Properties

Label 275.3.x.d.51.1
Level $275$
Weight $3$
Character 275.51
Analytic conductor $7.493$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(51,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,5,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 51.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 275.51
Dual form 275.3.x.d.151.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80902 - 2.48990i) q^{2} +(1.23607 - 3.80423i) q^{3} +(-1.69098 - 5.20431i) q^{4} +(-7.23607 - 9.95959i) q^{6} +(-7.66312 + 2.48990i) q^{7} +(-4.30902 - 1.40008i) q^{8} +(-5.66312 - 4.11450i) q^{9} +(-10.8713 + 1.67760i) q^{11} -21.8885 q^{12} +(8.25329 - 11.3597i) q^{13} +(-7.66312 + 23.5847i) q^{14} +(6.42705 - 4.66953i) q^{16} +(-14.2705 - 19.6417i) q^{17} +(-20.4894 + 6.65740i) q^{18} +(8.02786 + 2.60841i) q^{19} +32.2299i q^{21} +(-15.4894 + 30.1033i) q^{22} +25.3820 q^{23} +(-10.6525 + 14.6619i) q^{24} +(-13.3541 - 41.0997i) q^{26} +(6.47214 - 4.70228i) q^{27} +(25.9164 + 35.6709i) q^{28} +(34.7984 - 11.3067i) q^{29} +(8.38197 + 6.08985i) q^{31} -42.5730i q^{32} +(-7.05573 + 43.4306i) q^{33} -74.7214 q^{34} +(-11.8369 + 36.4302i) q^{36} +(6.26393 + 19.2784i) q^{37} +(21.0172 - 15.2699i) q^{38} +(-33.0132 - 45.4387i) q^{39} +(53.1140 + 17.2578i) q^{41} +(80.2492 + 58.3045i) q^{42} -37.2752i q^{43} +(27.1140 + 53.7409i) q^{44} +(45.9164 - 63.1985i) q^{46} +(-26.4230 + 81.3216i) q^{47} +(-9.81966 - 30.2218i) q^{48} +(12.8820 - 9.35930i) q^{49} +(-92.3607 + 30.0098i) q^{51} +(-73.0755 - 23.7437i) q^{52} +(-44.1525 - 32.0787i) q^{53} -24.6215i q^{54} +36.5066 q^{56} +(19.8460 - 27.3156i) q^{57} +(34.7984 - 107.098i) q^{58} +(18.3115 + 56.3571i) q^{59} +(21.5836 + 29.7073i) q^{61} +(30.3262 - 9.85359i) q^{62} +(53.6418 + 17.4293i) q^{63} +(-80.2943 - 58.3372i) q^{64} +(95.3738 + 96.1347i) q^{66} -17.8197 q^{67} +(-78.0902 + 107.482i) q^{68} +(31.3738 - 96.5587i) q^{69} +(-4.70820 + 3.42071i) q^{71} +(18.6418 + 25.6583i) q^{72} +(-48.6656 + 15.8124i) q^{73} +(59.3328 + 19.2784i) q^{74} -46.1903i q^{76} +(79.1312 - 39.9241i) q^{77} -172.859 q^{78} +(20.1722 - 27.7647i) q^{79} +(-29.3566 - 90.3504i) q^{81} +(139.054 - 101.029i) q^{82} +(85.7295 + 117.997i) q^{83} +(167.735 - 54.5002i) q^{84} +(-92.8115 - 67.4315i) q^{86} -146.357i q^{87} +(49.1935 + 7.99197i) q^{88} -127.949 q^{89} +(-34.9615 + 107.600i) q^{91} +(-42.9205 - 132.096i) q^{92} +(33.5279 - 24.3594i) q^{93} +(154.683 + 212.903i) q^{94} +(-161.957 - 52.6232i) q^{96} +(-73.0689 - 53.0877i) q^{97} -49.0059i q^{98} +(68.4681 + 35.2296i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 4 q^{3} - 9 q^{4} - 20 q^{6} - 15 q^{7} - 15 q^{8} - 7 q^{9} - q^{11} - 16 q^{12} - 5 q^{13} - 15 q^{14} + 19 q^{16} + 10 q^{17} - 35 q^{18} + 50 q^{19} - 15 q^{22} + 106 q^{23} + 20 q^{24}+ \cdots + 133 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80902 2.48990i 0.904508 1.24495i −0.0644990 0.997918i \(-0.520545\pi\)
0.969007 0.247031i \(-0.0794551\pi\)
\(3\) 1.23607 3.80423i 0.412023 1.26808i −0.502864 0.864365i \(-0.667720\pi\)
0.914887 0.403710i \(-0.132280\pi\)
\(4\) −1.69098 5.20431i −0.422746 1.30108i
\(5\) 0 0
\(6\) −7.23607 9.95959i −1.20601 1.65993i
\(7\) −7.66312 + 2.48990i −1.09473 + 0.355700i −0.800073 0.599903i \(-0.795206\pi\)
−0.294658 + 0.955603i \(0.595206\pi\)
\(8\) −4.30902 1.40008i −0.538627 0.175011i
\(9\) −5.66312 4.11450i −0.629235 0.457166i
\(10\) 0 0
\(11\) −10.8713 + 1.67760i −0.988302 + 0.152509i
\(12\) −21.8885 −1.82405
\(13\) 8.25329 11.3597i 0.634868 0.873821i −0.363460 0.931610i \(-0.618405\pi\)
0.998329 + 0.0577883i \(0.0184048\pi\)
\(14\) −7.66312 + 23.5847i −0.547366 + 1.68462i
\(15\) 0 0
\(16\) 6.42705 4.66953i 0.401691 0.291845i
\(17\) −14.2705 19.6417i −0.839442 1.15539i −0.986091 0.166204i \(-0.946849\pi\)
0.146650 0.989188i \(-0.453151\pi\)
\(18\) −20.4894 + 6.65740i −1.13830 + 0.369855i
\(19\) 8.02786 + 2.60841i 0.422519 + 0.137285i 0.512556 0.858654i \(-0.328699\pi\)
−0.0900372 + 0.995938i \(0.528699\pi\)
\(20\) 0 0
\(21\) 32.2299i 1.53476i
\(22\) −15.4894 + 30.1033i −0.704062 + 1.36833i
\(23\) 25.3820 1.10356 0.551782 0.833988i \(-0.313948\pi\)
0.551782 + 0.833988i \(0.313948\pi\)
\(24\) −10.6525 + 14.6619i −0.443853 + 0.610911i
\(25\) 0 0
