.35714i
\(582\) 77.7223i 0.133544i
\(583\) −76.6718 + 100.049i −0.131513 + 0.171610i
\(584\) 558.464 0.956274
\(585\) 0 0
\(586\) 37.8998 27.5358i 0.0646754 0.0469894i
\(587\) −193.847 140.838i −0.330233 0.239929i 0.410296 0.911952i \(-0.365425\pi\)
−0.740530 + 0.672024i \(0.765425\pi\)
\(588\) 74.4259 + 229.059i 0.126575 + 0.389557i
\(589\) −14.0507 + 4.56535i −0.0238552 + 0.00775102i
\(590\) 0 0
\(591\) 229.098 + 315.327i 0.387645 + 0.533548i
\(592\) 123.684 380.660i 0.208925 0.643006i
\(593\) 598.782i 1.00975i 0.863192 + 0.504875i \(0.168462\pi\)
−0.863192 + 0.504875i \(0.831538\pi\)
\(594\) 59.2173 167.553i 0.0996924 0.282076i
\(595\) 0 0
\(596\) 221.858 + 72.0860i 0.372245 + 0.120950i
\(597\) 198.416 144.158i 0.332356 0.241471i
\(598\) 8.54102 + 6.20541i 0.0142826 + 0.0103769i
\(599\) 93.8359 + 288.797i 0.156654 + 0.482132i 0.998325 0.0578592i \(-0.0184274\pi\)
−0.841670 + 0.539992i \(0.818427\pi\)
\(600\) 0 0
\(601\) −107.416 + 147.845i −0.178729 + 0.245999i −0.888977 0.457953i \(-0.848583\pi\)
0.710248 + 0.703952i \(0.248583\pi\)
\(602\) 98.0902 + 135.010i 0.162940 + 0.224268i
\(603\) −84.3384 + 259.567i −0.139865 + 0.430459i
\(604\) 349.036i 0.577874i
\(605\) 0 0
\(606\) −113.131 −0.186685
\(607\) 769.237 + 249.940i 1.26728 + 0.411763i 0.864082 0.503351i \(-0.167900\pi\)
0.403195 + 0.915114i \(0.367900\pi\)
\(608\) −48.5501 + 35.2737i −0.0798522 + 0.0580160i
\(609\) −316.525 229.969i −0.519745 0.377617i
\(610\) 0 0
\(611\) 136.180 44.2477i 0.222881 0.0724185i
\(612\) −221.138 + 304.371i −0.361337 + 0.497338i
\(613\) −701.597 965.666i −1.14453 1.57531i −0.756946 0.653478i \(-0.773309\pi\)
−0.387585 0.921834i \(-0.626691\pi\)
\(614\) −80.0420 + 246.344i −0.130362 + 0.401212i
\(615\) 0 0
\(616\) −560.766 198.188i −0.910334 0.321733i
\(617\) −107.900 −0.174878 −0.0874390 0.996170i \(-0.527868\pi\)
−0.0874390 + 0.996170i \(0.527868\pi\)
\(618\) 88.4346 + 28.7341i 0.143098 + 0.0464954i
\(619\) 457.719 332.552i 0.739449 0.537241i −0.153089 0.988212i \(-0.548922\pi\)
0.892539 + 0.450971i \(0.148922\pi\)
\(620\) 0 0
\(621\) 18.9919 + 58.4510i 0.0305827 + 0.0941239i
\(622\) 383.643 124.653i 0.616790 0.200407i
\(623\) −721.792 + 993.462i −1.15857 + 1.59464i
\(624\) 42.4671 + 58.4510i 0.0680563 + 0.0936714i
\(625\) 0 0
\(626\) 240.768i 0.384614i
\(627\) −25.0203 19.1742i −0.0399048 0.0305809i
\(628\) 856.298 1.36353
\(629\) 585.000 + 190.078i 0.930048 + 0.302191i
\(630\) 0 0
\(631\) −558.872 406.044i −0.885693 0.643494i 0.0490585 0.998796i \(-0.484378\pi\)
−0.934751 + 0.355302i \(0.884378\pi\)
\(632\) 6.60177 + 20.3182i 0.0104458 + 0.0321490i
\(633\) 129.263 42.0000i 0.204207 0.0663507i
\(634\) 220.755 303.843i 0.348193 0.479247i
\(635\) 0 0
\(636\) −16.9911 + 52.2933i −0.0267156 + 0.0822222i
