Properties

Label 275.3.q.c.74.2
Level $275$
Weight $3$
Character 275.74
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(24,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,18,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 74.2
Root \(-0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 275.74
Dual form 275.3.q.c.249.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.48990 - 1.80902i) q^{2} +(-3.80423 + 1.23607i) q^{3} +(1.69098 - 5.20431i) q^{4} +(-7.23607 + 9.95959i) q^{6} +(-2.48990 + 7.66312i) q^{7} +(-1.40008 - 4.30902i) q^{8} +(5.66312 - 4.11450i) q^{9} +(-10.8713 - 1.67760i) q^{11} +21.8885i q^{12} +(-11.3597 + 8.25329i) q^{13} +(7.66312 + 23.5847i) q^{14} +(6.42705 + 4.66953i) q^{16} +(19.6417 + 14.2705i) q^{17} +(6.65740 - 20.4894i) q^{18} +(-8.02786 + 2.60841i) q^{19} -32.2299i q^{21} +(-30.1033 + 15.4894i) q^{22} +25.3820i q^{23} +(10.6525 + 14.6619i) q^{24} +(-13.3541 + 41.0997i) q^{26} +(4.70228 - 6.47214i) q^{27} +(35.6709 + 25.9164i) q^{28} +(-34.7984 - 11.3067i) q^{29} +(8.38197 - 6.08985i) q^{31} +42.5730 q^{32} +(43.4306 - 7.05573i) q^{33} +74.7214 q^{34} +(-11.8369 - 36.4302i) q^{36} +(-19.2784 - 6.26393i) q^{37} +(-15.2699 + 21.0172i) q^{38} +(33.0132 - 45.4387i) q^{39} +(53.1140 - 17.2578i) q^{41} +(-58.3045 - 80.2492i) q^{42} -37.2752 q^{43} +(-27.1140 + 53.7409i) q^{44} +(45.9164 + 63.1985i) q^{46} +(-81.3216 + 26.4230i) q^{47} +(-30.2218 - 9.81966i) q^{48} +(-12.8820 - 9.35930i) q^{49} +(-92.3607 - 30.0098i) q^{51} +(23.7437 + 73.0755i) q^{52} +(-32.0787 - 44.1525i) q^{53} -24.6215i q^{54} +36.5066 q^{56} +(27.3156 - 19.8460i) q^{57} +(-107.098 + 34.7984i) q^{58} +(-18.3115 + 56.3571i) q^{59} +(21.5836 - 29.7073i) q^{61} +(9.85359 - 30.3262i) q^{62} +(17.4293 + 53.6418i) q^{63} +(80.2943 - 58.3372i) q^{64} +(95.3738 - 96.1347i) q^{66} +17.8197i q^{67} +(107.482 - 78.0902i) q^{68} +(-31.3738 - 96.5587i) q^{69} +(-4.70820 - 3.42071i) q^{71} +(-25.6583 - 18.6418i) q^{72} +(15.8124 - 48.6656i) q^{73} +(-59.3328 + 19.2784i) q^{74} +46.1903i q^{76} +(39.9241 - 79.1312i) q^{77} -172.859i q^{78} +(-20.1722 - 27.7647i) q^{79} +(-29.3566 + 90.3504i) q^{81} +(101.029 - 139.054i) q^{82} +(117.997 + 85.7295i) q^{83} +(-167.735 - 54.5002i) q^{84} +(-92.8115 + 67.4315i) q^{86} +146.357 q^{87} +(7.99197 + 49.1935i) q^{88} +127.949 q^{89} +(-34.9615 - 107.600i) q^{91} +(132.096 + 42.9205i) q^{92} +(-24.3594 + 33.5279i) q^{93} +(-154.683 + 212.903i) q^{94} +(-161.957 + 52.6232i) q^{96} +(53.0877 + 73.0689i) q^{97} -49.0059 q^{98} +(-68.4681 + 35.2296i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 18 q^{4} - 40 q^{6} + 14 q^{9} - 2 q^{11} + 30 q^{14} + 38 q^{16} - 100 q^{19} - 40 q^{24} - 80 q^{26} - 180 q^{29} + 76 q^{31} + 240 q^{34} - 126 q^{36} - 40 q^{39} + 170 q^{41} + 38 q^{44} + 260 q^{46}+ \cdots - 266 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48990 1.80902i 1.24495 0.904508i 0.247031 0.969007i \(-0.420545\pi\)
0.997918 + 0.0644990i \(0.0205449\pi\)
\(3\) −3.80423 + 1.23607i −1.26808 + 0.412023i −0.864365 0.502864i \(-0.832280\pi\)
−0.403710 + 0.914887i \(0.632280\pi\)
\(4\) 1.69098 5.20431i 0.422746 1.30108i
\(5\) 0 0
\(6\) −7.23607 + 9.95959i −1.20601 + 1.65993i
\(7\) −2.48990 + 7.66312i −0.355700 + 1.09473i 0.599903 + 0.800073i \(0.295206\pi\)
−0.955603 + 0.294658i \(0.904794\pi\)
\(8\) −1.40008 4.30902i −0.175011 0.538627i
\(9\) 5.66312 4.11450i 0.629235 0.457166i
\(10\) 0 0
\(11\) −10.8713 1.67760i −0.988302 0.152509i
\(12\) 21.8885i 1.82405i
\(13\) −11.3597 + 8.25329i −0.873821 + 0.634868i −0.931610 0.363460i \(-0.881595\pi\)
0.0577883 + 0.998329i \(0.481595\pi\)
\(14\) 7.66312 + 23.5847i 0.547366 + 1.68462i
\(15\) 0 0
\(16\) 6.42705 + 4.66953i 0.401691 + 0.291845i
\(17\) 19.6417 + 14.2705i 1.15539 + 0.839442i 0.989188 0.146650i \(-0.0468490\pi\)
0.166204 + 0.986091i \(0.446849\pi\)
\(18\) 6.65740 20.4894i 0.369855 1.13830i
\(19\) −8.02786 + 2.60841i −0.422519 + 0.137285i −0.512556 0.858654i \(-0.671301\pi\)
0.0900372 + 0.995938i \(0.471301\pi\)
\(20\) 0 0
\(21\) 32.2299i 1.53476i
\(22\) −30.1033 + 15.4894i −1.36833 + 0.704062i
\(23\) 25.3820i 1.10356i 0.833988 + 0.551782i \(0.186052\pi\)
−0.833988 + 0.551782i \(0.813948\pi\)
\(24\) 10.6525 + 14.6619i 0.443853 + 0.610911i
\(25\) 0 0
\(26\) −13.3541 + 41.0997i −0.513619 + 1.58076i
\(27\) 4.70228 6.47214i 0.174159 0.239709i
\(28\) 35.6709 + 25.9164i 1.27396 + 0.925586i
\(29\) −34.7984 11.3067i −1.19994 0.389885i −0.360204 0.932874i \(-0.617293\pi\)
−0.839740 + 0.542988i \(0.817293\pi\)
\(30\) 0 0
\(31\) 8.38197 6.08985i 0.270386 0.196447i −0.444327 0.895865i \(-0.646557\pi\)
0.714713 + 0.699418i \(0.246557\pi\)
\(32\) 42.5730 1.33041
\(33\) 43.4306 7.05573i 1.31608 0.213810i
\(34\) 74.7214 2.19769
\(35\) 0 0
\(36\) −11.8369 36.4302i −0.328802 1.01195i
\(37\) −19.2784 6.26393i −0.521038 0.169295i 0.0366784 0.999327i \(-0.488322\pi\)
−0.557716 + 0.830032i \(0.688322\pi\)
\(38\) −15.2699 + 21.0172i −0.401840 + 0.553085i
\(39\) 33.0132 45.4387i 0.846491 1.16510i
\(40\) 0 0
\(41\) 53.1140 17.2578i 1.29546 0.420921i 0.421462 0.906846i \(-0.361517\pi\)
0.874001 + 0.485925i \(0.161517\pi\)
\(42\) −58.3045 80.2492i −1.38820 1.91070i
\(43\) −37.2752 −0.866866 −0.433433 0.901186i \(-0.642698\pi\)
−0.433433 + 0.901186i \(0.642698\pi\)
\(44\) −27.1140 + 53.7409i −0.616227 + 1.22139i
\(45\) 0 0
\(46\) 45.9164 + 63.1985i 0.998183 + 1.37388i
\(47\) −81.3216 + 26.4230i −1.73025 + 0.562191i −0.993485 0.113962i \(-0.963646\pi\)
−0.736761 + 0.676153i \(0.763646\pi\)
\(48\) −30.2218 9.81966i −0.629621 0.204576i
\(49\) −12.8820 9.35930i −0.262897 0.191006i
\(50\) 0 0
\(51\) −92.3607 30.0098i −1.81099 0.588428i
\(52\) 23.7437 + 73.0755i 0.456609 + 1.40530i
\(53\) −32.0787 44.1525i −0.605258 0.833066i 0.390919 0.920425i \(-0.372157\pi\)
−0.996177 + 0.0873594i \(0.972157\pi\)
\(54\) 24.6215i 0.455953i
\(55\) 0 0
\(56\) 36.5066 0.651903
\(57\) 27.3156 19.8460i 0.479222 0.348175i
\(58\) −107.098 + 34.7984i −1.84652 + 0.599972i
\(59\) −18.3115 + 56.3571i −0.310365 + 0.955205i 0.667256 + 0.744829i \(0.267469\pi\)
−0.977621 + 0.210376i \(0.932531\pi\)
\(60\) 0 0
\(61\) 21.5836 29.7073i 0.353829 0.487004i −0.594587 0.804031i \(-0.702685\pi\)
0.948417 + 0.317027i \(0.102685\pi\)
\(62\) 9.85359 30.3262i 0.158929 0.489133i
\(63\) 17.4293 + 53.6418i 0.276655 + 0.851458i
\(64\) 80.2943 58.3372i 1.25460 0.911519i
\(65\) 0 0
\(66\) 95.3738 96.1347i 1.44506 1.45659i
\(67\) 17.8197i 0.265965i 0.991118 + 0.132983i \(0.0424554\pi\)
−0.991118 + 0.132983i \(0.957545\pi\)
\(68\) 107.482 78.0902i 1.58062 1.14838i
\(69\) −31.3738 96.5587i −0.454693 1.39940i
\(70\) 0 0