\(26\) −13.3541 41.0997i −0.513619 1.58076i
\(27\) 6.47214 4.70228i 0.239709 0.174159i
\(28\) 25.9164 + 35.6709i 0.925586 + 1.27396i
\(29\) 34.7984 11.3067i 1.19994 0.389885i 0.360204 0.932874i \(-0.382707\pi\)
0.839740 + 0.542988i \(0.182707\pi\)
\(30\) 0 0
\(31\) 8.38197 + 6.08985i 0.270386 + 0.196447i 0.714713 0.699418i \(-0.246557\pi\)
−0.444327 + 0.895865i \(0.646557\pi\)
\(32\) 42.5730i 1.33041i
\(33\) −7.05573 + 43.4306i −0.213810 + 1.31608i
\(34\) −74.7214 −2.19769
\(35\) 0 0
\(36\) −11.8369 + 36.4302i −0.328802 + 1.01195i
\(37\) 6.26393 + 19.2784i 0.169295 + 0.521038i 0.999327 0.0366784i \(-0.0116777\pi\)
−0.830032 + 0.557716i \(0.811678\pi\)
\(38\) 21.0172 15.2699i 0.553085 0.401840i
\(39\) −33.0132 45.4387i −0.846491 1.16510i
\(40\) 0 0
\(41\) 53.1140 + 17.2578i 1.29546 + 0.420921i 0.874001 0.485925i \(-0.161517\pi\)
0.421462 + 0.906846i \(0.361517\pi\)
\(42\) 80.2492 + 58.3045i 1.91070 + 1.38820i
\(43\) 37.2752i 0.866866i −0.901186 0.433433i \(-0.857302\pi\)
0.901186 0.433433i \(-0.142698\pi\)
\(44\) 27.1140 + 53.7409i 0.616227 + 1.22139i
\(45\) 0 0
\(46\) 45.9164 63.1985i 0.998183 1.37388i
\(47\) −26.4230 + 81.3216i −0.562191 + 1.73025i 0.113962 + 0.993485i \(0.463646\pi\)
−0.676153 + 0.736761i \(0.736354\pi\)
\(48\) −9.81966 30.2218i −0.204576 0.629621i
\(49\) 12.8820 9.35930i 0.262897 0.191006i
\(50\) 0 0
\(51\) −92.3607 + 30.0098i −1.81099 + 0.588428i
\(52\) −73.0755 23.7437i −1.40530 0.456609i
\(53\) −44.1525 32.0787i −0.833066 0.605258i 0.0873594 0.996177i \(-0.472157\pi\)
−0.920425 + 0.390919i \(0.872157\pi\)
\(54\) 24.6215i 0.455953i
\(55\) 0 0
\(56\) 36.5066 0.651903
\(57\) 19.8460 27.3156i 0.348175 0.479222i
\(58\) 34.7984 107.098i 0.599972 1.84652i
\(59\) 18.3115 + 56.3571i 0.310365 + 0.955205i 0.977621 + 0.210376i \(0.0674689\pi\)
−0.667256 + 0.744829i \(0.732531\pi\)
\(60\) 0 0
\(61\) 21.5836 + 29.7073i 0.353829 + 0.487004i 0.948417 0.317027i \(-0.102685\pi\)
−0.594587 + 0.804031i \(0.702685\pi\)
\(62\) 30.3262 9.85359i 0.489133 0.158929i
\(63\) 53.6418 + 17.4293i 0.851458 + 0.276655i
\(64\) −80.2943 58.3372i −1.25460 0.911519i
\(65\) 0 0
\(66\) 95.3738 + 96.1347i 1.44506 + 1.45659i
\(67\) −17.8197 −0.265965 −0.132983 0.991118i \(-0.542455\pi\)
−0.132983 + 0.991118i \(0.542455\pi\)
\(68\) −78.0902 + 107.482i −1.14838 + 1.58062i
\(69\) 31.3738 96.5587i 0.454693 1.39940i
\(70\) 0 0
\(71\) −4.70820 + 3.42071i −0.0663127 + 0.0481790i −0.620448 0.784248i \(-0.713049\pi\)
0.554135 + 0.832427i \(0.313049\pi\)
\(72\) 18.6418 + 25.6583i 0.258914 + 0.356365i
\(73\) −48.6656 + 15.8124i −0.666652 + 0.216609i −0.622742 0.782427i \(-0.713982\pi\)
−0.0439101 + 0.999035i \(0.513982\pi\)
\(74\) 59.3328 + 19.2784i 0.801795 + 0.260519i
\(75\) 0 0
\(76\) 46.1903i 0.607767i
\(77\) 79.1312 39.9241i 1.02768 0.518495i
\(78\) −172.859 −2.21614
\(79\) 20.1722 27.7647i 0.255344 0.351451i −0.662030 0.749478i \(-0.730305\pi\)
0.917374 + 0.398026i \(0.130305\pi\)
\(80\) 0 0
\(81\) −29.3566 90.3504i −0.362427 1.11544i
\(82\) 139.054 101.029i 1.69578 1.23206i
\(83\) 85.7295 + 117.997i 1.03289 + 1.42164i 0.902759 + 0.430147i \(0.141538\pi\)
0.130127 + 0.991497i \(0.458462\pi\)
\(84\) 167.735 54.5002i 1.99684 0.648812i
\(85\) 0 0
\(86\) −92.8115 67.4315i −1.07920 0.784087i
\(87\) 146.357i 1.68226i
\(88\) 49.1935 + 7.99197i 0.559017 + 0.0908178i
\(89\) −127.949 −1.43763 −0.718816 0.695200i \(-0.755316\pi\)
−0.718816 + 0.695200i \(0.755316\pi\)
\(90\) 0 0
\(91\) −34.9615 + 107.600i −0.384192 + 1.18242i
\(92\) −42.9205 132.096i −0.466527 1.43582i
\(93\) 33.5279 24.3594i 0.360515 0.261929i
\(94\) 154.683 + 212.903i 1.64556 + 2.26492i
\(95\) 0 0
\(96\) −161.957 52.6232i −1.68706 0.548158i
\(97\) −73.0689 53.0877i −0.753287 0.547295i 0.143557 0.989642i \(-0.454146\pi\)
−0.896844 + 0.442347i \(0.854146\pi\)
\(98\) 49.0059i 0.500060i
\(99\) 68.4681 + 35.2296i 0.691597 + 0.355854i
\(100\) 0 0
\(101\) 63.4164 87.2852i 0.627885 0.864210i −0.370012 0.929027i \(-0.620646\pi\)
0.997897 + 0.0648171i \(0.0206464\pi\)
\(102\) −92.3607 + 284.257i −0.905497 + 2.78683i
\(103\) 5.92454 + 18.2339i 0.0575198 + 0.177028i 0.975689 0.219162i \(-0.0703323\pi\)
−0.918169 + 0.396190i \(0.870332\pi\)
\(104\) −51.4681 + 37.3937i −0.494885 + 0.359555i
\(105\) 0 0