\(637\) 263.883i 0.414259i
\(638\) 217.782 64.6564i 0.341351 0.101342i
\(639\) −541.108 −0.846805
\(640\) 0 0
\(641\) −624.756 + 453.912i −0.974659 + 0.708131i −0.956509 0.291704i \(-0.905778\pi\)
−0.0181501 + 0.999835i \(0.505778\pi\)
\(642\) 68.9058 + 50.0630i 0.107330 + 0.0779797i
\(643\) −291.864 898.264i −0.453909 1.39699i −0.872411 0.488773i \(-0.837445\pi\)
0.418502 0.908216i \(-0.362555\pi\)
\(644\) 90.9017 29.5358i 0.141152 0.0458630i
\(645\) 0 0
\(646\) −13.5333 18.6269i −0.0209493 0.0288343i
\(647\) 301.400 927.614i 0.465843 1.43372i −0.392077 0.919932i \(-0.628243\pi\)
0.857920 0.513784i \(-0.171757\pi\)
\(648\) 179.597i 0.277155i
\(649\) −14.1591 20.5743i −0.0218167 0.0317016i
\(650\) 0 0
\(651\) −93.2624 30.3028i −0.143260 0.0465481i
\(652\) 489.796 355.858i 0.751221 0.545794i
\(653\) 194.615 + 141.396i 0.298032 + 0.216533i 0.726744 0.686908i \(-0.241033\pi\)
−0.428712 + 0.903441i \(0.641033\pi\)
\(654\) 29.1892 + 89.8351i 0.0446318 + 0.137363i
\(655\) 0 0
\(656\) 410.128 564.493i 0.625195 0.860507i
\(657\) −428.711 590.070i −0.652528 0.898128i
\(658\) −60.9017 + 187.436i −0.0925558 + 0.284857i
\(659\) 937.713i 1.42293i −0.702720 0.711467i \(-0.748031\pi\)
0.702720 0.711467i \(-0.251969\pi\)
\(660\) 0 0
\(661\) 133.305 0.201672 0.100836 0.994903i \(-0.467848\pi\)
0.100836 + 0.994903i \(0.467848\pi\)
\(662\) 144.335 + 46.8973i 0.218029 + 0.0708418i
\(663\) −89.8278 + 65.2637i −0.135487 + 0.0984370i
\(664\) 365.608 + 265.630i 0.550615 + 0.400045i
\(665\) 0 0
\(666\) 197.188 64.0704i 0.296079 0.0962018i
\(667\) −46.1803 + 63.5618i −0.0692359 + 0.0952950i
\(668\) 503.995 + 693.689i 0.754483 + 1.03846i
\(669\) 113.607 349.646i 0.169816 0.522639i
\(670\) 0 0
\(671\) −248.666 6.35781i −0.370590 0.00947513i
\(672\) −398.328 −0.592750
\(673\) −860.230 279.506i −1.27820 0.415313i −0.410256 0.911971i \(-0.634561\pi\)
−0.867947 + 0.496657i \(0.834561\pi\)
\(674\) 79.3090 57.6214i 0.117669 0.0854917i
\(675\) 0 0
\(676\) 151.673 + 466.801i 0.224368 + 0.690534i
\(677\) −574.798 + 186.763i −0.849037 + 0.275869i −0.701043 0.713119i \(-0.747282\pi\)
−0.147995 + 0.988988i \(0.547282\pi\)
\(678\) −5.01256 + 6.89920i −0.00739316 + 0.0101758i
\(679\) 453.156 + 623.716i 0.667387 + 0.918580i
\(680\) 0 0
\(681\) 351.744i 0.516512i
\(682\) 46.9055 32.2800i 0.0687764 0.0473313i
\(683\) −1261.32 −1.84673 −0.923367 0.383919i \(-0.874574\pi\)
−0.923367 + 0.383919i \(0.874574\pi\)
\(684\) 48.5501 + 15.7749i 0.0709797 + 0.0230627i
\(685\) 0 0
\(686\) 6.98684 + 5.07624i 0.0101849 + 0.00739977i
\(687\) 17.1703 + 52.8447i 0.0249931 + 0.0769210i
\(688\) 218.114 70.8695i 0.317026 0.103008i
\(689\) 35.4102 48.7380i 0.0513936 0.0707372i
\(690\) 0 0