\(71\) −4.70820 3.42071i −0.0663127 0.0481790i 0.554135 0.832427i \(-0.313049\pi\)
−0.620448 + 0.784248i \(0.713049\pi\)
\(72\) −25.6583 18.6418i −0.356365 0.258914i
\(73\) 15.8124 48.6656i 0.216609 0.666652i −0.782427 0.622742i \(-0.786018\pi\)
0.999035 0.0439101i \(-0.0139815\pi\)
\(74\) −59.3328 + 19.2784i −0.801795 + 0.260519i
\(75\) 0 0
\(76\) 46.1903i 0.607767i
\(77\) 39.9241 79.1312i 0.518495 1.02768i
\(78\) 172.859i 2.21614i
\(79\) −20.1722 27.7647i −0.255344 0.351451i 0.662030 0.749478i \(-0.269695\pi\)
−0.917374 + 0.398026i \(0.869695\pi\)
\(80\) 0 0
\(81\) −29.3566 + 90.3504i −0.362427 + 1.11544i
\(82\) 101.029 139.054i 1.23206 1.69578i
\(83\) 117.997 + 85.7295i 1.42164 + 1.03289i 0.991497 + 0.130127i \(0.0415384\pi\)
0.430147 + 0.902759i \(0.358462\pi\)
\(84\) −167.735 54.5002i −1.99684 0.648812i
\(85\) 0 0
\(86\) −92.8115 + 67.4315i −1.07920 + 0.784087i
\(87\) 146.357 1.68226
\(88\) 7.99197 + 49.1935i 0.0908178 + 0.559017i
\(89\) 127.949 1.43763 0.718816 0.695200i \(-0.244684\pi\)
0.718816 + 0.695200i \(0.244684\pi\)
\(90\) 0 0
\(91\) −34.9615 107.600i −0.384192 1.18242i
\(92\) 132.096 + 42.9205i 1.43582 + 0.466527i
\(93\) −24.3594 + 33.5279i −0.261929 + 0.360515i
\(94\) −154.683 + 212.903i −1.64556 + 2.26492i
\(95\) 0 0
\(96\) −161.957 + 52.6232i −1.68706 + 0.548158i
\(97\) 53.0877 + 73.0689i 0.547295 + 0.753287i 0.989642 0.143557i \(-0.0458539\pi\)
−0.442347 + 0.896844i \(0.645854\pi\)
\(98\) −49.0059 −0.500060
\(99\) −68.4681 + 35.2296i −0.691597 + 0.355854i
\(100\) 0 0
\(101\) 63.4164 + 87.2852i 0.627885 + 0.864210i 0.997897 0.0648171i \(-0.0206464\pi\)
−0.370012 + 0.929027i \(0.620646\pi\)
\(102\) −284.257 + 92.3607i −2.78683 + 0.905497i
\(103\) 18.2339 + 5.92454i 0.177028 + 0.0575198i 0.396190 0.918169i \(-0.370332\pi\)
−0.219162 + 0.975689i \(0.570332\pi\)
\(104\) 51.4681 + 37.3937i 0.494885 + 0.359555i
\(105\) 0 0
\(106\) −159.745 51.9043i −1.50703 0.489664i
\(107\) −29.7478 91.5542i −0.278016 0.855646i −0.988405 0.151837i \(-0.951481\pi\)
0.710389 0.703809i \(-0.248519\pi\)
\(108\) −25.7315 35.4164i −0.238255 0.327930i
\(109\) 21.0793i 0.193388i 0.995314 + 0.0966940i \(0.0308268\pi\)
−0.995314 + 0.0966940i \(0.969173\pi\)
\(110\) 0 0
\(111\) 81.0820 0.730469
\(112\) −51.7858 + 37.6246i −0.462374 + 0.335934i
\(113\) 68.1176 22.1327i 0.602810 0.195865i 0.00831694 0.999965i \(-0.497353\pi\)
0.594493 + 0.804100i \(0.297353\pi\)
\(114\) 32.1115 98.8289i 0.281679 0.866920i
\(115\) 0 0
\(116\) −117.687 + 161.982i −1.01454 + 1.39640i
\(117\) −30.3731 + 93.4787i −0.259599 + 0.798963i
\(118\) 56.3571 + 173.449i 0.477602 + 1.46991i
\(119\) −158.262 + 114.984i −1.32994 + 0.966255i
\(120\) 0 0
\(121\) 115.371 + 36.4754i 0.953482 + 0.301450i
\(122\) 113.013i 0.926337i
\(123\) −180.726 + 131.305i −1.46932 + 1.06752i
\(124\) −17.5197 53.9202i −0.141288 0.434840i
\(125\) 0 0
\(126\) 140.436 + 102.033i 1.11457 + 0.809784i
\(127\) −21.8088 15.8450i −0.171723 0.124764i 0.498604 0.866830i \(-0.333846\pi\)
−0.670327 + 0.742066i \(0.733846\pi\)
\(128\) 41.7685 128.550i 0.326316 1.00430i
\(129\) 141.803 46.0747i 1.09925 0.357168i
\(130\) 0 0
\(131\) 88.8193i 0.678010i 0.940785 + 0.339005i \(0.110090\pi\)
−0.940785 + 0.339005i \(0.889910\pi\)
\(132\) 36.7202 237.957i 0.278183 1.80271i
\(133\) 68.0132i 0.511377i
\(134\) 32.2361 + 44.3691i 0.240568 + 0.331113i
\(135\) 0 0
\(136\) 33.9919 104.616i 0.249940 0.769237i
\(137\) −70.5747 + 97.1378i −0.515144 + 0.709035i −0.984776 0.173827i \(-0.944387\pi\)
0.469632 + 0.882862i \(0.344387\pi\)
\(138\) −252.794 183.666i −1.83184 1.33091i
\(139\) −3.34501 1.08686i −0.0240648 0.00781914i 0.296960 0.954890i \(-0.404027\pi\)
−0.321025 + 0.947071i \(0.604027\pi\)
\(140\) 0 0
\(141\) 276.705 201.038i 1.96245 1.42580i
\(142\) −17.9111 −0.126134
\(143\) 137.340 70.6672i 0.960423 0.494176i
\(144\) 55.6099 0.386180
\(145\) 0 0
\(146\) −48.6656 149.777i −0.333326 1.02587i
\(147\) 60.5746 + 19.6819i 0.412072 + 0.133890i
\(148\) −65.1989 + 89.7386i −0.440533 + 0.606342i
\(149\) −54.8460 + 75.4890i −0.368094 + 0.506638i −0.952381 0.304909i \(-0.901374\pi\)
0.584288 + 0.811547i \(0.301374\pi\)
\(150\) 0 0
\(151\) 93.2148 30.2873i 0.617316 0.200578i 0.0163680 0.999866i \(-0.494790\pi\)
0.600948 + 0.799288i \(0.294790\pi\)
\(152\) 22.4794 + 30.9402i 0.147891 + 0.203554i
\(153\) 169.949 1.11078
\(154\) −43.7426 269.252i −0.284043 1.74839i
\(155\) 0 0
\(156\) −180.652 248.647i −1.15803 1.59389i
\(157\) 163.826 53.2304i 1.04348 0.339047i 0.263374 0.964694i \(-0.415165\pi\)
0.780107 + 0.625646i \(0.215165\pi\)
\(158\) −100.453 32.6393i −0.635782 0.206578i
\(159\) 176.610 + 128.315i 1.11075 + 0.807010i
\(160\) 0 0
\(161\) −194.505 63.1985i −1.20811 0.392537i
\(162\) 90.3504 + 278.070i 0.557718 + 1.71648i
\(163\) 148.814 + 204.825i 0.912968 + 1.25659i 0.966143 + 0.258008i \(0.0830661\pi\)
−0.0531744 + 0.998585i \(0.516934\pi\)
\(164\) 305.604i 1.86344i
\(165\) 0 0
\(166\) 448.885 2.70413
\(167\) −60.9861 + 44.3090i −0.365186 + 0.265323i −0.755212 0.655481i \(-0.772466\pi\)
0.390026 + 0.920804i \(0.372466\pi\)
\(168\) −138.879 + 45.1246i −0.826662 + 0.268599i
\(169\) 8.70163 26.7809i 0.0514889 0.158467i
\(170\) 0 0
\(171\) −34.7304 + 47.8024i −0.203102 + 0.279546i
\(172\) −63.0318 + 193.992i −0.366464 + 1.12786i
\(173\) −34.6293 106.578i −0.200169 0.616058i −0.999877 0.0156685i \(-0.995012\pi\)
0.799708 0.600389i \(-0.204988\pi\)
\(174\) 364.413 264.762i 2.09433 1.52162i
\(175\) 0 0
\(176\) −62.0370 61.5459i −0.352483 0.349693i
\(177\) 237.029i 1.33915i
\(178\) 318.581 231.462i 1.78978 1.30035i
\(179\) 64.4321 + 198.302i 0.359956 + 1.10783i 0.953080 + 0.302719i \(0.0978943\pi\)
−0.593124 + 0.805111i \(0.702106\pi\)
\(180\) 0 0
\(181\) −64.7082 47.0133i −0.357504 0.259742i 0.394506 0.918893i \(-0.370916\pi\)
−0.752010 + 0.659151i \(0.770916\pi\)
\(182\) −281.702 204.668i −1.54781 1.12455i
\(183\) −45.3887 + 139.692i −0.248025 + 0.763344i
\(184\) 109.371 35.5369i 0.594409 0.193135i
\(185\) 0 0
\(186\) 127.548i 0.685740i
\(187\) −189.591 188.090i −1.01385 1.00583i
\(188\) 467.904i 2.48885i
\(189\) 37.8885 + 52.1491i 0.200468 + 0.275921i
\(190\) 0 0
\(191\) −26.9443 + 82.9259i −0.141069 + 0.434167i −0.996485 0.0837757i \(-0.973302\pi\)
0.855415 + 0.517943i \(0.173302\pi\)
\(192\) −233.349 + 321.177i −1.21536 + 1.67280i
\(193\) −152.129 110.528i −0.788231 0.572683i 0.119207 0.992869i \(-0.461965\pi\)
−0.907438 + 0.420186i \(0.861965\pi\)
\(194\) 264.366 + 85.8976i 1.36271 + 0.442771i
\(195\) 0 0
\(196\) −70.4919 + 51.2153i −0.359652 + 0.261303i
\(197\) −10.5087 −0.0533437 −0.0266719 0.999644i \(-0.508491\pi\)
−0.0266719 + 0.999644i \(0.508491\pi\)