\(106\) −159.745 + 51.9043i −1.50703 + 0.489664i
\(107\) 91.5542 + 29.7478i 0.855646 + 0.278016i 0.703809 0.710389i \(-0.251481\pi\)
0.151837 + 0.988405i \(0.451481\pi\)
\(108\) −35.4164 25.7315i −0.327930 0.238255i
\(109\) 21.0793i 0.193388i 0.995314 + 0.0966940i \(0.0308268\pi\)
−0.995314 + 0.0966940i \(0.969173\pi\)
\(110\) 0 0
\(111\) 81.0820 0.730469
\(112\) −37.6246 + 51.7858i −0.335934 + 0.462374i
\(113\) −22.1327 + 68.1176i −0.195865 + 0.602810i 0.804100 + 0.594493i \(0.202647\pi\)
−0.999965 + 0.00831694i \(0.997353\pi\)
\(114\) −32.1115 98.8289i −0.281679 0.866920i
\(115\) 0 0
\(116\) −117.687 161.982i −1.01454 1.39640i
\(117\) −93.4787 + 30.3731i −0.798963 + 0.259599i
\(118\) 173.449 + 56.3571i 1.46991 + 0.477602i
\(119\) 158.262 + 114.984i 1.32994 + 0.966255i
\(120\) 0 0
\(121\) 115.371 36.4754i 0.953482 0.301450i
\(122\) 113.013 0.926337
\(123\) 131.305 180.726i 1.06752 1.46932i
\(124\) 17.5197 53.9202i 0.141288 0.434840i
\(125\) 0 0
\(126\) 140.436 102.033i 1.11457 0.809784i
\(127\) 15.8450 + 21.8088i 0.124764 + 0.171723i 0.866830 0.498604i \(-0.166154\pi\)
−0.742066 + 0.670327i \(0.766154\pi\)
\(128\) −128.550 + 41.7685i −1.00430 + 0.326316i
\(129\) −141.803 46.0747i −1.09925 0.357168i
\(130\) 0 0
\(131\) 88.8193i 0.678010i −0.940785 0.339005i \(-0.889910\pi\)
0.940785 0.339005i \(-0.110090\pi\)
\(132\) 237.957 36.7202i 1.80271 0.278183i
\(133\) −68.0132 −0.511377
\(134\) −32.2361 + 44.3691i −0.240568 + 0.331113i
\(135\) 0 0
\(136\) 33.9919 + 104.616i 0.249940 + 0.769237i
\(137\) −97.1378 + 70.5747i −0.709035 + 0.515144i −0.882862 0.469632i \(-0.844387\pi\)
0.173827 + 0.984776i \(0.444387\pi\)
\(138\) −183.666 252.794i −1.33091 1.83184i
\(139\) 3.34501 1.08686i 0.0240648 0.00781914i −0.296960 0.954890i \(-0.595973\pi\)
0.321025 + 0.947071i \(0.395973\pi\)
\(140\) 0 0
\(141\) 276.705 + 201.038i 1.96245 + 1.42580i
\(142\) 17.9111i 0.126134i
\(143\) −70.6672 + 137.340i −0.494176 + 0.960423i
\(144\) −55.6099 −0.386180
\(145\) 0 0
\(146\) −48.6656 + 149.777i −0.333326 + 1.02587i
\(147\) −19.6819 60.5746i −0.133890 0.412072i
\(148\) 89.7386 65.1989i 0.606342 0.440533i
\(149\) 54.8460 + 75.4890i 0.368094 + 0.506638i 0.952381 0.304909i \(-0.0986260\pi\)
−0.584288 + 0.811547i \(0.698626\pi\)
\(150\) 0 0
\(151\) 93.2148 + 30.2873i 0.617316 + 0.200578i 0.600948 0.799288i \(-0.294790\pi\)
0.0163680 + 0.999866i \(0.494790\pi\)
\(152\) −30.9402 22.4794i −0.203554 0.147891i
\(153\) 169.949i 1.11078i
\(154\) 43.7426 269.252i 0.284043 1.74839i
\(155\) 0 0
\(156\) −180.652 + 248.647i −1.15803 + 1.59389i
\(157\) 53.2304 163.826i 0.339047 1.04348i −0.625646 0.780107i \(-0.715165\pi\)
0.964694 0.263374i \(-0.0848353\pi\)
\(158\) −32.6393 100.453i −0.206578 0.635782i
\(159\) −176.610 + 128.315i −1.11075 + 0.807010i
\(160\) 0 0
\(161\) −194.505 + 63.1985i −1.20811 + 0.392537i
\(162\) −278.070 90.3504i −1.71648 0.557718i
\(163\) 204.825 + 148.814i 1.25659 + 0.912968i 0.998585 0.0531744i \(-0.0169339\pi\)
0.258008 + 0.966143i \(0.416934\pi\)
\(164\) 305.604i 1.86344i
\(165\) 0 0
\(166\) 448.885 2.70413
\(167\) −44.3090 + 60.9861i −0.265323 + 0.365186i −0.920804 0.390026i \(-0.872466\pi\)
0.655481 + 0.755212i \(0.272466\pi\)
\(168\) 45.1246 138.879i 0.268599 0.826662i
\(169\) −8.70163 26.7809i −0.0514889 0.158467i
\(170\) 0 0
\(171\) −34.7304 47.8024i −0.203102 0.279546i
\(172\) −193.992 + 63.0318i −1.12786 + 0.366464i
\(173\) −106.578 34.6293i −0.616058 0.200169i −0.0156685 0.999877i \(-0.504988\pi\)
−0.600389 + 0.799708i \(0.704988\pi\)
\(174\) −364.413 264.762i −2.09433 1.52162i
\(175\) 0 0
\(176\) −62.0370 + 61.5459i −0.352483 + 0.349693i
\(177\) 237.029 1.33915
\(178\) −231.462 + 318.581i −1.30035 + 1.78978i
\(179\) −64.4321 + 198.302i −0.359956 + 1.10783i 0.593124 + 0.805111i \(0.297894\pi\)
−0.953080 + 0.302719i \(0.902106\pi\)
\(180\) 0 0
\(181\) −64.7082 + 47.0133i −0.357504 + 0.259742i −0.752010 0.659151i \(-0.770916\pi\)
0.394506 + 0.918893i \(0.370916\pi\)
\(182\) 204.668 + 281.702i 1.12455 + 1.54781i
\(183\) 139.692 45.3887i 0.763344 0.248025i
\(184\) −109.371 35.5369i −0.594409 0.193135i
\(185\) 0 0
\(186\) 127.548i 0.685740i
\(187\) 188.090 + 189.591i 1.00583 + 1.01385i
\(188\) 467.904 2.48885
\(189\) −37.8885 + 52.1491i −0.200468 + 0.275921i