\(691\) −132.915 + 409.071i −0.192352 + 0.591999i 0.807645 + 0.589669i \(0.200742\pi\)
−0.999997 + 0.00232993i \(0.999258\pi\)
\(692\) 172.732i 0.249612i
\(693\) 221.074 + 744.643i 0.319010 + 1.07452i
\(694\) 68.8603 0.0992224
\(695\) 0 0
\(696\) 172.533 125.352i 0.247892 0.180104i
\(697\) 867.516 + 630.287i 1.24464 + 0.904286i
\(698\) −38.5774 118.729i −0.0552685 0.170099i
\(699\) 303.533 98.6239i 0.434239 0.141093i
\(700\) 0 0
\(701\) −299.098 411.673i −0.426674 0.587266i 0.540512 0.841336i \(-0.318231\pi\)
−0.967186 + 0.254070i \(0.918231\pi\)
\(702\) −26.2461 + 80.7772i −0.0373876 + 0.115067i
\(703\) 83.4619i 0.118722i
\(704\) −125.461 + 163.713i −0.178212 + 0.232548i
\(705\) 0 0
\(706\) 82.6722 + 26.8618i 0.117099 + 0.0380479i
\(707\) 907.866 659.603i 1.28411 0.932961i
\(708\) −8.81404 6.40378i −0.0124492 0.00904488i
\(709\) −227.956 701.577i −0.321518 0.989531i −0.972988 0.230856i \(-0.925847\pi\)
0.651470 0.758674i \(-0.274153\pi\)
\(710\) 0 0
\(711\) 16.4001 22.5729i 0.0230663 0.0317481i
\(712\) −393.438 541.521i −0.552582 0.760563i
\(713\) −6.08514 + 18.7282i −0.00853457 + 0.0262667i
\(714\) 152.824i 0.214039i
\(715\) 0 0
\(716\) 760.222 1.06176
\(717\) 414.230 + 134.591i 0.577726 + 0.187715i
\(718\) 274.681 199.567i 0.382564 0.277949i
\(719\) 425.782 + 309.349i 0.592187 + 0.430249i 0.843097 0.537762i \(-0.180730\pi\)
−0.250910 + 0.968010i \(0.580730\pi\)
\(720\) 0 0
\(721\) −877.214 + 285.024i −1.21666 + 0.395318i
\(722\) 152.329 209.663i 0.210982 0.290392i
\(723\) 220.078 + 302.912i 0.304396 + 0.418965i
\(724\) 41.7395 128.461i 0.0576513 0.177432i
\(725\) 0 0
\(726\) 113.475 + 43.3983i 0.156302 + 0.0597772i
\(727\) 756.122 1.04006 0.520029 0.854149i \(-0.325921\pi\)
0.520029 + 0.854149i \(0.325921\pi\)
\(728\) 270.344 + 87.8402i 0.371352 + 0.120660i
\(729\) −33.9853 + 24.6918i −0.0466191 + 0.0338707i
\(730\) 0 0
\(731\) 108.913 + 335.199i 0.148991 + 0.458548i
\(732\) −103.197 + 33.5306i −0.140979 + 0.0458068i
\(733\) −250.381 + 344.620i −0.341584 + 0.470149i −0.944903 0.327350i \(-0.893844\pi\)
0.603320 + 0.797500i \(0.293844\pi\)
\(734\) −140.426 193.279i −0.191316 0.263323i
\(735\) 0 0
\(736\) 79.9888i 0.108680i
\(737\) −399.228 141.096i −0.541693 0.191447i
\(738\) 361.448 0.489767
\(739\) 184.618 + 59.9862i 0.249822 + 0.0811721i 0.431251 0.902232i \(-0.358072\pi\)
−0.181429 + 0.983404i \(0.558072\pi\)
\(740\) 0 0
\(741\) 12.1885 + 8.85544i 0.0164487 + 0.0119507i
\(742\) 25.6231 + 78.8597i 0.0345324 + 0.106280i
\(743\) −211.584 + 68.7477i −0.284769 + 0.0925272i −0.447919 0.894074i \(-0.647835\pi\)
0.163150 + 0.986601i \(0.447835\pi\)
\(744\) 31.4183 43.2436i 0.0422289 0.0581231i
\(745\) 0 0
\(746\) 48.0763 147.964i 0.0644454 0.198343i
\(747\) 590.214i 0.790112i