\(198\) −106.748 + 211.578i −0.539129 + 1.06858i
\(199\) −8.30806 −0.0417490 −0.0208745 0.999782i \(-0.506645\pi\)
−0.0208745 + 0.999782i \(0.506645\pi\)
\(200\) 0 0
\(201\) −22.0263 67.7900i −0.109584 0.337264i
\(202\) 315.801 + 102.610i 1.56337 + 0.507970i
\(203\) 173.289 238.512i 0.853640 1.17493i
\(204\) −312.361 + 429.928i −1.53118 + 2.10749i
\(205\) 0 0
\(206\) 56.1180 18.2339i 0.272418 0.0885139i
\(207\) 104.434 + 143.741i 0.504512 + 0.694401i
\(208\) −111.548 −0.536289
\(209\) 91.6494 14.8893i 0.438514 0.0712409i
\(210\) 0 0
\(211\) −45.0294 61.9777i −0.213410 0.293733i 0.688870 0.724885i \(-0.258107\pi\)
−0.902279 + 0.431152i \(0.858107\pi\)
\(212\) −284.028 + 92.2862i −1.33975 + 0.435312i
\(213\) 22.1393 + 7.19350i 0.103940 + 0.0337723i
\(214\) −239.692 174.146i −1.12006 0.813768i
\(215\) 0 0
\(216\) −34.4721 11.2007i −0.159593 0.0518550i
\(217\) 25.7970 + 79.3951i 0.118880 + 0.365876i
\(218\) 38.1328 + 52.4853i 0.174921 + 0.240758i
\(219\) 204.680i 0.934613i
\(220\) 0 0
\(221\) −340.902 −1.54254
\(222\) 201.886 146.679i 0.909397 0.660715i
\(223\) 111.163 36.1190i 0.498488 0.161969i −0.0489724 0.998800i \(-0.515595\pi\)
0.547460 + 0.836832i \(0.315595\pi\)
\(224\) −106.003 + 326.242i −0.473226 + 1.45644i
\(225\) 0 0
\(226\) 129.567 178.334i 0.573307 0.789089i
\(227\) −119.818 + 368.761i −0.527831 + 1.62450i 0.230818 + 0.972997i \(0.425860\pi\)
−0.758649 + 0.651500i \(0.774140\pi\)
\(228\) −57.0943 175.718i −0.250414 0.770694i
\(229\) 112.172 81.4979i 0.489835 0.355886i −0.315286 0.948997i \(-0.602100\pi\)
0.805121 + 0.593111i \(0.202100\pi\)
\(230\) 0 0
\(231\) −54.0689 + 350.382i −0.234064 + 1.51680i
\(232\) 165.777i 0.714556i
\(233\) −150.953 + 109.674i −0.647867 + 0.470703i −0.862544 0.505982i \(-0.831130\pi\)
0.214677 + 0.976685i \(0.431130\pi\)
\(234\) 93.4787 + 287.698i 0.399482 + 1.22948i
\(235\) 0 0
\(236\) 262.335 + 190.598i 1.11159 + 0.807618i
\(237\) 111.059 + 80.6888i 0.468602 + 0.340459i
\(238\) −186.049 + 572.599i −0.781717 + 2.40588i
\(239\) 165.902 53.9047i 0.694149 0.225543i 0.0593698 0.998236i \(-0.481091\pi\)
0.634780 + 0.772693i \(0.281091\pi\)
\(240\) 0 0
\(241\) 229.308i 0.951484i 0.879585 + 0.475742i \(0.157820\pi\)
−0.879585 + 0.475742i \(0.842180\pi\)
\(242\) 353.248 117.889i 1.45970 0.487143i
\(243\) 308.000i 1.26749i
\(244\) −118.108 162.562i −0.484051 0.666239i
\(245\) 0 0
\(246\) −212.456 + 653.872i −0.863642 + 2.65802i
\(247\) 69.6660 95.8870i 0.282048 0.388206i
\(248\) −37.9767 27.5917i −0.153132 0.111257i
\(249\) −554.853 180.283i −2.22832 0.724027i
\(250\) 0 0
\(251\) 85.7279 62.2850i 0.341546 0.248147i −0.403768 0.914861i \(-0.632300\pi\)
0.745314 + 0.666714i \(0.232300\pi\)
\(252\) 308.641 1.22477
\(253\) 42.5808 275.936i 0.168303 1.09065i
\(254\) −82.9656 −0.326636
\(255\) 0 0
\(256\) −5.87132 18.0701i −0.0229349 0.0705862i
\(257\) −245.095 79.6362i −0.953677 0.309869i −0.209468 0.977815i \(-0.567173\pi\)
−0.744209 + 0.667947i \(0.767173\pi\)
\(258\) 269.726 371.246i 1.04545 1.43894i
\(259\) 96.0025 132.136i 0.370666 0.510178i
\(260\) 0 0
\(261\) −243.589 + 79.1467i −0.933290 + 0.303244i
\(262\) 160.676 + 221.151i 0.613265 + 0.844087i
\(263\) −290.347 −1.10398 −0.551990 0.833851i \(-0.686131\pi\)
−0.551990 + 0.833851i \(0.686131\pi\)
\(264\) −91.2098 177.265i −0.345492 0.671457i
\(265\) 0 0
\(266\) −123.037 169.346i −0.462545 0.636638i
\(267\) −486.748 + 158.154i −1.82303 + 0.592337i
\(268\) 92.7390 + 30.1327i 0.346041 + 0.112436i
\(269\) −267.615 194.434i −0.994851 0.722802i −0.0338730 0.999426i \(-0.510784\pi\)
−0.960978 + 0.276625i \(0.910784\pi\)
\(270\) 0 0
\(271\) 206.661 + 67.1481i 0.762585 + 0.247779i 0.664388 0.747388i \(-0.268692\pi\)
0.0981974 + 0.995167i \(0.468692\pi\)
\(272\) 59.6015 + 183.435i 0.219123 + 0.674392i
\(273\) 266.003 + 366.122i 0.974369 + 1.34110i
\(274\) 369.534i 1.34866i
\(275\) 0 0
\(276\) −555.574 −2.01295
\(277\) 362.950 263.699i 1.31029 0.951980i 0.310289 0.950642i \(-0.399574\pi\)
0.999999 0.00133803i \(-0.000425907\pi\)
\(278\) −10.2949 + 3.34501i −0.0370320 + 0.0120324i
\(279\) 22.4114 68.9751i 0.0803275 0.247223i
\(280\) 0 0
\(281\) 55.0658 75.7915i 0.195964 0.269721i −0.699716 0.714421i \(-0.746690\pi\)
0.895679 + 0.444701i \(0.146690\pi\)
\(282\) 325.286 1001.13i 1.15350 3.55010i
\(283\) 90.3283 + 278.002i 0.319181 + 0.982339i 0.973999 + 0.226552i \(0.0727454\pi\)
−0.654818 + 0.755787i \(0.727255\pi\)
\(284\) −25.7639 + 18.7186i −0.0907181 + 0.0659105i
\(285\) 0 0
\(286\) 214.126 424.405i 0.748691 1.48393i
\(287\) 449.989i 1.56791i
\(288\) 241.096 175.167i 0.837139 0.608217i
\(289\) 92.8419 + 285.738i 0.321252 + 0.988713i
\(290\) 0 0
\(291\) −292.276 212.351i −1.00438 0.729727i
\(292\) −226.533 164.586i −0.775796 0.563649i
\(293\) 106.944 329.140i 0.364997 1.12335i −0.584986 0.811044i \(-0.698900\pi\)
0.949983 0.312302i \(-0.101100\pi\)
\(294\) 186.430 60.5746i 0.634114 0.206036i
\(295\) 0 0
\(296\) 91.8410i 0.310274i
\(297\) −61.9777 + 62.4721i −0.208679 + 0.210344i
\(298\) 287.177i 0.963682i
\(299\) −209.485 288.331i −0.700618 0.964318i
\(300\) 0 0
\(301\) 92.8115 285.645i 0.308344 0.948985i
\(302\) 177.305 244.039i 0.587103 0.808078i
\(303\) −349.141 253.666i −1.15228 0.837180i
\(304\) −63.7755 20.7219i −0.209788 0.0681642i
\(305\) 0 0
\(306\) 423.156 307.441i 1.38286 1.00471i
\(307\) −180.826 −0.589009 −0.294505 0.955650i \(-0.595155\pi\)
−0.294505 + 0.955650i \(0.595155\pi\)
\(308\) −344.312 341.587i −1.11790 1.10905i
\(309\) −76.6888 −0.248184
\(310\) 0 0
\(311\) −115.313 354.897i −0.370782 1.14115i −0.946281 0.323346i \(-0.895192\pi\)
0.575499 0.817802i \(-0.304808\pi\)
\(312\) −242.017 78.6362i −0.775697 0.252039i
\(313\) −186.542 + 256.753i −0.595980 + 0.820296i −0.995333 0.0965012i \(-0.969235\pi\)
0.399353 + 0.916797i \(0.369235\pi\)
\(314\) 311.616 428.903i 0.992409 1.36593i
\(315\) 0 0
\(316\) −178.607 + 58.0329i −0.565211 + 0.183648i
\(317\) −161.521 222.314i −0.509529 0.701306i 0.474311 0.880357i \(-0.342697\pi\)
−0.983840 + 0.179051i \(0.942697\pi\)
\(318\) 671.864 2.11278
\(319\) 359.336 + 181.296i 1.12645 + 0.568327i
\(320\) 0 0
\(321\) 226.334 + 311.523i 0.705091 + 0.970475i
\(322\) −598.625 + 194.505i −1.85908 + 0.604053i
\(323\) −194.904 63.3282i −0.603418 0.196062i
\(324\) 420.570 + 305.562i 1.29806 + 0.943092i
\(325\) 0 0
\(326\) 741.063 + 240.786i 2.27320 + 0.738607i
\(327\) −26.0554 80.1904i −0.0796802 0.245231i
\(328\) −148.728 204.707i −0.453439 0.624106i
\(329\) 688.968i 2.09413i
\(330\) 0 0
\(331\) 411.681 1.24375 0.621874 0.783117i \(-0.286372\pi\)
0.621874 + 0.783117i \(0.286372\pi\)
\(332\) 645.693 469.123i 1.94486 1.41302i