\(190\) 0 0
\(191\) −26.9443 82.9259i −0.141069 0.434167i 0.855415 0.517943i \(-0.173302\pi\)
−0.996485 + 0.0837757i \(0.973302\pi\)
\(192\) −321.177 + 233.349i −1.67280 + 1.21536i
\(193\) −110.528 152.129i −0.572683 0.788231i 0.420186 0.907438i \(-0.361965\pi\)
−0.992869 + 0.119207i \(0.961965\pi\)
\(194\) −264.366 + 85.8976i −1.36271 + 0.442771i
\(195\) 0 0
\(196\) −70.4919 51.2153i −0.359652 0.261303i
\(197\) 10.5087i 0.0533437i 0.999644 + 0.0266719i \(0.00849093\pi\)
−0.999644 + 0.0266719i \(0.991509\pi\)
\(198\) 211.578 106.748i 1.06858 0.539129i
\(199\) 8.30806 0.0417490 0.0208745 0.999782i \(-0.493355\pi\)
0.0208745 + 0.999782i \(0.493355\pi\)
\(200\) 0 0
\(201\) −22.0263 + 67.7900i −0.109584 + 0.337264i
\(202\) −102.610 315.801i −0.507970 1.56337i
\(203\) −238.512 + 173.289i −1.17493 + 0.853640i
\(204\) 312.361 + 429.928i 1.53118 + 2.10749i
\(205\) 0 0
\(206\) 56.1180 + 18.2339i 0.272418 + 0.0885139i
\(207\) −143.741 104.434i −0.694401 0.504512i
\(208\) 111.548i 0.536289i
\(209\) −91.6494 14.8893i −0.438514 0.0712409i
\(210\) 0 0
\(211\) −45.0294 + 61.9777i −0.213410 + 0.293733i −0.902279 0.431152i \(-0.858107\pi\)
0.688870 + 0.724885i \(0.258107\pi\)
\(212\) −92.2862 + 284.028i −0.435312 + 1.33975i
\(213\) 7.19350 + 22.1393i 0.0337723 + 0.103940i
\(214\) 239.692 174.146i 1.12006 0.813768i
\(215\) 0 0
\(216\) −34.4721 + 11.2007i −0.159593 + 0.0518550i
\(217\) −79.3951 25.7970i −0.365876 0.118880i
\(218\) 52.4853 + 38.1328i 0.240758 + 0.174921i
\(219\) 204.680i 0.934613i
\(220\) 0 0
\(221\) −340.902 −1.54254
\(222\) 146.679 201.886i 0.660715 0.909397i
\(223\) −36.1190 + 111.163i −0.161969 + 0.498488i −0.998800 0.0489724i \(-0.984405\pi\)
0.836832 + 0.547460i \(0.184405\pi\)
\(224\) 106.003 + 326.242i 0.473226 + 1.45644i
\(225\) 0 0
\(226\) 129.567 + 178.334i 0.573307 + 0.789089i
\(227\) −368.761 + 119.818i −1.62450 + 0.527831i −0.972997 0.230818i \(-0.925860\pi\)
−0.651500 + 0.758649i \(0.725860\pi\)
\(228\) −175.718 57.0943i −0.770694 0.250414i
\(229\) −112.172 81.4979i −0.489835 0.355886i 0.315286 0.948997i \(-0.397900\pi\)
−0.805121 + 0.593111i \(0.797900\pi\)
\(230\) 0 0
\(231\) −54.0689 350.382i −0.234064 1.51680i
\(232\) −165.777 −0.714556
\(233\) 109.674 150.953i 0.470703 0.647867i −0.505982 0.862544i \(-0.668870\pi\)
0.976685 + 0.214677i \(0.0688699\pi\)
\(234\) −93.4787 + 287.698i −0.399482 + 1.22948i
\(235\) 0 0
\(236\) 262.335 190.598i 1.11159 0.807618i
\(237\) −80.6888 111.059i −0.340459 0.468602i
\(238\) 572.599 186.049i 2.40588 0.781717i
\(239\) −165.902 53.9047i −0.694149 0.225543i −0.0593698 0.998236i \(-0.518909\pi\)
−0.634780 + 0.772693i \(0.718909\pi\)
\(240\) 0 0
\(241\) 229.308i 0.951484i −0.879585 0.475742i \(-0.842180\pi\)
0.879585 0.475742i \(-0.157820\pi\)
\(242\) 117.889 353.248i 0.487143 1.45970i
\(243\) −308.000 −1.26749
\(244\) 118.108 162.562i 0.484051 0.666239i
\(245\) 0 0
\(246\) −212.456 653.872i −0.863642 2.65802i
\(247\) 95.8870 69.6660i 0.388206 0.282048i
\(248\) −27.5917 37.9767i −0.111257 0.153132i
\(249\) 554.853 180.283i 2.22832 0.724027i
\(250\) 0 0
\(251\) 85.7279 + 62.2850i 0.341546 + 0.248147i 0.745314 0.666714i \(-0.232300\pi\)
−0.403768 + 0.914861i \(0.632300\pi\)
\(252\) 308.641i 1.22477i
\(253\) −275.936 + 42.5808i −1.09065 + 0.168303i
\(254\) 82.9656 0.326636
\(255\) 0 0
\(256\) −5.87132 + 18.0701i −0.0229349 + 0.0705862i
\(257\) 79.6362 + 245.095i 0.309869 + 0.953677i 0.977815 + 0.209468i \(0.0671733\pi\)
−0.667947 + 0.744209i \(0.732827\pi\)
\(258\) −371.246 + 269.726i −1.43894 + 1.04545i
\(259\) −96.0025 132.136i −0.370666 0.510178i
\(260\) 0 0
\(261\) −243.589 79.1467i −0.933290 0.303244i
\(262\) −221.151 160.676i −0.844087 0.613265i
\(263\) 290.347i 1.10398i −0.833851 0.551990i \(-0.813869\pi\)
0.833851 0.551990i \(-0.186131\pi\)
\(264\) 91.2098 177.265i 0.345492 0.671457i
\(265\) 0 0
\(266\) −123.037 + 169.346i −0.462545 + 0.636638i
\(267\) −158.154 + 486.748i −0.592337 + 1.82303i
\(268\) 30.1327 + 92.7390i 0.112436 + 0.346041i
\(269\) 267.615 194.434i 0.994851 0.722802i 0.0338730 0.999426i \(-0.489216\pi\)
0.960978 + 0.276625i \(0.0892158\pi\)
\(270\) 0 0
\(271\) 206.661 67.1481i 0.762585 0.247779i 0.0981974 0.995167i \(-0.468692\pi\)
0.664388 + 0.747388i \(0.268692\pi\)