\(748\) −463.291 355.041i −0.619373 0.474654i
\(749\) −844.853 −1.12797
\(750\) 0 0
\(751\) 1186.49 862.033i 1.57987 1.14785i 0.663037 0.748587i \(-0.269267\pi\)
0.916838 0.399260i \(-0.130733\pi\)
\(752\) 219.116 + 159.197i 0.291378 + 0.211699i
\(753\) −4.75507 14.6346i −0.00631483 0.0194351i
\(754\) −103.262 + 33.5520i −0.136953 + 0.0444986i
\(755\) 0 0
\(756\) 451.976 + 622.091i 0.597851 + 0.822872i
\(757\) −410.832 + 1264.41i −0.542710 + 1.67029i 0.183663 + 0.982989i \(0.441205\pi\)
−0.726373 + 0.687301i \(0.758795\pi\)
\(758\) 232.676i 0.306961i
\(759\) −40.2786 + 11.9581i −0.0530680 + 0.0157551i
\(760\) 0 0
\(761\) 654.725 + 212.733i 0.860348 + 0.279544i 0.705774 0.708437i \(-0.250599\pi\)
0.154574 + 0.987981i \(0.450599\pi\)
\(762\) 152.918 111.101i 0.200680 0.145802i
\(763\) −758.020 550.734i −0.993473 0.721801i
\(764\) 128.543 + 395.614i 0.168250 + 0.517820i
\(765\) 0 0
\(766\) 233.835 321.847i 0.305268 0.420165i
\(767\) 7.01626 + 9.65706i 0.00914767 + 0.0125907i
\(768\) 8.11397 24.9722i 0.0105651 0.0325159i
\(769\) 695.838i 0.904860i −0.891800 0.452430i \(-0.850557\pi\)
0.891800 0.452430i \(-0.149443\pi\)
\(770\) 0 0
\(771\) −557.320 −0.722853
\(772\) 96.5023 + 31.3555i 0.125003 + 0.0406159i
\(773\) 67.1591 48.7939i 0.0868811 0.0631228i −0.543497 0.839411i \(-0.682900\pi\)
0.630378 + 0.776288i \(0.282900\pi\)
\(774\) 96.1124 + 69.8298i 0.124176 + 0.0902193i
\(775\) 0 0
\(776\) −399.668 + 129.860i −0.515036 + 0.167345i
\(777\) 325.623 448.182i 0.419077 0.576810i
\(778\) −143.716 197.808i −0.184725 0.254252i
\(779\) 44.9615 138.377i 0.0577169 0.177634i
\(780\) 0 0
\(781\) 21.4571 839.225i 0.0274738 1.07455i
\(782\) −30.6888 −0.0392440
\(783\) −601.140 195.322i −0.767739 0.249454i
\(784\) 403.811 293.386i 0.515065 0.374217i
\(785\) 0 0
\(786\) −44.0373 135.533i −0.0560271 0.172434i
\(787\) −103.159 + 33.5185i −0.131079 + 0.0425903i −0.373822 0.927500i \(-0.621953\pi\)
0.242743 + 0.970091i \(0.421953\pi\)
\(788\) 575.601 792.246i 0.730458 1.00539i
\(789\) −34.6556 47.6993i −0.0439234 0.0604554i
\(790\) 0 0
\(791\) 84.5910i 0.106942i
\(792\) −423.266 10.8219i −0.534427 0.0136641i
\(793\) 118.885 0.149919
\(794\) −79.7214 25.9030i −0.100405 0.0326235i
\(795\) 0 0
\(796\) −498.514 362.191i −0.626273 0.455014i
\(797\) 308.596 + 949.759i 0.387196 + 1.19167i 0.934874 + 0.354979i \(0.115512\pi\)
−0.547678 + 0.836689i \(0.684488\pi\)
\(798\) −19.7214 + 6.40786i −0.0247135 + 0.00802990i
\(799\) −244.656 + 336.740i −0.306202 + 0.421451i
\(800\) 0 0
\(801\) −270.141 + 831.409i −0.337255 + 1.03796i
\(802\) 46.3500i 0.0577930i
\(803\) 932.162 641.505i 1.16085 0.798886i
\(804\) −184.706 −0.229734
\(805\) 0 0
\(806\) −22.0163 + 15.9958i −0.0273155 + 0.0198458i
\(807\) −458.387 333.038i −0.568014 0.412686i