\(333\) −134.949 + 43.8475i −0.405252 + 0.131674i
\(334\) −71.6935 + 220.650i −0.214651 + 0.660628i
\(335\) 0 0
\(336\) 150.498 207.143i 0.447912 0.616498i
\(337\) 143.098 440.410i 0.424623 1.30686i −0.478732 0.877961i \(-0.658903\pi\)
0.903355 0.428894i \(-0.141097\pi\)
\(338\) −26.7809 82.4230i −0.0792333 0.243855i
\(339\) −231.777 + 168.396i −0.683708 + 0.496743i
\(340\) 0 0
\(341\) −101.339 + 52.1432i −0.297183 + 0.152913i
\(342\) 181.851i 0.531728i
\(343\) −215.617 + 156.655i −0.628621 + 0.456720i
\(344\) 52.1885 + 160.620i 0.151711 + 0.466917i
\(345\) 0 0
\(346\) −279.025 202.723i −0.806430 0.585906i
\(347\) −138.324 100.498i −0.398629 0.289621i 0.370353 0.928891i \(-0.379237\pi\)
−0.768982 + 0.639270i \(0.779237\pi\)
\(348\) 247.487 761.686i 0.711169 2.18875i
\(349\) 164.289 53.3806i 0.470741 0.152953i −0.0640335 0.997948i \(-0.520396\pi\)
0.534775 + 0.844995i \(0.320396\pi\)
\(350\) 0 0
\(351\) 112.331i 0.320030i
\(352\) −462.825 71.4205i −1.31484 0.202899i
\(353\) 494.535i 1.40095i 0.713678 + 0.700474i \(0.247028\pi\)
−0.713678 + 0.700474i \(0.752972\pi\)
\(354\) −428.790 590.179i −1.21127 1.66717i
\(355\) 0 0
\(356\) 216.360 665.888i 0.607753 1.87047i
\(357\) 459.937 633.050i 1.28834 1.77325i
\(358\) 519.160 + 377.192i 1.45017 + 1.05361i
\(359\) −146.418 47.5742i −0.407850 0.132519i 0.0979045 0.995196i \(-0.468786\pi\)
−0.505755 + 0.862677i \(0.668786\pi\)
\(360\) 0 0
\(361\) −234.412 + 170.311i −0.649342 + 0.471774i
\(362\) −246.165 −0.680013
\(363\) −483.985 + 3.84597i −1.33329 + 0.0105950i
\(364\) −619.105 −1.70084
\(365\) 0 0
\(366\) 139.692 + 429.928i 0.381672 + 1.17467i
\(367\) −176.604 57.3820i −0.481209 0.156354i 0.0583604 0.998296i \(-0.481413\pi\)
−0.539569 + 0.841941i \(0.681413\pi\)
\(368\) −118.522 + 163.131i −0.322070 + 0.443291i
\(369\) 229.784 316.270i 0.622720 0.857100i
\(370\) 0 0
\(371\) 418.218 135.887i 1.12727 0.366273i
\(372\) 133.298 + 183.469i 0.358328 + 0.493196i
\(373\) 268.844 0.720760 0.360380 0.932806i \(-0.382647\pi\)
0.360380 + 0.932806i \(0.382647\pi\)
\(374\) −812.320 125.352i −2.17198 0.335167i
\(375\) 0 0
\(376\) 227.714 + 313.422i 0.605623 + 0.833568i
\(377\) 488.616 158.761i 1.29606 0.421116i
\(378\) 188.677 + 61.3050i 0.499146 + 0.162182i
\(379\) −243.935 177.229i −0.643627 0.467622i 0.217467 0.976068i \(-0.430220\pi\)
−0.861094 + 0.508445i \(0.830220\pi\)
\(380\) 0 0
\(381\) 102.551 + 33.3209i 0.269163 + 0.0874563i
\(382\) 82.9259 + 255.220i 0.217084 + 0.668115i
\(383\) −286.179 393.892i −0.747204 1.02844i −0.998172 0.0604431i \(-0.980749\pi\)
0.250967 0.967996i \(-0.419251\pi\)
\(384\) 540.662i 1.40797i
\(385\) 0 0
\(386\) −578.731 −1.49930
\(387\) −211.094 + 153.369i −0.545463 + 0.396302i
\(388\) 470.043 152.726i 1.21145 0.393625i
\(389\) −118.077 + 363.404i −0.303540 + 0.934200i 0.676678 + 0.736279i \(0.263419\pi\)
−0.980218 + 0.197921i \(0.936581\pi\)
\(390\) 0 0
\(391\) −362.214 + 498.544i −0.926377 + 1.27505i
\(392\) −22.2935 + 68.6124i −0.0568712 + 0.175032i
\(393\) −109.787 337.889i −0.279355 0.859767i
\(394\) −26.1656 + 19.0104i −0.0664102 + 0.0482499i
\(395\) 0 0
\(396\) 67.5673 + 415.902i 0.170625 + 1.05026i
\(397\) 668.123i 1.68293i 0.540311 + 0.841465i \(0.318307\pi\)
−0.540311 + 0.841465i \(0.681693\pi\)
\(398\) −20.6862 + 15.0294i −0.0519754 + 0.0377624i
\(399\) 84.0689 + 258.737i 0.210699 + 0.648465i
\(400\) 0 0
\(401\) −291.301 211.642i −0.726436 0.527787i 0.161998 0.986791i \(-0.448206\pi\)
−0.888434 + 0.459004i \(0.848206\pi\)
\(402\) −177.477 128.944i −0.441484 0.320757i
\(403\) −44.9551 + 138.358i −0.111551 + 0.343319i
\(404\) 561.495 182.441i 1.38984 0.451586i
\(405\) 0 0
\(406\) 907.352i 2.23486i
\(407\) 199.073 + 100.439i 0.489124 + 0.246778i
\(408\) 440.000i 1.07843i
\(409\) 21.2846 + 29.2958i 0.0520406 + 0.0716278i 0.834244 0.551395i \(-0.185904\pi\)
−0.782204 + 0.623023i \(0.785904\pi\)
\(410\) 0 0
\(411\) 148.413 456.769i 0.361103 1.11136i
\(412\) 61.6663 84.8763i 0.149675 0.206011i
\(413\) −386.277 280.647i −0.935296 0.679532i
\(414\) 520.060 + 168.978i 1.25618 + 0.408159i
\(415\) 0 0
\(416\) −483.616 + 351.368i −1.16254 + 0.844633i
\(417\) 14.0686 0.0337377
\(418\) 201.263 202.868i 0.481489 0.485331i
\(419\) 423.543 1.01084 0.505421 0.862873i \(-0.331337\pi\)
0.505421 + 0.862873i \(0.331337\pi\)
\(420\) 0 0
\(421\) 211.289 + 650.280i 0.501873 + 1.54461i 0.805964 + 0.591964i \(0.201647\pi\)
−0.304091 + 0.952643i \(0.598353\pi\)
\(422\) −224.237 72.8591i −0.531368 0.172652i
\(423\) −351.817 + 484.234i −0.831718 + 1.14476i
\(424\) −145.341 + 200.045i −0.342785 + 0.471803i
\(425\) 0 0
\(426\) 68.1378 22.1393i 0.159948 0.0519702i
\(427\) 173.909 + 239.366i 0.407282 + 0.560575i
\(428\) −526.779 −1.23079
\(429\) −435.125 + 438.596i −1.01428 + 1.02237i
\(430\) 0 0
\(431\) 75.8653 + 104.420i 0.176022 + 0.242273i 0.887907 0.460022i \(-0.152159\pi\)
−0.711886 + 0.702295i \(0.752159\pi\)
\(432\) 60.4436 19.6393i 0.139916 0.0454614i
\(433\) 524.382 + 170.382i 1.21104 + 0.393492i 0.843813 0.536638i \(-0.180306\pi\)
0.367231 + 0.930130i \(0.380306\pi\)
\(434\) 207.859 + 151.018i 0.478938 + 0.347969i
\(435\) 0 0
\(436\) 109.703 + 35.6447i 0.251613 + 0.0817540i
\(437\) −66.2066 203.763i −0.151503 0.466277i
\(438\) 370.270 + 509.633i 0.845366 + 1.16355i
\(439\) 470.583i 1.07194i 0.844236 + 0.535972i \(0.180055\pi\)
−0.844236 + 0.535972i \(0.819945\pi\)
\(440\) 0 0
\(441\) −111.461 −0.252746
\(442\) −848.811 + 616.697i −1.92039 + 1.39524i
\(443\) 94.4041 30.6738i 0.213102 0.0692410i −0.200521 0.979689i \(-0.564263\pi\)
0.413622 + 0.910448i \(0.364263\pi\)
\(444\) 137.108 421.976i 0.308803 0.950397i
\(445\) 0 0
\(446\) 211.444 291.028i 0.474090 0.652529i
\(447\) 115.337 354.971i 0.258024 0.794118i
\(448\) 247.120 + 760.559i 0.551608 + 1.69768i
\(449\) 110.271 80.1169i 0.245593 0.178434i −0.458178 0.888860i \(-0.651498\pi\)
0.703772 + 0.710426i \(0.251498\pi\)
\(450\) 0 0
\(451\) −606.371 + 98.5109i −1.34450 + 0.218428i
\(452\) 391.931i 0.867104i
\(453\) −317.173 + 230.440i −0.700161 + 0.508697i
\(454\) 368.761 + 1134.93i 0.812249 + 2.49984i
\(455\) 0 0
\(456\) −123.761 89.9175i −0.271405 0.197188i
\(457\) −24.9144 18.1014i −0.0545174 0.0396092i 0.560193 0.828362i \(-0.310727\pi\)
−0.614710 + 0.788753i \(0.710727\pi\)
\(458\) 131.866 405.843i 0.287918 0.886120i
\(459\) 184.721 60.0196i 0.402443 0.130762i
\(460\) 0 0
\(461\) 142.653i 0.309442i −0.987958 0.154721i \(-0.950552\pi\)
0.987958 0.154721i \(-0.0494478\pi\)
\(462\) 499.221 + 970.227i 1.08056 + 2.10006i
\(463\) 490.864i 1.06018i −0.847941 0.530091i \(-0.822158\pi\)
0.847941 0.530091i \(-0.177842\pi\)
