Properties

Label 275.3
Level 275
Weight 3
Dimension 5253
Nonzero newspaces 21
Newform subspaces 51
Sturm bound 18000
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 21 \)
Newform subspaces: \( 51 \)
Sturm bound: \(18000\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(275))\).

Total New Old
Modular forms 6280 5623 657
Cusp forms 5720 5253 467
Eisenstein series 560 370 190

Trace form

\( 5253 q - 45 q^{2} - 45 q^{3} - 45 q^{4} - 60 q^{5} - 49 q^{6} - 30 q^{7} - 25 q^{8} - 35 q^{9} - 60 q^{10} - 92 q^{11} - 150 q^{12} - 60 q^{13} - 50 q^{14} - 60 q^{15} - 157 q^{16} - 180 q^{17} - 310 q^{18}+ \cdots - 4205 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(275))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
275.3.c \(\chi_{275}(76, \cdot)\) 275.3.c.a 1 1
275.3.c.b 2
275.3.c.c 2
275.3.c.d 2
275.3.c.e 4
275.3.c.f 8
275.3.c.g 8
275.3.c.h 8
275.3.d \(\chi_{275}(274, \cdot)\) 275.3.d.a 2 1
275.3.d.b 16
275.3.d.c 16
275.3.f \(\chi_{275}(232, \cdot)\) 275.3.f.a 16 2
275.3.f.b 20
275.3.f.c 24
275.3.m \(\chi_{275}(41, \cdot)\) 275.3.m.a 232 4
275.3.o \(\chi_{275}(79, \cdot)\) 275.3.o.a 232 4
275.3.p \(\chi_{275}(39, \cdot)\) 275.3.p.a 232 4
275.3.q \(\chi_{275}(24, \cdot)\) 275.3.q.a 8 4
275.3.q.b 8
275.3.q.c 8
275.3.q.d 8
275.3.q.e 24
275.3.q.f 24
275.3.q.g 56
275.3.r \(\chi_{275}(19, \cdot)\) 275.3.r.a 232 4
275.3.s \(\chi_{275}(54, \cdot)\) 275.3.s.a 8 4
275.3.s.b 224
275.3.u \(\chi_{275}(61, \cdot)\) 275.3.u.a 232 4
275.3.v \(\chi_{275}(21, \cdot)\) 275.3.v.a 8 4
275.3.v.b 224
275.3.w \(\chi_{275}(116, \cdot)\) 275.3.w.a 232 4
275.3.x \(\chi_{275}(51, \cdot)\) 275.3.x.a 4 4
275.3.x.b 4
275.3.x.c 4
275.3.x.d 4
275.3.x.e 4
275.3.x.f 12
275.3.x.g 12
275.3.x.h 28
275.3.x.i 28
275.3.x.j 40
275.3.bc \(\chi_{275}(6, \cdot)\) 275.3.bc.a 232 4
275.3.bd \(\chi_{275}(139, \cdot)\) 275.3.bd.a 232 4
275.3.be \(\chi_{275}(42, \cdot)\) 275.3.be.a 464 8
275.3.bh \(\chi_{275}(37, \cdot)\) 275.3.bh.a 464 8
275.3.bi \(\chi_{275}(12, \cdot)\) 275.3.bi.a 400 8
275.3.bj \(\chi_{275}(38, \cdot)\) 275.3.bj.a 464 8
275.3.bk \(\chi_{275}(82, \cdot)\) 275.3.bk.a 64 8
275.3.bk.b 80
275.3.bk.c 128
275.3.bp \(\chi_{275}(3, \cdot)\) 275.3.bp.a 464 8

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(275))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(275)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 2}\)