\(808\) 189.021 + 581.748i 0.233937 + 0.719985i
\(809\) 71.6823 23.2910i 0.0886060 0.0287898i −0.264379 0.964419i \(-0.585167\pi\)
0.352985 + 0.935629i \(0.385167\pi\)
\(810\) 0 0
\(811\) −583.402 802.984i −0.719361 0.990115i −0.999545 0.0301690i \(-0.990395\pi\)
0.280184 0.959946i \(-0.409605\pi\)
\(812\) −303.761 + 934.880i −0.374090 + 1.15133i
\(813\) 320.696i 0.394460i
\(814\) 91.5499 + 308.368i 0.112469 + 0.378830i
\(815\) 0 0
\(816\) −199.742 64.9000i −0.244781 0.0795343i
\(817\) 38.6894 28.1095i 0.0473555 0.0344058i
\(818\) −359.538 261.220i −0.439533 0.319339i
\(819\) −114.721 353.076i −0.140075 0.431106i
\(820\) 0 0
\(821\) −733.079 + 1009.00i −0.892910 + 1.22898i 0.0797652 + 0.996814i \(0.474583\pi\)
−0.972675 + 0.232171i \(0.925417\pi\)
\(822\) −9.59460 13.2058i −0.0116723 0.0160655i
\(823\) 165.319 508.800i 0.200874 0.618227i −0.798984 0.601353i \(-0.794629\pi\)
0.999858 0.0168738i \(-0.00537135\pi\)
\(824\) 502.763i 0.610149i
\(825\) 0 0
\(826\) −16.4296 −0.0198905
\(827\) −53.4969 17.3822i −0.0646879 0.0210184i 0.276494 0.961016i \(-0.410827\pi\)
−0.341182 + 0.939997i \(0.610827\pi\)
\(828\) 55.0476 39.9944i 0.0664826 0.0483024i
\(829\) 660.320 + 479.751i 0.796526 + 0.578710i 0.909893 0.414843i \(-0.136164\pi\)
−0.113367 + 0.993553i \(0.536164\pi\)
\(830\) 0 0
\(831\) −402.574 + 130.804i −0.484445 + 0.157406i
\(832\) 57.9431 79.7518i 0.0696431 0.0958555i
\(833\) 450.877 + 620.579i 0.541269 + 0.744993i
\(834\) −70.2631 + 216.248i −0.0842483 + 0.259290i
\(835\) 0 0
\(836\) −26.3911 + 74.6726i −0.0315682 + 0.0893213i
\(837\) −158.423 −0.189275
\(838\) 100.991 + 32.8141i 0.120515 + 0.0391576i
\(839\) −49.8216 + 36.1975i −0.0593821 + 0.0431436i −0.617080 0.786900i \(-0.711685\pi\)
0.557698 + 0.830044i \(0.311685\pi\)
\(840\) 0 0
\(841\) 10.1913 + 31.3657i 0.0121181 + 0.0372958i
\(842\) −410.036 + 133.229i −0.486979 + 0.158229i
\(843\) −105.152 + 144.729i −0.124735 + 0.171683i
\(844\) −200.717 276.264i −0.237817 0.327327i
\(845\) 0 0
\(846\) 140.301i 0.165841i
\(847\) −1163.66 + 313.344i −1.37386 + 0.369945i
\(848\) 113.951 0.134376
\(849\) 554.508 + 180.171i 0.653131 + 0.212215i
\(850\) 0 0
\(851\) −90.0000 65.3888i −0.105758 0.0768376i
\(852\) −113.163 348.280i −0.132820 0.408779i
\(853\) −1347.24 + 437.746i −1.57942 + 0.513184i −0.961907 0.273379i \(-0.911859\pi\)
−0.617511 + 0.786562i \(0.711859\pi\)
\(854\) −96.1803 + 132.381i −0.112623 + 0.155013i
\(855\) 0 0
\(856\) 142.307 437.977i 0.166247 0.511656i
\(857\) 1249.64i 1.45815i −0.684432 0.729077i \(-0.739950\pi\)
0.684432 0.729077i \(-0.260050\pi\)
\(858\) −54.7465 19.3487i −0.0638071 0.0225509i
\(859\) −345.229 −0.401896 −0.200948 0.979602i \(-0.564402\pi\)
−0.200948 + 0.979602i \(0.564402\pi\)