\(464\) −170.854 235.160i −0.368220 0.506811i
\(465\) 0 0
\(466\) −177.456 + 546.153i −0.380807 + 1.17200i
\(467\) −445.503 + 613.182i −0.953968 + 1.31302i −0.00422562 + 0.999991i \(0.501345\pi\)
−0.949742 + 0.313033i \(0.898655\pi\)
\(468\) 435.132 + 316.142i 0.929769 + 0.675517i
\(469\) −136.554 44.3691i −0.291160 0.0946037i
\(470\) 0 0
\(471\) −557.437 + 405.001i −1.18352 + 0.859875i
\(472\) 268.481 0.568816
\(473\) 405.231 + 62.5329i 0.856725 + 0.132205i
\(474\) 422.492 0.891334
\(475\) 0 0
\(476\) 330.795 + 1018.08i 0.694948 + 2.13883i
\(477\) −363.330 118.053i −0.761699 0.247491i
\(478\) 315.564 434.336i 0.660175 0.908653i
\(479\) 364.989 502.364i 0.761981 1.04878i −0.235066 0.971979i \(-0.575531\pi\)
0.997047 0.0767971i \(-0.0244694\pi\)
\(480\) 0 0
\(481\) 270.694 87.9540i 0.562774 0.182856i
\(482\) 414.821 + 570.953i 0.860625 + 1.18455i
\(483\) 818.059 1.69370
\(484\) 384.920 538.749i 0.795290 1.11312i
\(485\) 0 0
\(486\) −557.177 766.889i −1.14646 1.57796i
\(487\) 374.442 121.664i 0.768876 0.249823i 0.101792 0.994806i \(-0.467542\pi\)
0.667084 + 0.744983i \(0.267542\pi\)
\(488\) −158.228 51.4114i −0.324238 0.105351i
\(489\) −819.299 595.255i −1.67546 1.21729i
\(490\) 0 0
\(491\) −616.943 200.457i −1.25650 0.408262i −0.396256 0.918140i \(-0.629691\pi\)
−0.860247 + 0.509878i \(0.829691\pi\)
\(492\) 377.748 + 1162.59i 0.767780 + 2.36298i
\(493\) −522.146 718.673i −1.05912 1.45775i
\(494\) 364.776i 0.738413i
\(495\) 0 0
\(496\) 82.3081 0.165944
\(497\) 37.9363 27.5623i 0.0763305 0.0554574i
\(498\) −1707.66 + 554.853i −3.42904 + 1.11416i
\(499\) 221.573 681.931i 0.444034 1.36660i −0.439506 0.898240i \(-0.644846\pi\)
0.883540 0.468356i \(-0.155154\pi\)
\(500\) 0 0
\(501\) 177.236 243.945i 0.353765 0.486915i
\(502\) 100.779 310.167i 0.200755 0.617862i
\(503\) −193.858 596.635i −0.385404 1.18615i −0.936187 0.351503i \(-0.885671\pi\)
0.550782 0.834649i \(-0.314329\pi\)
\(504\) 206.741 150.206i 0.410201 0.298028i
\(505\) 0 0
\(506\) −393.150 764.081i −0.776977 1.51004i
\(507\) 112.636i 0.222162i
\(508\) −119.341 + 86.7061i −0.234923 + 0.170681i
\(509\) 79.8228 + 245.669i 0.156823 + 0.482651i 0.998341 0.0575779i \(-0.0183378\pi\)
−0.841518 + 0.540229i \(0.818338\pi\)
\(510\) 0 0
\(511\) 333.559 + 242.345i 0.652758 + 0.474256i
\(512\) 390.097 + 283.422i 0.761908 + 0.553559i
\(513\) −20.8673 + 64.2229i −0.0406770 + 0.125191i
\(514\) −754.325 + 245.095i −1.46756 + 0.476839i
\(515\) 0 0
\(516\) 815.900i 1.58120i
\(517\) 928.400 150.828i 1.79575 0.291737i
\(518\) 502.676i 0.970416i
\(519\) 263.475 + 362.643i 0.507659 + 0.698733i
\(520\) 0 0
\(521\) 92.8597 285.793i 0.178234 0.548547i −0.821533 0.570161i \(-0.806881\pi\)
0.999766 + 0.0216146i \(0.00688069\pi\)
\(522\) −463.333 + 637.723i −0.887611 + 1.22169i
\(523\) −340.650 247.497i −0.651338 0.473225i 0.212389 0.977185i \(-0.431876\pi\)
−0.863727 + 0.503961i \(0.831876\pi\)
\(524\) 462.243 + 150.192i 0.882143 + 0.286626i
\(525\) 0 0
\(526\) −722.934 + 525.242i −1.37440 + 0.998559i
\(527\) 251.541 0.477308
\(528\) 312.078 + 157.453i 0.591056 + 0.298206i
\(529\) −115.244 −0.217853
\(530\) 0 0
\(531\) 128.181 + 394.500i 0.241395 + 0.742937i
\(532\) −353.962 115.009i −0.665341 0.216183i
\(533\) −460.924 + 634.408i −0.864773 + 1.19026i
\(534\) −925.850 + 1274.32i −1.73380 + 2.38637i
\(535\) 0 0
\(536\) 76.7852 24.9490i 0.143256 0.0465467i
\(537\) −490.228 674.741i −0.912902 1.25650i
\(538\) −1018.07 −1.89232
\(539\) 124.343 + 123.359i 0.230692 + 0.228866i
\(540\) 0 0
\(541\) 112.764 + 155.206i 0.208436 + 0.286888i 0.900417 0.435028i \(-0.143262\pi\)
−0.691981 + 0.721916i \(0.743262\pi\)
\(542\) 636.036 206.661i 1.17350 0.381293i
\(543\) 304.276 + 98.8653i 0.560361 + 0.182072i
\(544\) 836.205 + 607.539i 1.53714 + 1.11680i
\(545\) 0 0
\(546\) 1324.64 + 430.402i 2.42608 + 0.788281i
\(547\) 61.5846 + 189.538i 0.112586 + 0.346504i 0.991436 0.130594i \(-0.0416885\pi\)
−0.878850 + 0.477099i \(0.841688\pi\)
\(548\) 386.194 + 531.551i 0.704734 + 0.969984i
\(549\) 257.041i 0.468199i
\(550\) 0 0
\(551\) 308.849 0.560525
\(552\) −372.147 + 270.381i −0.674180 + 0.489820i
\(553\) 262.991 85.4508i 0.475571 0.154522i
\(554\) 426.673 1313.16i 0.770168 2.37033i
\(555\) 0 0
\(556\) −11.3127 + 15.5706i −0.0203466 + 0.0280047i
\(557\) −234.077 + 720.414i −0.420245 + 1.29338i 0.487229 + 0.873274i \(0.338008\pi\)
−0.907474 + 0.420108i \(0.861992\pi\)
\(558\) −68.9751 212.284i −0.123611 0.380437i
\(559\) 423.435 307.643i 0.757486 0.550346i
\(560\) 0 0
\(561\) 953.738 + 481.190i 1.70007 + 0.857737i
\(562\) 288.328i 0.513039i
\(563\) 122.618 89.0871i 0.217794 0.158236i −0.473539 0.880773i \(-0.657024\pi\)
0.691333 + 0.722536i \(0.257024\pi\)
\(564\) −578.361 1780.01i −1.02546 3.15605i
\(565\) 0 0
\(566\) 727.818 + 528.791i 1.28590 + 0.934260i
\(567\) −619.271 449.926i −1.09219 0.793521i
\(568\) −8.14802 + 25.0770i −0.0143451 + 0.0441497i
\(569\) −836.163 + 271.686i −1.46953 + 0.477480i −0.930967 0.365104i \(-0.881033\pi\)
−0.538565 + 0.842584i \(0.681033\pi\)
\(570\) 0 0
\(571\) 324.644i 0.568554i −0.958742 0.284277i \(-0.908246\pi\)
0.958742 0.284277i \(-0.0917536\pi\)
\(572\) −135.534 834.259i −0.236947 1.45850i
\(573\) 348.774i 0.608681i
\(574\) 814.037 + 1120.43i 1.41818 + 1.95196i
\(575\) 0 0
\(576\) 214.688 660.741i 0.372722 1.14712i
\(577\) −306.003 + 421.177i −0.530335 + 0.729943i −0.987181 0.159602i \(-0.948979\pi\)
0.456847 + 0.889545i \(0.348979\pi\)
\(578\) 748.072 + 543.506i 1.29424 + 0.940322i
\(579\) 715.351 + 232.432i 1.23549 + 0.401437i
\(580\) 0 0
\(581\) −950.755 + 690.764i −1.63641 + 1.18892i
\(582\) −1111.88 −1.91045
\(583\) 274.667 + 533.811i 0.471127 + 0.915628i
\(584\) −231.840 −0.396986
\(585\) 0 0
\(586\) −329.140 1012.99i −0.561673 1.72865i
\(587\) −941.646 305.959i −1.60417 0.521225i −0.636034 0.771661i \(-0.719426\pi\)
−0.968133 + 0.250436i \(0.919426\pi\)
\(588\) 204.861 281.967i 0.348404 0.479537i
\(589\) −51.4044 + 70.7521i −0.0872741 + 0.120122i
\(590\) 0 0
\(591\) 39.9775 12.9895i 0.0676439 0.0219788i
\(592\) −94.6537 130.280i −0.159888 0.220067i
\(593\) 289.152 0.487609 0.243804 0.969824i \(-0.421604\pi\)
0.243804 + 0.969824i \(0.421604\pi\)
\(594\) −41.3050 + 267.668i −0.0695370 + 0.450619i
\(595\) 0 0
\(596\) 300.125 + 413.086i 0.503565 + 0.693097i
\(597\) 31.6057 10.2693i 0.0529409 0.0172015i
\(598\) −1043.19 338.953i −1.74447 0.566812i
\(599\) 674.089 + 489.754i 1.12536 + 0.817620i 0.985013 0.172483i \(-0.0551789\pi\)
0.140345 + 0.990103i \(0.455179\pi\)
\(600\) 0 0
\(601\) −89.9741 29.2343i −0.149707 0.0486428i 0.233205 0.972428i \(-0.425079\pi\)
−0.382912 + 0.923785i \(0.625079\pi\)
