Defining parameters
| Level: | \( N \) | = | \( 275 = 5^{2} \cdot 11 \) |
| Weight: | \( k \) | = | \( 3 \) |
| Nonzero newspaces: | \( 21 \) | ||
| Newform subspaces: | \( 51 \) | ||
| Sturm bound: | \(18000\) | ||
| Trace bound: | \(6\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(275))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6280 | 5623 | 657 |
| Cusp forms | 5720 | 5253 | 467 |
| Eisenstein series | 560 | 370 | 190 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(275))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(275))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(275)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)