\(272\) −183.435 59.6015i −0.674392 0.219123i
\(273\) 366.122 + 266.003i 1.34110 + 0.974369i
\(274\) 369.534i 1.34866i
\(275\) 0 0
\(276\) −555.574 −2.01295
\(277\) 263.699 362.950i 0.951980 1.31029i 0.00133803 0.999999i \(-0.499574\pi\)
0.950642 0.310289i \(-0.100426\pi\)
\(278\) 3.34501 10.2949i 0.0120324 0.0370320i
\(279\) −22.4114 68.9751i −0.0803275 0.247223i
\(280\) 0 0
\(281\) 55.0658 + 75.7915i 0.195964 + 0.269721i 0.895679 0.444701i \(-0.146690\pi\)
−0.699716 + 0.714421i \(0.746690\pi\)
\(282\) 1001.13 325.286i 3.55010 1.15350i
\(283\) 278.002 + 90.3283i 0.982339 + 0.319181i 0.755787 0.654818i \(-0.227255\pi\)
0.226552 + 0.973999i \(0.427255\pi\)
\(284\) 25.7639 + 18.7186i 0.0907181 + 0.0659105i
\(285\) 0 0
\(286\) 214.126 + 424.405i 0.748691 + 1.48393i
\(287\) −449.989 −1.56791
\(288\) −175.167 + 241.096i −0.608217 + 0.837139i
\(289\) −92.8419 + 285.738i −0.321252 + 0.988713i
\(290\) 0 0
\(291\) −292.276 + 212.351i −1.00438 + 0.729727i
\(292\) 164.586 + 226.533i 0.563649 + 0.775796i
\(293\) −329.140 + 106.944i −1.12335 + 0.364997i −0.811044 0.584986i \(-0.801100\pi\)
−0.312302 + 0.949983i \(0.601100\pi\)
\(294\) −186.430 60.5746i −0.634114 0.206036i
\(295\) 0 0
\(296\) 91.8410i 0.310274i
\(297\) −62.4721 + 61.9777i −0.210344 + 0.208679i
\(298\) 287.177 0.963682
\(299\) 209.485 288.331i 0.700618 0.964318i
\(300\) 0 0
\(301\) 92.8115 + 285.645i 0.308344 + 0.948985i
\(302\) 244.039 177.305i 0.808078 0.587103i
\(303\) −253.666 349.141i −0.837180 1.15228i
\(304\) 63.7755 20.7219i 0.209788 0.0681642i
\(305\) 0 0
\(306\) 423.156 + 307.441i 1.38286 + 1.00471i
\(307\) 180.826i 0.589009i 0.955650 + 0.294505i \(0.0951546\pi\)
−0.955650 + 0.294505i \(0.904845\pi\)
\(308\) −341.587 344.312i −1.10905 1.11790i
\(309\) 76.6888 0.248184
\(310\) 0 0
\(311\) −115.313 + 354.897i −0.370782 + 1.14115i 0.575499 + 0.817802i \(0.304808\pi\)
−0.946281 + 0.323346i \(0.895192\pi\)
\(312\) 78.6362 + 242.017i 0.252039 + 0.775697i
\(313\) 256.753 186.542i 0.820296 0.595980i −0.0965012 0.995333i \(-0.530765\pi\)
0.916797 + 0.399353i \(0.130765\pi\)
\(314\) −311.616 428.903i −0.992409 1.36593i
\(315\) 0 0
\(316\) −178.607 58.0329i −0.565211 0.183648i
\(317\) 222.314 + 161.521i 0.701306 + 0.509529i 0.880357 0.474311i \(-0.157303\pi\)
−0.179051 + 0.983840i \(0.557303\pi\)
\(318\) 671.864i 2.11278i
\(319\) −359.336 + 181.296i −1.12645 + 0.568327i
\(320\) 0 0
\(321\) 226.334 311.523i 0.705091 0.970475i
\(322\) −194.505 + 598.625i −0.604053 + 1.85908i
\(323\) −63.3282 194.904i −0.196062 0.603418i
\(324\) −420.570 + 305.562i −1.29806 + 0.943092i
\(325\) 0 0
\(326\) 741.063 240.786i 2.27320 0.738607i
\(327\) 80.1904 + 26.0554i 0.245231 + 0.0796802i
\(328\) −204.707 148.728i −0.624106 0.453439i
\(329\) 688.968i 2.09413i
\(330\) 0 0
\(331\) 411.681 1.24375 0.621874 0.783117i \(-0.286372\pi\)
0.621874 + 0.783117i \(0.286372\pi\)
\(332\) 469.123 645.693i 1.41302 1.94486i
\(333\) 43.8475 134.949i 0.131674 0.405252i
\(334\) 71.6935 + 220.650i 0.214651 + 0.660628i
\(335\) 0 0
\(336\) 150.498 + 207.143i 0.447912 + 0.616498i
\(337\) 440.410 143.098i 1.30686 0.424623i 0.428894 0.903355i \(-0.358903\pi\)
0.877961 + 0.478732i \(0.158903\pi\)
\(338\) −82.4230 26.7809i −0.243855 0.0792333i
\(339\) 231.777 + 168.396i 0.683708 + 0.496743i
\(340\) 0 0
\(341\) −101.339 52.1432i −0.297183 0.152913i
\(342\) −181.851 −0.531728
\(343\) 156.655 215.617i 0.456720 0.628621i
\(344\) −52.1885 + 160.620i −0.151711 + 0.466917i
\(345\) 0 0
\(346\) −279.025 + 202.723i −0.806430 + 0.585906i
\(347\) 100.498 + 138.324i 0.289621 + 0.398629i 0.928891 0.370353i \(-0.120763\pi\)
−0.639270 + 0.768982i \(0.720763\pi\)
\(348\) −761.686 + 247.487i −2.18875 + 0.711169i
\(349\) −164.289 53.3806i −0.470741 0.152953i 0.0640335 0.997948i \(-0.479604\pi\)
−0.534775 + 0.844995i \(0.679604\pi\)
\(350\) 0 0
\(351\) 112.331i 0.320030i
\(352\) 71.4205 + 462.825i 0.202899 + 1.31484i
\(353\) 494.535 1.40095 0.700474 0.713678i \(-0.252972\pi\)
0.700474 + 0.713678i \(0.252972\pi\)
\(354\) 428.790 590.179i 1.21127 1.66717i
\(355\) 0 0
\(356\) 216.360 + 665.888i 0.607753 + 1.87047i
\(357\) 633.050 459.937i 1.77325 1.28834i
\(358\) 377.192 + 519.160i 1.05361 + 1.45017i