\(602\) −285.645 879.123i −0.474493 1.46034i
\(603\) 73.3189 + 100.915i 0.121590 + 0.167355i
\(604\) 536.334i 0.887970i
\(605\) 0 0
\(606\) −1328.21 −2.19177
\(607\) 171.826 124.839i 0.283074 0.205666i −0.437183 0.899373i \(-0.644024\pi\)
0.720257 + 0.693707i \(0.244024\pi\)
\(608\) −341.770 + 111.048i −0.562123 + 0.182645i
\(609\) −364.413 + 1121.55i −0.598380 + 1.84162i
\(610\) 0 0
\(611\) 705.710 971.327i 1.15501 1.58973i
\(612\) 287.381 884.468i 0.469577 1.44521i
\(613\) 243.852 + 750.498i 0.397801 + 1.22430i 0.926759 + 0.375656i \(0.122583\pi\)
−0.528958 + 0.848648i \(0.677417\pi\)
\(614\) −450.238 + 327.117i −0.733287 + 0.532764i
\(615\) 0 0
\(616\) −396.875 61.2434i −0.644277 0.0994211i
\(617\) 181.544i 0.294237i 0.989119 + 0.147118i \(0.0469998\pi\)
−0.989119 + 0.147118i \(0.953000\pi\)
\(618\) −190.947 + 138.731i −0.308976 + 0.224484i
\(619\) 11.1606 + 34.3488i 0.0180301 + 0.0554908i 0.959667 0.281140i \(-0.0907125\pi\)
−0.941637 + 0.336631i \(0.890713\pi\)
\(620\) 0 0
\(621\) 164.276 + 119.353i 0.264534 + 0.192195i
\(622\) −929.133 675.055i −1.49378 1.08530i
\(623\) −318.581 + 980.491i −0.511366 + 1.57382i
\(624\) 424.354 137.881i 0.680055 0.220963i
\(625\) 0 0
\(626\) 976.745i 1.56030i
\(627\) −330.251 + 169.927i −0.526716 + 0.271016i
\(628\) 942.616i 1.50098i
\(629\) −289.271 398.147i −0.459890 0.632984i
\(630\) 0 0
\(631\) 311.846 959.763i 0.494209 1.52102i −0.323976 0.946065i \(-0.605020\pi\)
0.818186 0.574954i \(-0.194980\pi\)
\(632\) −91.3956 + 125.795i −0.144613 + 0.199043i
\(633\) 247.911 + 180.118i 0.391644 + 0.284546i
\(634\) −804.340 261.346i −1.26867 0.412217i
\(635\) 0 0
\(636\) 966.433 702.155i 1.51955 1.10402i
\(637\) 223.580 0.350989
\(638\) 1222.68 198.636i 1.91642 0.311342i
\(639\) −40.7376 −0.0637521
\(640\) 0 0
\(641\) −33.2415 102.307i −0.0518588 0.159605i 0.921773 0.387730i \(-0.126741\pi\)
−0.973632 + 0.228125i \(0.926741\pi\)
\(642\) 1127.10 + 366.217i 1.75561 + 0.570431i
\(643\) 15.8911 21.8723i 0.0247141 0.0340160i −0.796481 0.604663i \(-0.793308\pi\)
0.821195 + 0.570647i \(0.193308\pi\)
\(644\) −657.809 + 905.397i −1.02144 + 1.40590i
\(645\) 0 0
\(646\) −599.853 + 194.904i −0.928565 + 0.301709i
\(647\) 656.158 + 903.123i 1.01415 + 1.39586i 0.916222 + 0.400670i \(0.131223\pi\)
0.0979314 + 0.995193i \(0.468777\pi\)
\(648\) 430.423 0.664233
\(649\) 293.615 581.957i 0.452412 0.896698i
\(650\) 0 0
\(651\) −196.276 270.150i −0.301499 0.414977i
\(652\) 1317.61 428.118i 2.02088 0.656623i
\(653\) 1040.26 + 338.002i 1.59305 + 0.517615i 0.965377 0.260859i \(-0.0840059\pi\)
0.627677 + 0.778474i \(0.284006\pi\)
\(654\) −209.941 152.531i −0.321011 0.233228i
\(655\) 0 0
\(656\) 421.952 + 137.100i 0.643219 + 0.208995i
\(657\) −110.687 340.659i −0.168473 0.518507i
\(658\) −1246.35 1715.46i −1.89416 2.60708i
\(659\) 587.822i 0.891991i 0.895035 + 0.445996i \(0.147150\pi\)
−0.895035 + 0.445996i \(0.852850\pi\)
\(660\) 0 0
\(661\) 389.155 0.588736 0.294368 0.955692i \(-0.404891\pi\)
0.294368 + 0.955692i \(0.404891\pi\)
\(662\) 1025.04 744.737i 1.54840 1.12498i
\(663\) 1296.87 421.378i 1.95606 0.635562i
\(664\) 204.205 628.478i 0.307537 0.946502i
\(665\) 0 0
\(666\) −256.688 + 353.301i −0.385417 + 0.530481i
\(667\) 286.986 883.251i 0.430263 1.32421i
\(668\) 127.471 + 392.317i 0.190825 + 0.587300i
\(669\) −378.243 + 274.810i −0.565386 + 0.410777i
\(670\) 0 0
\(671\) −284.479 + 286.749i −0.423963 + 0.427345i
\(672\) 1372.13i 2.04185i
\(673\) 828.664 602.060i 1.23130 0.894591i 0.234312 0.972162i \(-0.424716\pi\)
0.996987 + 0.0775708i \(0.0247164\pi\)
\(674\) −440.410 1355.44i −0.653428 2.01104i
\(675\) 0 0
\(676\) −124.662 90.5719i −0.184411 0.133982i
\(677\) 200.121 + 145.396i 0.295599 + 0.214766i 0.725693 0.688019i \(-0.241519\pi\)
−0.430093 + 0.902784i \(0.641519\pi\)
\(678\) −272.470 + 838.577i −0.401874 + 1.23684i
\(679\) −692.118 + 224.883i −1.01932 + 0.331197i
\(680\) 0 0
\(681\) 1550.95i 2.27746i
\(682\) −157.997 + 313.156i −0.231667 + 0.459173i
\(683\) 979.967i 1.43480i 0.696662 + 0.717399i \(0.254668\pi\)
−0.696662 + 0.717399i \(0.745332\pi\)
\(684\) 190.050 + 261.581i 0.277851 + 0.382428i
\(685\) 0 0
\(686\) −253.473 + 780.110i −0.369494 + 1.13719i
\(687\) −325.992 + 448.689i −0.474515 + 0.653113i
\(688\) −239.570 174.058i −0.348212 0.252991i
\(689\) 728.806 + 236.804i 1.05777 + 0.343692i
\(690\) 0 0
\(691\) 537.473 390.497i 0.777818 0.565118i −0.126505 0.991966i \(-0.540376\pi\)
0.904323 + 0.426848i \(0.140376\pi\)
\(692\) −613.222 −0.886160
\(693\) −99.4899 612.397i −0.143564 0.883690i
\(694\) −526.217 −0.758237
\(695\) 0 0
\(696\) −204.912 630.654i −0.294413 0.906111i
\(697\) 1289.52 + 418.992i 1.85011 + 0.601136i
\(698\) 312.496 430.113i 0.447702 0.616208i
\(699\) 438.695 603.812i 0.627604 0.863823i
\(700\) 0 0
\(701\) −984.515 + 319.888i −1.40444 + 0.456332i −0.910625 0.413233i \(-0.864399\pi\)
−0.493819 + 0.869565i \(0.664399\pi\)
\(702\) 203.208 + 279.692i 0.289470 + 0.398422i
\(703\) 171.103 0.243390
\(704\) −970.772 + 499.501i −1.37894 + 0.709519i
\(705\) 0 0
\(706\) 894.622 + 1231.34i 1.26717 + 1.74411i
\(707\) −826.777 + 268.636i −1.16942 + 0.379966i
\(708\) −1233.57 400.813i −1.74234 0.566120i
\(709\) −996.643 724.104i −1.40570 1.02130i −0.993930 0.110016i \(-0.964910\pi\)
−0.411773 0.911287i \(-0.635090\pi\)
\(710\) 0 0
\(711\) −228.475 74.2361i −0.321344 0.104411i
\(712\) −179.140 551.336i −0.251601 0.774348i
\(713\) 154.572 + 212.751i 0.216792 + 0.298388i
\(714\) 2408.26i 3.37292i
\(715\) 0 0
\(716\) 1140.98 1.59354
\(717\) −564.498 + 410.132i −0.787305 + 0.572011i
\(718\) −450.629 + 146.418i −0.627617 + 0.203925i
\(719\) −229.638 + 706.754i −0.319385 + 0.982967i 0.654526 + 0.756039i \(0.272868\pi\)
−0.973912 + 0.226928i \(0.927132\pi\)
\(720\) 0 0
\(721\) −90.8009 + 124.977i −0.125937 + 0.173338i
\(722\) −275.568 + 848.112i −0.381673 + 1.17467i
\(723\) −283.440 872.338i −0.392033 1.20655i
\(724\) −354.092 + 257.263i −0.489077 + 0.355336i
\(725\) 0 0
\(726\) −1198.12 + 885.113i −1.65030 + 1.21916i
\(727\) 10.4678i 0.0143987i −0.999974 0.00719934i \(-0.997708\pi\)
0.999974 0.00719934i \(-0.00229164\pi\)
\(728\) −414.703 + 301.299i −0.569647 + 0.413873i
\(729\) 116.499 + 358.548i 0.159807 + 0.491836i
\(730\) 0 0
\(731\) −732.148 531.937i −1.00157 0.727683i
\(732\) 650.249 + 472.433i 0.888318 + 0.645401i
\(733\) 312.297 961.151i 0.426053 1.31126i −0.475929 0.879484i \(-0.657888\pi\)
0.901982 0.431773i \(-0.142112\pi\)
\(734\) −543.530 + 176.604i −0.740504 + 0.240604i
\(735\) 0 0
\(736\) 1080.59i 1.46819i
\(737\) 29.8942 193.723i 0.0405621 0.262854i
\(738\) 1203.16i 1.63030i
