Properties

Label 275.3.q
Level $275$
Weight $3$
Character orbit 275.q
Rep. character $\chi_{275}(24,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $136$
Newform subspaces $7$
Sturm bound $90$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 7 \)
Sturm bound: \(90\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(275, [\chi])\).

Total New Old
Modular forms 264 152 112
Cusp forms 216 136 80
Eisenstein series 48 16 32

Trace form

\( 136 q - 58 q^{4} - 10 q^{6} + 118 q^{9} - 2 q^{11} - 34 q^{14} + 10 q^{16} + 10 q^{19} + 50 q^{24} - 196 q^{26} + 10 q^{29} - 124 q^{31} + 256 q^{34} - 188 q^{36} + 330 q^{39} - 130 q^{41} - 286 q^{44}+ \cdots - 1054 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(275, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
275.3.q.a 275.q 55.h $8$ $7.493$ \(\Q(\zeta_{20})\) None 55.3.i.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(\zeta_{20}+\zeta_{20}^{3}+\zeta_{20}^{5}+\zeta_{20}^{7})q^{2}+\cdots\)
275.3.q.b 275.q 55.h $8$ $7.493$ \(\Q(\zeta_{20})\) None 275.3.x.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(\beta_{6}-\beta_{5})q^{2}+(-2\beta_{7}+2\beta_{6}-2\beta_{5})q^{3}+\cdots\)
275.3.q.c 275.q 55.h $8$ $7.493$ \(\Q(\zeta_{20})\) None 55.3.i.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-2\zeta_{20}-2\zeta_{20}^{5}+\zeta_{20}^{7})q^{2}+4\zeta_{20}q^{3}+\cdots\)
275.3.q.d 275.q 55.h $8$ $7.493$ \(\Q(\zeta_{20})\) None 11.3.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-\beta_{7}+\beta_{6}-\beta_{2})q^{2}+(-\beta_{7}-\beta_{2})q^{3}+\cdots\)
275.3.q.e 275.q 55.h $24$ $7.493$ None 55.3.i.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$
275.3.q.f 275.q 55.h $24$ $7.493$ None 55.3.i.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$
275.3.q.g 275.q 55.h $56$ $7.493$ None 275.3.x.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{3}^{\mathrm{old}}(275, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(275, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)