\(359\) 146.418 47.5742i 0.407850 0.132519i −0.0979045 0.995196i \(-0.531214\pi\)
0.505755 + 0.862677i \(0.331214\pi\)
\(360\) 0 0
\(361\) −234.412 170.311i −0.649342 0.471774i
\(362\) 246.165i 0.680013i
\(363\) 3.84597 483.985i 0.0105950 1.33329i
\(364\) 619.105 1.70084
\(365\) 0 0
\(366\) 139.692 429.928i 0.381672 1.17467i
\(367\) 57.3820 + 176.604i 0.156354 + 0.481209i 0.998296 0.0583604i \(-0.0185872\pi\)
−0.841941 + 0.539569i \(0.818587\pi\)
\(368\) 163.131 118.522i 0.443291 0.322070i
\(369\) −229.784 316.270i −0.622720 0.857100i
\(370\) 0 0
\(371\) 418.218 + 135.887i 1.12727 + 0.366273i
\(372\) −183.469 133.298i −0.493196 0.358328i
\(373\) 268.844i 0.720760i 0.932806 + 0.360380i \(0.117353\pi\)
−0.932806 + 0.360380i \(0.882647\pi\)
\(374\) 812.320 125.352i 2.17198 0.335167i
\(375\) 0 0
\(376\) 227.714 313.422i 0.605623 0.833568i
\(377\) 158.761 488.616i 0.421116 1.29606i
\(378\) 61.3050 + 188.677i 0.162182 + 0.499146i
\(379\) 243.935 177.229i 0.643627 0.467622i −0.217467 0.976068i \(-0.569780\pi\)
0.861094 + 0.508445i \(0.169780\pi\)
\(380\) 0 0
\(381\) 102.551 33.3209i 0.269163 0.0874563i
\(382\) −255.220 82.9259i −0.668115 0.217084i
\(383\) −393.892 286.179i −1.02844 0.747204i −0.0604431 0.998172i \(-0.519251\pi\)
−0.967996 + 0.250967i \(0.919251\pi\)
\(384\) 540.662i 1.40797i
\(385\) 0 0
\(386\) −578.731 −1.49930
\(387\) −153.369 + 211.094i −0.396302 + 0.545463i
\(388\) −152.726 + 470.043i −0.393625 + 1.21145i
\(389\) 118.077 + 363.404i 0.303540 + 0.934200i 0.980218 + 0.197921i \(0.0634189\pi\)
−0.676678 + 0.736279i \(0.736581\pi\)
\(390\) 0 0
\(391\) −362.214 498.544i −0.926377 1.27505i
\(392\) −68.6124 + 22.2935i −0.175032 + 0.0568712i
\(393\) −337.889 109.787i −0.859767 0.279355i
\(394\) 26.1656 + 19.0104i 0.0664102 + 0.0482499i
\(395\) 0 0
\(396\) 67.5673 415.902i 0.170625 1.05026i
\(397\) −668.123 −1.68293 −0.841465 0.540311i \(-0.818307\pi\)
−0.841465 + 0.540311i \(0.818307\pi\)
\(398\) 15.0294 20.6862i 0.0377624 0.0519754i
\(399\) −84.0689 + 258.737i −0.210699 + 0.648465i
\(400\) 0 0
\(401\) −291.301 + 211.642i −0.726436 + 0.527787i −0.888434 0.459004i \(-0.848206\pi\)
0.161998 + 0.986791i \(0.448206\pi\)
\(402\) 128.944 + 177.477i 0.320757 + 0.441484i
\(403\) 138.358 44.9551i 0.343319 0.111551i
\(404\) −561.495 182.441i −1.38984 0.451586i
\(405\) 0 0
\(406\) 907.352i 2.23486i
\(407\) −100.439 199.073i −0.246778 0.489124i
\(408\) 440.000 1.07843
\(409\) −21.2846 + 29.2958i −0.0520406 + 0.0716278i −0.834244 0.551395i \(-0.814096\pi\)
0.782204 + 0.623023i \(0.214096\pi\)
\(410\) 0 0
\(411\) 148.413 + 456.769i 0.361103 + 1.11136i
\(412\) 84.8763 61.6663i 0.206011 0.149675i
\(413\) −280.647 386.277i −0.679532 0.935296i
\(414\) −520.060 + 168.978i −1.25618 + 0.408159i
\(415\) 0 0
\(416\) −483.616 351.368i −1.16254 0.844633i
\(417\) 14.0686i 0.0337377i
\(418\) −202.868 + 201.263i −0.485331 + 0.481489i
\(419\) −423.543 −1.01084 −0.505421 0.862873i \(-0.668663\pi\)
−0.505421 + 0.862873i \(0.668663\pi\)
\(420\) 0 0
\(421\) 211.289 650.280i 0.501873 1.54461i −0.304091 0.952643i \(-0.598353\pi\)
0.805964 0.591964i \(-0.201647\pi\)
\(422\) 72.8591 + 224.237i 0.172652 + 0.531368i
\(423\) 484.234 351.817i 1.14476 0.831718i
\(424\) 145.341 + 200.045i 0.342785 + 0.471803i
\(425\) 0 0
\(426\) 68.1378 + 22.1393i 0.159948 + 0.0519702i
\(427\) −239.366 173.909i −0.560575 0.407282i
\(428\) 526.779i 1.23079i
\(429\) 435.125 + 438.596i 1.01428 + 1.02237i
\(430\) 0 0
\(431\) 75.8653 104.420i 0.176022 0.242273i −0.711886 0.702295i \(-0.752159\pi\)
0.887907 + 0.460022i \(0.152159\pi\)
\(432\) 19.6393 60.4436i 0.0454614 0.139916i
\(433\) 170.382 + 524.382i 0.393492 + 1.21104i 0.930130 + 0.367231i \(0.119694\pi\)
−0.536638 + 0.843813i \(0.680306\pi\)
\(434\) −207.859 + 151.018i −0.478938 + 0.347969i
\(435\) 0 0
\(436\) 109.703 35.6447i 0.251613 0.0817540i
\(437\) 203.763 + 66.2066i 0.466277 + 0.151503i
\(438\) 509.633 + 370.270i 1.16355 + 0.845366i
\(439\) 470.583i 1.07194i 0.844236 + 0.535972i \(0.180055\pi\)
−0.844236 + 0.535972i \(0.819945\pi\)
\(440\) 0 0
\(441\) −111.461 −0.252746
\(442\) −616.697 + 848.811i −1.39524 + 1.92039i
\(443\) −30.6738 + 94.4041i −0.0692410 + 0.213102i −0.979689 0.200521i \(-0.935737\pi\)
0.910448 + 0.413622i \(0.135737\pi\)