\(739\) 339.077 + 466.699i 0.458832 + 0.631528i 0.974266 0.225401i \(-0.0723694\pi\)
−0.515434 + 0.856929i \(0.672369\pi\)
\(740\) 0 0
\(741\) −146.502 + 450.888i −0.197709 + 0.608485i
\(742\) 795.498 1094.91i 1.07210 1.47562i
\(743\) −933.113 677.947i −1.25587 0.912445i −0.257325 0.966325i \(-0.582841\pi\)
−0.998547 + 0.0538800i \(0.982841\pi\)
\(744\) 178.577 + 58.0233i 0.240023 + 0.0779883i
\(745\) 0 0
\(746\) 669.393 486.342i 0.897310 0.651934i
\(747\) 1020.96 1.36675
\(748\) −1299.47 + 668.632i −1.73727 + 0.893893i
\(749\) 775.659 1.03559
\(750\) 0 0
\(751\) 447.403 + 1376.97i 0.595743 + 1.83351i 0.550991 + 0.834511i \(0.314250\pi\)
0.0447527 + 0.998998i \(0.485750\pi\)
\(752\) −646.041 209.911i −0.859097 0.279137i
\(753\) −249.140 + 342.912i −0.330863 + 0.455394i
\(754\) 929.402 1279.21i 1.23263 1.69657i
\(755\) 0 0
\(756\) 335.469 109.000i 0.443742 0.144181i
\(757\) −310.608 427.516i −0.410315 0.564750i 0.552980 0.833194i \(-0.313490\pi\)
−0.963295 + 0.268444i \(0.913490\pi\)
\(758\) −927.982 −1.22425
\(759\) 179.088 + 1102.35i 0.235953 + 1.45238i
\(760\) 0 0
\(761\) 128.577 + 176.972i 0.168958 + 0.232551i 0.885097 0.465407i \(-0.154092\pi\)
−0.716138 + 0.697958i \(0.754092\pi\)
\(762\) 315.620 102.551i 0.414199 0.134581i
\(763\) −161.533 52.4853i −0.211708 0.0687881i
\(764\) 386.010 + 280.453i 0.505249 + 0.367085i
\(765\) 0 0
\(766\) −1425.11 463.048i −1.86046 0.604501i
\(767\) −257.118 791.329i −0.335226 1.03172i
\(768\) 44.6717 + 61.4853i 0.0581662 + 0.0800590i
\(769\) 162.687i 0.211557i −0.994390 0.105778i \(-0.966267\pi\)
0.994390 0.105778i \(-0.0337334\pi\)
\(770\) 0 0
\(771\) 1030.83 1.33701
\(772\) −832.468 + 604.823i −1.07833 + 0.783450i
\(773\) 310.480 100.881i 0.401656 0.130506i −0.101221 0.994864i \(-0.532275\pi\)
0.502877 + 0.864358i \(0.332275\pi\)
\(774\) −248.156 + 763.745i −0.320615 + 0.986751i
\(775\) 0 0
\(776\) 240.528 331.058i 0.309959 0.426621i
\(777\) −201.886 + 621.341i −0.259828 + 0.799667i
\(778\) 363.404 + 1118.44i 0.467100 + 1.43759i
\(779\) −381.376 + 277.086i −0.489572 + 0.355695i
\(780\) 0 0
\(781\) 45.4458 + 45.0861i 0.0581893 + 0.0577287i
\(782\) 1896.58i 2.42529i
\(783\) −236.810 + 172.053i −0.302439 + 0.219735i
\(784\) −39.0896 120.305i −0.0498592 0.153451i
\(785\) 0 0
\(786\) −884.604 642.702i −1.12545 0.817687i
\(787\) 313.294 + 227.621i 0.398086 + 0.289226i 0.768761 0.639536i \(-0.220874\pi\)
−0.370675 + 0.928763i \(0.620874\pi\)
\(788\) −17.7701 + 54.6906i −0.0225508 + 0.0694043i
\(789\) 1104.54 358.888i 1.39993 0.454865i
\(790\) 0 0
\(791\) 577.101i 0.729585i
\(792\) 247.666 + 245.706i 0.312710 + 0.310234i
\(793\) 515.601i 0.650190i
\(794\) 1208.65 + 1663.56i 1.52222 + 2.09516i
\(795\) 0 0
\(796\) −14.0488 + 43.2377i −0.0176492 + 0.0543187i
\(797\) −12.9188 + 17.7812i −0.0162092 + 0.0223101i −0.817045 0.576574i \(-0.804389\pi\)
0.800835 + 0.598884i \(0.204389\pi\)
\(798\) 677.383 + 492.148i 0.848851 + 0.616727i
\(799\) −1974.36 641.509i −2.47104 0.802890i
\(800\) 0 0
\(801\) 724.592 526.447i 0.904609 0.657237i
\(802\) −1108.17 −1.38176
\(803\) −253.543 + 502.533i −0.315745 + 0.625819i
\(804\) −390.046 −0.485132
\(805\) 0 0
\(806\) 138.358 + 425.821i 0.171660 + 0.528314i
\(807\) 1258.40 + 408.879i 1.55936 + 0.506666i
\(808\) 287.325 395.469i 0.355600 0.489442i
\(809\) −599.477 + 825.109i −0.741010 + 1.01991i 0.257550 + 0.966265i \(0.417085\pi\)
−0.998560 + 0.0536476i \(0.982915\pi\)
\(810\) 0 0
\(811\) −940.701 + 305.652i −1.15993 + 0.376883i −0.824875 0.565316i \(-0.808754\pi\)
−0.335053 + 0.942199i \(0.608754\pi\)
\(812\) −948.260 1305.17i −1.16781 1.60735i
\(813\) −869.183 −1.06911
\(814\) 677.368 110.045i 0.832147 0.135190i
\(815\) 0 0
\(816\) −453.475 624.155i −0.555729 0.764896i
\(817\) 299.240 97.2291i 0.366267 0.119007i
\(818\) 105.993 + 34.4392i 0.129576 + 0.0421018i
\(819\) −640.713 465.505i −0.782311 0.568382i
\(820\) 0 0
\(821\) −729.758 237.113i −0.888864 0.288810i −0.171231 0.985231i \(-0.554775\pi\)
−0.717633 + 0.696421i \(0.754775\pi\)
\(822\) −456.769 1405.79i −0.555680 1.71021i
\(823\) 490.391 + 674.965i 0.595858 + 0.820128i 0.995321 0.0966212i \(-0.0308035\pi\)
−0.399463 + 0.916749i \(0.630804\pi\)
\(824\) 86.8648i 0.105418i
\(825\) 0 0
\(826\) −1469.49 −1.77904
\(827\) 453.171 329.248i 0.547970 0.398123i −0.279067 0.960272i \(-0.590025\pi\)
0.827036 + 0.562148i \(0.190025\pi\)
\(828\) 924.669 300.443i 1.11675 0.362854i
\(829\) 371.006 1141.84i 0.447534 1.37737i −0.432147 0.901803i \(-0.642244\pi\)
0.879681 0.475565i \(-0.157756\pi\)
\(830\) 0 0
\(831\) −1054.79 + 1451.80i −1.26931 + 1.74705i
\(832\) −430.643 + 1325.38i −0.517600 + 1.59301i
\(833\) −119.461 367.664i −0.143411 0.441374i
\(834\) 35.0294 25.4504i 0.0420017 0.0305160i
\(835\) 0 0
\(836\) 77.4888 502.149i 0.0926899 0.600657i
\(837\) 82.8854i 0.0990268i
\(838\) 1054.58 766.196i 1.25845 0.914315i
\(839\) −162.370 499.723i −0.193528 0.595618i −0.999991 0.00433286i \(-0.998621\pi\)
0.806463 0.591285i \(-0.201379\pi\)
\(840\) 0 0
\(841\) 402.703 + 292.581i 0.478838 + 0.347896i
\(842\) 1702.45 + 1236.91i 2.02192 + 1.46901i
\(843\) −115.799 + 356.393i −0.137366 + 0.422768i
\(844\) −398.695 + 129.544i −0.472387 + 0.153488i
\(845\) 0 0
\(846\) 1842.14i 2.17746i
\(847\) −566.779 + 793.284i −0.669160 + 0.936581i
\(848\) 433.562i 0.511276i
\(849\) −687.259 945.930i −0.809492 1.11417i
\(850\) 0 0
\(851\) 158.991 489.324i 0.186828 0.574998i
\(852\) 74.8744 103.056i 0.0878807 0.120957i
\(853\) −775.340 563.318i −0.908957 0.660396i 0.0317938 0.999494i \(-0.489878\pi\)
−0.940751 + 0.339099i \(0.889878\pi\)
\(854\) 866.033 + 281.391i 1.01409 + 0.329498i
\(855\) 0 0
\(856\) −352.859 + 256.367i −0.412219 + 0.299494i
\(857\) −56.2536 −0.0656402 −0.0328201 0.999461i \(-0.510449\pi\)
−0.0328201 + 0.999461i \(0.510449\pi\)
\(858\) −289.988 + 1879.21i −0.337982 + 2.19022i
\(859\) 1517.29 1.76634 0.883171 0.469051i \(-0.155404\pi\)
0.883171 + 0.469051i \(0.155404\pi\)
\(860\) 0 0
\(861\) −556.217 1711.86i −0.646012 1.98822i
\(862\) 377.794 + 122.753i 0.438276 + 0.142405i
\(863\) 644.517 887.101i 0.746833 1.02793i −0.251363 0.967893i \(-0.580879\pi\)
0.998196 0.0600344i \(-0.0191211\pi\)
\(864\) 200.190 275.538i 0.231702 0.318910i
\(865\) 0 0
\(866\) 1613.88 524.382i 1.86360 0.605522i
\(867\) −706.383 972.253i −0.814744 1.12140i
\(868\) 456.819 0.526289
\(869\) 172.721 + 335.680i 0.198758 + 0.386283i
\(870\) 0 0
\(871\) −147.071 202.426i −0.168853 0.232406i
\(872\) 90.8310 29.5128i 0.104164 0.0338449i
\(873\) 601.283 + 195.369i 0.688755 + 0.223790i
\(874\) −533.458 387.580i −0.610364 0.443456i
\(875\) 0 0
\(876\) 1065.22 + 346.111i 1.21600 + 0.395104i