\(860\) 0 0
\(861\) 781.312 567.656i 0.907447 0.659299i
\(862\) 102.474 + 74.4518i 0.118879 + 0.0863710i
\(863\) 125.242 + 385.456i 0.145124 + 0.446647i 0.997027 0.0770535i \(-0.0245512\pi\)
−0.851903 + 0.523700i \(0.824551\pi\)
\(864\) −612.021 + 198.858i −0.708358 + 0.230159i
\(865\) 0 0
\(866\) 265.045 + 364.804i 0.306057 + 0.421251i
\(867\) −23.6790 + 72.8765i −0.0273114 + 0.0840560i
\(868\) 246.377i 0.283844i
\(869\) 34.3588 + 26.3307i 0.0395383 + 0.0303000i
\(870\) 0 0
\(871\) 192.467 + 62.5364i 0.220973 + 0.0717983i
\(872\) 413.185 300.197i 0.473836 0.344262i
\(873\) 444.019 + 322.599i 0.508613 + 0.369529i
\(874\) 1.28677 + 3.96027i 0.00147228 + 0.00453121i
\(875\) 0 0
\(876\) 290.136 399.338i 0.331206 0.455866i
\(877\) −209.069 287.759i −0.238391 0.328117i 0.673012 0.739631i \(-0.265000\pi\)
−0.911403 + 0.411514i \(0.865000\pi\)
\(878\) −151.946 + 467.642i −0.173059 + 0.532622i
\(879\) 89.1077i 0.101374i
\(880\) 0 0
\(881\) −883.370 −1.00269 −0.501345 0.865248i \(-0.667161\pi\)
−0.501345 + 0.865248i \(0.667161\pi\)
\(882\) 245.907 + 79.9001i 0.278806 + 0.0905897i
\(883\) 674.512 490.062i 0.763887 0.554996i −0.136213 0.990680i \(-0.543493\pi\)
0.900100 + 0.435683i \(0.143493\pi\)
\(884\) 225.689 + 163.973i 0.255304 + 0.185489i
\(885\) 0 0
\(886\) −179.177 + 58.2180i −0.202231 + 0.0657088i
\(887\) −54.3406 + 74.7934i −0.0612633 + 0.0843217i −0.838549 0.544826i \(-0.816596\pi\)
0.777286 + 0.629147i \(0.216596\pi\)
\(888\) 177.492 + 244.297i 0.199879 + 0.275109i
\(889\) −579.384 + 1783.16i −0.651725 + 2.00580i
\(890\) 0 0
\(891\) 206.302 + 299.774i 0.231540 + 0.336447i
\(892\) −923.680 −1.03552
\(893\) 53.7132 + 17.4525i 0.0601492 + 0.0195437i
\(894\) −54.5743 + 39.6505i −0.0610451 + 0.0443518i
\(895\) 0 0
\(896\) 398.204 + 1225.54i 0.444424 + 1.36780i
\(897\) 19.0983 6.20541i 0.0212913 0.00691796i
\(898\) 171.846 236.526i 0.191365 0.263392i
\(899\) −119.039 163.844i −0.132413 0.182251i
\(900\) 0 0
\(901\) 175.121i 0.194363i
\(902\) −14.3328 + 560.583i −0.0158900 + 0.621489i
\(903\) 317.426 0.351524
\(904\) 43.8525 + 14.2486i 0.0485095 + 0.0157617i
\(905\) 0 0
\(906\) 81.6563 + 59.3268i 0.0901284 + 0.0654821i
\(907\) 454.784 + 1399.68i 0.501415 + 1.54320i 0.806715 + 0.590941i \(0.201243\pi\)
−0.305299 + 0.952256i \(0.598757\pi\)
\(908\) 840.491 273.092i 0.925651 0.300762i
\(909\) 469.567 646.304i 0.516576 0.711005i
\(910\) 0 0
\(911\) 54.3525 167.280i 0.0596625 0.183622i −0.916783 0.399385i \(-0.869224\pi\)
0.976446 + 0.215763i \(0.0692237\pi\)
\(912\) 28.4971i 0.0312468i
\(913\) 915.384 + 23.4043i 1.00261 + 0.0256345i
\(914\) −185.795 −0.203277
\(915\) 0 0
\(916\) 112.941 82.0566i 0.123298 0.0895814i
\(917\) 1143.61 + 830.884i 1.24713 + 0.906089i
