Defining parameters
| Level: | \( N \) | \(=\) | \( 275 = 5^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 275.q (of order \(10\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
| Character field: | \(\Q(\zeta_{10})\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(90\) | ||
| Trace bound: | \(6\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(275, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 264 | 152 | 112 |
| Cusp forms | 216 | 136 | 80 |
| Eisenstein series | 48 | 16 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(275, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 275.3.q.a | $8$ | $7.493$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{20}+\zeta_{20}^{3}+\zeta_{20}^{5}+\zeta_{20}^{7})q^{2}+\cdots\) |
| 275.3.q.b | $8$ | $7.493$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta_{6}-\beta_{5})q^{2}+(-2\beta_{7}+2\beta_{6}-2\beta_{5})q^{3}+\cdots\) |
| 275.3.q.c | $8$ | $7.493$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-2\zeta_{20}-2\zeta_{20}^{5}+\zeta_{20}^{7})q^{2}+4\zeta_{20}q^{3}+\cdots\) |
| 275.3.q.d | $8$ | $7.493$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta_{7}+\beta_{6}-\beta_{2})q^{2}+(-\beta_{7}-\beta_{2})q^{3}+\cdots\) |
| 275.3.q.e | $24$ | $7.493$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
| 275.3.q.f | $24$ | $7.493$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
| 275.3.q.g | $56$ | $7.493$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{3}^{\mathrm{old}}(275, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(275, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)