\(877\) −351.441 1081.62i −0.400731 1.23332i −0.924408 0.381405i \(-0.875440\pi\)
0.523677 0.851917i \(-0.324560\pi\)
\(878\) 851.293 + 1171.70i 0.969582 + 1.33451i
\(879\) 1384.31i 1.57487i
\(880\) 0 0
\(881\) 850.822 0.965746 0.482873 0.875690i \(-0.339593\pi\)
0.482873 + 0.875690i \(0.339593\pi\)
\(882\) −277.526 + 201.635i −0.314656 + 0.228611i
\(883\) 484.958 157.572i 0.549216 0.178451i −0.0212471 0.999774i \(-0.506764\pi\)
0.570463 + 0.821323i \(0.306764\pi\)
\(884\) −576.459 + 1774.16i −0.652103 + 2.00697i
\(885\) 0 0
\(886\) 179.567 247.153i 0.202672 0.278954i
\(887\) 180.313 554.947i 0.203284 0.625645i −0.796495 0.604645i \(-0.793315\pi\)
0.999779 0.0209998i \(-0.00668494\pi\)
\(888\) −113.522 349.384i −0.127840 0.393450i
\(889\) 175.724 127.671i 0.197665 0.143612i
\(890\) 0 0
\(891\) 470.717 932.979i 0.528302 1.04711i
\(892\) 639.603i 0.717043i
\(893\) 583.917 424.240i 0.653882 0.475073i
\(894\) −354.971 1092.49i −0.397059 1.22202i
\(895\) 0 0
\(896\) 881.096 + 640.153i 0.983366 + 0.714457i
\(897\) 1153.32 + 837.939i 1.28576 + 0.934157i
\(898\) 129.632 398.966i 0.144356 0.444283i
\(899\) −360.535 + 117.145i −0.401040 + 0.130306i
\(900\) 0 0
\(901\) 1325.01i 1.47060i
\(902\) −1331.59 + 1342.22i −1.47627 + 1.48805i
\(903\) 1201.38i 1.33043i
\(904\) −190.741 262.532i −0.210996 0.290412i
\(905\) 0 0
\(906\) −372.859 + 1147.54i −0.411544 + 1.26660i
\(907\) 376.478 518.177i 0.415080 0.571309i −0.549368 0.835580i \(-0.685132\pi\)
0.964448 + 0.264272i \(0.0851315\pi\)
\(908\) 1716.54 + 1247.14i 1.89046 + 1.37350i
\(909\) 718.269 + 233.380i 0.790175 + 0.256744i
\(910\) 0 0
\(911\) 885.922 643.660i 0.972472 0.706542i 0.0164582 0.999865i \(-0.494761\pi\)
0.956014 + 0.293322i \(0.0947609\pi\)
\(912\) 268.230 0.294112
\(913\) −1138.96 1129.94i −1.24749 1.23762i
\(914\) −94.7802 −0.103698
\(915\) 0 0
\(916\) −234.459 721.591i −0.255960 0.787763i
\(917\) −680.633 221.151i −0.742238 0.241168i
\(918\) 351.361 483.607i 0.382746 0.526805i
\(919\) 729.402 1003.94i 0.793691 1.09242i −0.199948 0.979807i \(-0.564077\pi\)
0.993639 0.112615i \(-0.0359228\pi\)
\(920\) 0 0
\(921\) 687.902 223.513i 0.746908 0.242685i
\(922\) −258.061 355.190i −0.279893 0.385239i
\(923\) 81.7158 0.0885328
\(924\) 1732.07 + 873.881i 1.87453 + 0.945759i
\(925\) 0 0
\(926\) −887.982 1222.20i −0.958943 1.31987i
\(927\) 127.637 41.4718i 0.137688 0.0447376i
\(928\) −1481.47 481.359i −1.59641 0.518706i
\(929\) 834.947 + 606.624i 0.898758 + 0.652986i 0.938147 0.346238i \(-0.112541\pi\)
−0.0393884 + 0.999224i \(0.512541\pi\)
\(930\) 0 0
\(931\) 127.828 + 41.5337i 0.137301 + 0.0446119i
\(932\) 315.517 + 971.063i 0.338538 + 1.04191i
\(933\) 877.354 + 1207.57i 0.940358 + 1.29429i
\(934\) 2332.68i 2.49752i
\(935\) 0 0
\(936\) 445.326 0.475776
\(937\) −248.036 + 180.209i −0.264713 + 0.192325i −0.712222 0.701954i \(-0.752311\pi\)
0.447509 + 0.894279i \(0.352311\pi\)
\(938\) −420.271 + 136.554i −0.448050 + 0.145580i
\(939\) 392.283 1207.32i 0.417767 1.28575i
\(940\) 0 0
\(941\) 11.2167 15.4385i 0.0119200 0.0164064i −0.803015 0.595958i \(-0.796772\pi\)
0.814935 + 0.579552i \(0.196772\pi\)
\(942\) −655.306 + 2016.82i −0.695654 + 2.14100i
\(943\) 438.036 + 1348.14i 0.464514 + 1.42963i
\(944\) −380.850 + 276.704i −0.403443 + 0.293118i
\(945\) 0 0
\(946\) 1122.11 577.369i 1.18616 0.610327i
\(947\) 804.636i 0.849669i −0.905271 0.424834i \(-0.860332\pi\)
0.905271 0.424834i \(-0.139668\pi\)
\(948\) 607.728 441.540i 0.641063 0.465760i
\(949\) 222.027 + 683.330i 0.233959 + 0.720053i
\(950\) 0 0
\(951\) 889.256 + 646.082i 0.935075 + 0.679372i
\(952\) 717.050 + 520.967i 0.753204 + 0.547235i
\(953\) −572.962 + 1763.40i −0.601220 + 1.85036i −0.0802758 + 0.996773i \(0.525580\pi\)
−0.520944 + 0.853591i \(0.674420\pi\)
\(954\) −1118.22 + 363.330i −1.17213 + 0.380850i
\(955\) 0 0
\(956\) 954.556i 0.998489i
\(957\) −1591.09 245.528i −1.66258 0.256560i
\(958\) 1911.11i 1.99489i
\(959\) −568.654 782.686i −0.592966 0.816148i
\(960\) 0 0
\(961\) −263.794 + 811.875i −0.274500 + 0.844824i
\(962\) 514.891 708.687i 0.535230 0.736681i
\(963\) −545.164 396.085i −0.566111 0.411303i
\(964\) 1193.39 + 387.755i 1.23795 + 0.402236i
\(965\) 0 0
\(966\) 2036.88 1479.88i 2.10857 1.53197i
\(967\) −660.803 −0.683353 −0.341677 0.939818i \(-0.610995\pi\)
−0.341677 + 0.939818i \(0.610995\pi\)
\(968\) −4.35630 548.206i −0.00450031 0.566328i
\(969\) 819.737 0.845962
\(970\) 0 0
\(971\) −166.517 512.487i −0.171490 0.527793i 0.827965 0.560779i \(-0.189498\pi\)
−0.999456 + 0.0329859i \(0.989498\pi\)
\(972\) −1602.93 520.823i −1.64910 0.535826i
\(973\) 16.6575 22.9271i 0.0171197 0.0235633i
\(974\) 712.232 980.303i 0.731244 1.00647i
\(975\) 0 0
\(976\) 277.438 90.1450i 0.284260 0.0923617i
\(977\) 177.151 + 243.828i 0.181322 + 0.249568i 0.889996 0.455967i \(-0.150707\pi\)
−0.708675 + 0.705535i \(0.750707\pi\)
\(978\) −3116.80 −3.18691
\(979\) −1390.98 214.648i −1.42082 0.219252i
\(980\) 0 0
\(981\) 86.7307 + 119.375i 0.0884105 + 0.121687i
\(982\) −1898.75 + 616.943i −1.93356 + 0.628251i
\(983\) 733.472 + 238.319i 0.746156 + 0.242441i 0.657327 0.753606i \(-0.271687\pi\)
0.0888299 + 0.996047i \(0.471687\pi\)
\(984\) 818.827 + 594.912i 0.832141 + 0.604586i
\(985\) 0 0
\(986\) −2600.18 844.850i −2.63710 0.856846i
\(987\) 851.611 + 2620.99i 0.862827 + 2.65551i
\(988\) −381.222 524.707i −0.385852 0.531080i
\(989\) 946.119i 0.956642i
\(990\) 0 0
\(991\) 118.312 0.119386 0.0596932 0.998217i \(-0.480988\pi\)
0.0596932 + 0.998217i \(0.480988\pi\)
\(992\) 356.846 259.264i 0.359723 0.261354i
\(993\) −1566.13 + 508.865i −1.57717 + 0.512453i
\(994\) 44.5967 137.255i 0.0448659 0.138083i
\(995\) 0 0
\(996\) −1876.49 + 2582.77i −1.88403 + 2.59314i
\(997\) −11.7057 + 36.0263i −0.0117409 + 0.0361347i −0.956755 0.290894i \(-0.906047\pi\)
0.945014 + 0.327029i \(0.106047\pi\)
\(998\) −681.931 2098.77i −0.683298 2.10298i
\(999\) −131.193 + 95.3177i −0.131325 + 0.0954131i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.q.c.74.2 8
5.2 odd 4 275.3.x.d.151.1 4
5.3 odd 4 55.3.i.a.41.1 4
5.4 even 2 inner 275.3.q.c.74.1 8
11.7 odd 10 inner 275.3.q.c.249.1 8
55.7 even 20 275.3.x.d.51.1 4
55.13 even 20 605.3.c.a.241.1 4
55.18 even 20 55.3.i.a.51.1 yes 4
55.29 odd 10 inner 275.3.q.c.249.2 8
55.53 odd 20 605.3.c.a.241.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.a.41.1 4 5.3 odd 4
55.3.i.a.51.1 yes 4 55.18 even 20
275.3.q.c.74.1 8 5.4 even 2 inner
275.3.q.c.74.2 8 1.1 even 1 trivial
275.3.q.c.249.1 8 11.7 odd 10 inner
275.3.q.c.249.2 8 55.29 odd 10 inner
275.3.x.d.51.1 4 55.7 even 20
275.3.x.d.151.1 4 5.2 odd 4
605.3.c.a.241.1 4 55.13 even 20
605.3.c.a.241.4 4 55.53 odd 20