\(918\) −76.2945 234.810i −0.0831095 0.255785i
\(919\) −1636.12 + 531.609i −1.78033 + 0.578465i −0.998960 0.0456019i \(-0.985479\pi\)
−0.781371 + 0.624066i \(0.785479\pi\)
\(920\) 0 0
\(921\) 289.595 + 398.593i 0.314435 + 0.432783i
\(922\) 100.195 308.368i 0.108671 0.334455i
\(923\) 401.228i 0.434700i
\(924\) −433.050 + 298.021i −0.468668 + 0.322533i
\(925\) 0 0
\(926\) −50.5322 16.4189i −0.0545704 0.0177310i
\(927\) −531.217 + 385.952i −0.573049 + 0.416345i
\(928\) −665.535 483.539i −0.717171 0.521055i
\(929\) 288.957 + 889.317i 0.311040 + 0.957284i 0.977354 + 0.211612i \(0.0678714\pi\)
−0.666313 + 0.745672i \(0.732129\pi\)
\(930\) 0 0
\(931\) 61.1782 84.2046i 0.0657123 0.0904453i
\(932\) −471.322 648.720i −0.505711 0.696051i
\(933\) 237.105 729.733i 0.254131 0.782136i
\(934\) 8.07520i 0.00864583i
\(935\) 0 0
\(936\) 202.361 0.216197
\(937\) 853.544 + 277.333i 0.910933 + 0.295980i 0.726742 0.686910i \(-0.241033\pi\)
0.184191 + 0.982890i \(0.441033\pi\)
\(938\) −225.344 + 163.722i −0.240239 + 0.174544i
\(939\) 370.504 + 269.187i 0.394573 + 0.286674i
\(940\) 0 0
\(941\) 437.800 142.250i 0.465250 0.151169i −0.0670056 0.997753i \(-0.521345\pi\)
0.532256 + 0.846584i \(0.321345\pi\)
\(942\) −145.548 + 200.329i −0.154509 + 0.212664i
\(943\) −113.992 156.896i −0.120882 0.166380i
\(944\) −6.97716 + 21.4735i −0.00739106 + 0.0227473i
\(945\) 0 0
\(946\) −112.113 + 146.295i −0.118512 + 0.154646i
\(947\) −1781.44 −1.88114 −0.940570 0.339600i \(-0.889708\pi\)
−0.940570 + 0.339600i \(0.889708\pi\)
\(948\) 17.9586 + 5.83511i 0.0189437 + 0.00615518i
\(949\) −437.533 + 317.886i −0.461046 + 0.334970i
\(950\) 0 0
\(951\) −220.755 679.413i −0.232129 0.714419i
\(952\) −785.861 + 255.342i −0.825484 + 0.268216i
\(953\) −472.394 + 650.194i −0.495691 + 0.682260i −0.981425 0.191847i \(-0.938552\pi\)
0.485734 + 0.874107i \(0.338552\pi\)
\(954\) 34.6962 + 47.7553i 0.0363692 + 0.0500579i
\(955\) 0 0
\(956\) 1094.30i 1.14466i
\(957\) 143.992 407.420i 0.150462 0.425726i
\(958\) −416.760 −0.435031
\(959\) 153.992 + 50.0350i 0.160575 + 0.0521741i
\(960\) 0 0
\(961\) 736.400 + 535.026i 0.766285 + 0.556738i
\(962\) −47.5078 146.214i −0.0493844 0.151989i
\(963\) −572.008 + 185.857i −0.593986 + 0.192998i
\(964\) 552.938 761.054i 0.573587 0.789475i
\(965\) 0 0
\(966\) −8.54102 + 26.2866i −0.00884164 + 0.0272118i
\(967\) 915.454i 0.946695i −0.880876 0.473347i \(-0.843046\pi\)
0.880876 0.473347i \(-0.156954\pi\)
\(968\) 33.5683 656.030i 0.0346780 0.677716i
\(969\) −43.7945 −0.0451956
\(970\) 0 0
\(971\) −596.366 + 433.285i −0.614177 + 0.446226i −0.850883 0.525356i \(-0.823932\pi\)
0.236706 + 0.971581i \(0.423932\pi\)
\(972\) 690.577 + 501.733i 0.710470 + 0.516187i
\(973\) −696.964 2145.04i −0.716305 2.20456i