\(444\) −137.108 421.976i −0.308803 0.950397i
\(445\) 0 0
\(446\) 211.444 + 291.028i 0.474090 + 0.652529i
\(447\) 354.971 115.337i 0.794118 0.258024i
\(448\) 760.559 + 247.120i 1.69768 + 0.551608i
\(449\) −110.271 80.1169i −0.245593 0.178434i 0.458178 0.888860i \(-0.348502\pi\)
−0.703772 + 0.710426i \(0.748502\pi\)
\(450\) 0 0
\(451\) −606.371 98.5109i −1.34450 0.218428i
\(452\) 391.931 0.867104
\(453\) 230.440 317.173i 0.508697 0.700161i
\(454\) −368.761 + 1134.93i −0.812249 + 2.49984i
\(455\) 0 0
\(456\) −123.761 + 89.9175i −0.271405 + 0.197188i
\(457\) 18.1014 + 24.9144i 0.0396092 + 0.0545174i 0.828362 0.560193i \(-0.189273\pi\)
−0.788753 + 0.614710i \(0.789273\pi\)
\(458\) −405.843 + 131.866i −0.886120 + 0.287918i
\(459\) −184.721 60.0196i −0.402443 0.130762i
\(460\) 0 0
\(461\) 142.653i 0.309442i 0.987958 + 0.154721i \(0.0494478\pi\)
−0.987958 + 0.154721i \(0.950552\pi\)
\(462\) −970.227 499.221i −2.10006 1.08056i
\(463\) −490.864 −1.06018 −0.530091 0.847941i \(-0.677842\pi\)
−0.530091 + 0.847941i \(0.677842\pi\)
\(464\) 170.854 235.160i 0.368220 0.506811i
\(465\) 0 0
\(466\) −177.456 546.153i −0.380807 1.17200i
\(467\) −613.182 + 445.503i −1.31302 + 0.953968i −0.313033 + 0.949742i \(0.601345\pi\)
−0.999991 + 0.00422562i \(0.998655\pi\)
\(468\) 316.142 + 435.132i 0.675517 + 0.929769i
\(469\) 136.554 44.3691i 0.291160 0.0946037i
\(470\) 0 0
\(471\) −557.437 405.001i −1.18352 0.859875i
\(472\) 268.481i 0.568816i
\(473\) 62.5329 + 405.231i 0.132205 + 0.856725i
\(474\) −422.492 −0.891334
\(475\) 0 0
\(476\) 330.795 1018.08i 0.694948 2.13883i
\(477\) 118.053 + 363.330i 0.247491 + 0.761699i
\(478\) −434.336 + 315.564i −0.908653 + 0.660175i
\(479\) −364.989 502.364i −0.761981 1.04878i −0.997047 0.0767971i \(-0.975531\pi\)
0.235066 0.971979i \(-0.424469\pi\)
\(480\) 0 0
\(481\) 270.694 + 87.9540i 0.562774 + 0.182856i
\(482\) −570.953 414.821i −1.18455 0.860625i
\(483\) 818.059i 1.69370i
\(484\) −384.920 538.749i −0.795290 1.11312i
\(485\) 0 0
\(486\) −557.177 + 766.889i −1.14646 + 1.57796i
\(487\) 121.664 374.442i 0.249823 0.768876i −0.744983 0.667084i \(-0.767542\pi\)
0.994806 0.101792i \(-0.0324576\pi\)
\(488\) −51.4114 158.228i −0.105351 0.324238i
\(489\) 819.299 595.255i 1.67546 1.21729i
\(490\) 0 0
\(491\) −616.943 + 200.457i −1.25650 + 0.408262i −0.860247 0.509878i \(-0.829691\pi\)
−0.396256 + 0.918140i \(0.629691\pi\)
\(492\) −1162.59 377.748i −2.36298 0.767780i
\(493\) −718.673 522.146i −1.45775 1.05912i
\(494\) 364.776i 0.738413i
\(495\) 0 0
\(496\) 82.3081 0.165944
\(497\) 27.5623 37.9363i 0.0554574 0.0763305i
\(498\) 554.853 1707.66i 1.11416 3.42904i
\(499\) −221.573 681.931i −0.444034 1.36660i −0.883540 0.468356i \(-0.844846\pi\)
0.439506 0.898240i \(-0.355154\pi\)
\(500\) 0 0
\(501\) 177.236 + 243.945i 0.353765 + 0.486915i
\(502\) 310.167 100.779i 0.617862 0.200755i
\(503\) −596.635 193.858i −1.18615 0.385404i −0.351503 0.936187i \(-0.614329\pi\)
−0.834649 + 0.550782i \(0.814329\pi\)
\(504\) −206.741 150.206i −0.410201 0.298028i
\(505\) 0 0
\(506\) −393.150 + 764.081i −0.776977 + 1.51004i
\(507\) −112.636 −0.222162
\(508\) 86.7061 119.341i 0.170681 0.234923i
\(509\) −79.8228 + 245.669i −0.156823 + 0.482651i −0.998341 0.0575779i \(-0.981662\pi\)
0.841518 + 0.540229i \(0.181662\pi\)
\(510\) 0 0
\(511\) 333.559 242.345i 0.652758 0.474256i
\(512\) −283.422 390.097i −0.553559 0.761908i
\(513\) 64.2229 20.8673i 0.125191 0.0406770i
\(514\) 754.325 + 245.095i 1.46756 + 0.476839i
\(515\) 0 0
\(516\) 815.900i 1.58120i
\(517\) 150.828 928.400i 0.291737 1.79575i
\(518\) −502.676 −0.970416
\(519\) −263.475 + 362.643i −0.507659 + 0.698733i
\(520\) 0 0
\(521\) 92.8597 + 285.793i 0.178234 + 0.548547i 0.999766 0.0216146i \(-0.00688069\pi\)
−0.821533 + 0.570161i \(0.806881\pi\)
\(522\) −637.723 + 463.333i −1.22169 + 0.887611i
\(523\) −247.497 340.650i −0.473225 0.651338i 0.503961 0.863727i \(-0.331876\pi\)
−0.977185 + 0.212389i \(0.931876\pi\)
\(524\) −462.243 + 150.192i −0.882143 + 0.286626i
\(525\) 0 0
\(526\) −722.934 525.242i −1.37440 0.998559i
\(527\) 251.541i 0.477308i
\(528\) 157.453 + 312.078i 0.298206 + 0.591056i
\(529\) 115.244 0.217853
\(530\) 0 0
\(531\) 128.181 394.500i 0.241395 0.742937i
\(532\) 115.009 + 353.962i 0.216183 + 0.665341i