\(974\) −435.902 + 141.633i −0.447538 + 0.145414i
\(975\) 0 0
\(976\) 132.177 + 181.926i 0.135427 + 0.186400i
\(977\) −59.1165 + 181.942i −0.0605082 + 0.186225i −0.976742 0.214420i \(-0.931214\pi\)
0.916233 + 0.400645i \(0.131214\pi\)
\(978\) 175.073i 0.179011i
\(979\) −1278.75 451.941i −1.30618 0.461635i
\(980\) 0 0
\(981\) −634.373 206.120i −0.646659 0.210112i
\(982\) −256.297 + 186.211i −0.260995 + 0.189624i
\(983\) 772.503 + 561.257i 0.785863 + 0.570963i 0.906733 0.421705i \(-0.138568\pi\)
−0.120870 + 0.992668i \(0.538568\pi\)
\(984\) 162.672 + 500.654i 0.165317 + 0.508794i
\(985\) 0 0
\(986\) 185.517 255.342i 0.188151 0.258967i
\(987\) 220.344 + 303.278i 0.223247 + 0.307273i
\(988\) 11.6970 35.9996i 0.0118390 0.0364368i
\(989\) 63.7429i 0.0644518i
\(990\) 0 0
\(991\) −1076.02 −1.08580 −0.542898 0.839799i \(-0.682673\pi\)
−0.542898 + 0.839799i \(0.682673\pi\)
\(992\) −196.096 63.7156i −0.197678 0.0642294i
\(993\) 233.539 169.676i 0.235185 0.170872i
\(994\) −446.774 324.600i −0.449471 0.326560i
\(995\) 0 0
\(996\) 379.886 123.432i 0.381411 0.123928i
\(997\) −283.439 + 390.120i −0.284292 + 0.391294i −0.927150 0.374692i \(-0.877749\pi\)
0.642858 + 0.765986i \(0.277749\pi\)
\(998\) 198.712 + 273.504i 0.199111 + 0.274052i
\(999\) 276.565 851.181i 0.276842 0.852033i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.x.e.101.1 4
5.2 odd 4 275.3.q.d.24.1 8
5.3 odd 4 275.3.q.d.24.2 8
5.4 even 2 11.3.d.a.2.1 4
11.6 odd 10 inner 275.3.x.e.226.1 4
15.14 odd 2 99.3.k.a.46.1 4
20.19 odd 2 176.3.n.a.145.1 4
55.4 even 10 121.3.b.b.120.2 4
55.9 even 10 121.3.d.a.118.1 4
55.14 even 10 121.3.d.c.40.1 4
55.17 even 20 275.3.q.d.149.2 8
55.19 odd 10 121.3.d.a.40.1 4
55.24 odd 10 121.3.d.c.118.1 4
55.28 even 20 275.3.q.d.149.1 8
55.29 odd 10 121.3.b.b.120.3 4
55.39 odd 10 11.3.d.a.6.1 yes 4
55.49 even 10 121.3.d.d.94.1 4
55.54 odd 2 121.3.d.d.112.1 4
165.29 even 10 1089.3.c.e.604.2 4
165.59 odd 10 1089.3.c.e.604.3 4
165.149 even 10 99.3.k.a.28.1 4
220.39 even 10 176.3.n.a.17.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.3.d.a.2.1 4 5.4 even 2
11.3.d.a.6.1 yes 4 55.39 odd 10
99.3.k.a.28.1 4 165.149 even 10
99.3.k.a.46.1 4 15.14 odd 2
121.3.b.b.120.2 4 55.4 even 10
121.3.b.b.120.3 4 55.29 odd 10
121.3.d.a.40.1 4 55.19 odd 10
121.3.d.a.118.1 4 55.9 even 10
121.3.d.c.40.1 4 55.14 even 10
121.3.d.c.118.1 4 55.24 odd 10
121.3.d.d.94.1 4 55.49 even 10
121.3.d.d.112.1 4 55.54 odd 2
176.3.n.a.17.1 4 220.39 even 10
176.3.n.a.145.1 4 20.19 odd 2
275.3.q.d.24.1 8 5.2 odd 4
275.3.q.d.24.2 8 5.3 odd 4
275.3.q.d.149.1 8 55.28 even 20
275.3.q.d.149.2 8 55.17 even 20
275.3.x.e.101.1 4 1.1 even 1 trivial
275.3.x.e.226.1 4 11.6 odd 10 inner
1089.3.c.e.604.2 4 165.29 even 10
1089.3.c.e.604.3 4 165.59 odd 10