\(533\) 634.408 460.924i 1.19026 0.864773i
\(534\) 925.850 + 1274.32i 1.73380 + 2.38637i
\(535\) 0 0
\(536\) 76.7852 + 24.9490i 0.143256 + 0.0465467i
\(537\) 674.741 + 490.228i 1.25650 + 0.912902i
\(538\) 1018.07i 1.89232i
\(539\) −124.343 + 123.359i −0.230692 + 0.228866i
\(540\) 0 0
\(541\) 112.764 155.206i 0.208436 0.286888i −0.691981 0.721916i \(-0.743262\pi\)
0.900417 + 0.435028i \(0.143262\pi\)
\(542\) 206.661 636.036i 0.381293 1.17350i
\(543\) 98.8653 + 304.276i 0.182072 + 0.560361i
\(544\) −836.205 + 607.539i −1.53714 + 1.11680i
\(545\) 0 0
\(546\) 1324.64 430.402i 2.42608 0.788281i
\(547\) −189.538 61.5846i −0.346504 0.112586i 0.130594 0.991436i \(-0.458312\pi\)
−0.477099 + 0.878850i \(0.658312\pi\)
\(548\) 531.551 + 386.194i 0.969984 + 0.704734i
\(549\) 257.041i 0.468199i
\(550\) 0 0
\(551\) 308.849 0.560525
\(552\) −270.381 + 372.147i −0.489820 + 0.674180i
\(553\) −85.4508 + 262.991i −0.154522 + 0.475571i
\(554\) −426.673 1313.16i −0.770168 2.37033i
\(555\) 0 0
\(556\) −11.3127 15.5706i −0.0203466 0.0280047i
\(557\) −720.414 + 234.077i −1.29338 + 0.420245i −0.873274 0.487229i \(-0.838008\pi\)
−0.420108 + 0.907474i \(0.638008\pi\)
\(558\) −212.284 68.9751i −0.380437 0.123611i
\(559\) −423.435 307.643i −0.757486 0.550346i
\(560\) 0 0
\(561\) 953.738 481.190i 1.70007 0.857737i
\(562\) 288.328 0.513039
\(563\) −89.0871 + 122.618i −0.158236 + 0.217794i −0.880773 0.473539i \(-0.842976\pi\)
0.722536 + 0.691333i \(0.242976\pi\)
\(564\) 578.361 1780.01i 1.02546 3.15605i
\(565\) 0 0
\(566\) 727.818 528.791i 1.28590 0.934260i
\(567\) 449.926 + 619.271i 0.793521 + 1.09219i
\(568\) 25.0770 8.14802i 0.0441497 0.0143451i
\(569\) 836.163 + 271.686i 1.46953 + 0.477480i 0.930967 0.365104i \(-0.118967\pi\)
0.538565 + 0.842584i \(0.318967\pi\)
\(570\) 0 0
\(571\) 324.644i 0.568554i 0.958742 + 0.284277i \(0.0917536\pi\)
−0.958742 + 0.284277i \(0.908246\pi\)
\(572\) 834.259 + 135.534i 1.45850 + 0.236947i
\(573\) −348.774 −0.608681
\(574\) −814.037 + 1120.43i −1.41818 + 1.95196i
\(575\) 0 0
\(576\) 214.688 + 660.741i 0.372722 + 1.14712i
\(577\) −421.177 + 306.003i −0.729943 + 0.530335i −0.889545 0.456847i \(-0.848979\pi\)
0.159602 + 0.987181i \(0.448979\pi\)
\(578\) 543.506 + 748.072i 0.940322 + 1.29424i
\(579\) −715.351 + 232.432i −1.23549 + 0.401437i
\(580\) 0 0
\(581\) −950.755 690.764i −1.63641 1.18892i
\(582\) 1111.88i 1.91045i
\(583\) 533.811 + 274.667i 0.915628 + 0.471127i
\(584\) 231.840 0.396986
\(585\) 0 0
\(586\) −329.140 + 1012.99i −0.561673 + 1.72865i
\(587\) 305.959 + 941.646i 0.521225 + 1.60417i 0.771661 + 0.636034i \(0.219426\pi\)
−0.250436 + 0.968133i \(0.580574\pi\)
\(588\) −281.967 + 204.861i −0.479537 + 0.348404i
\(589\) 51.4044 + 70.7521i 0.0872741 + 0.120122i
\(590\) 0 0
\(591\) 39.9775 + 12.9895i 0.0676439 + 0.0219788i
\(592\) 130.280 + 94.6537i 0.220067 + 0.159888i
\(593\) 289.152i 0.487609i 0.969824 + 0.243804i \(0.0783955\pi\)
−0.969824 + 0.243804i \(0.921604\pi\)
\(594\) 41.3050 + 267.668i 0.0695370 + 0.450619i
\(595\) 0 0
\(596\) 300.125 413.086i 0.503565 0.693097i
\(597\) 10.2693 31.6057i 0.0172015 0.0529409i
\(598\) −338.953 1043.19i −0.566812 1.74447i
\(599\) −674.089 + 489.754i −1.12536 + 0.817620i −0.985013 0.172483i \(-0.944821\pi\)
−0.140345 + 0.990103i \(0.544821\pi\)
\(600\) 0 0
\(601\) −89.9741 + 29.2343i −0.149707 + 0.0486428i −0.382912 0.923785i \(-0.625079\pi\)
0.233205 + 0.972428i \(0.425079\pi\)
\(602\) 879.123 + 285.645i 1.46034 + 0.474493i
\(603\) 100.915 + 73.3189i 0.167355 + 0.121590i
\(604\) 536.334i 0.887970i
\(605\) 0 0
\(606\) −1328.21 −2.19177
\(607\) 124.839 171.826i 0.205666 0.283074i −0.693707 0.720257i \(-0.744024\pi\)
0.899373 + 0.437183i \(0.144024\pi\)
\(608\) 111.048 341.770i 0.182645 0.562123i
\(609\) 364.413 + 1121.55i 0.598380 + 1.84162i
\(610\) 0 0
\(611\) 705.710 + 971.327i 1.15501 + 1.58973i
\(612\) 884.468 287.381i 1.44521 0.469577i
\(613\) 750.498 + 243.852i 1.22430 + 0.397801i 0.848648 0.528958i \(-0.177417\pi\)
0.375656 + 0.926759i \(0.377417\pi\)
\(614\) 450.238 + 327.117i 0.733287 + 0.532764i
\(615\) 0 0
\(616\) −396.875 + 61.2434i −0.644277 + 0.0994211i
\(617\) −181.544 −0.294237 −0.147118 0.989119i \(-0.547000\pi\)
−0.147118 + 0.989119i \(0.547000\pi\)
\(618\) 138.731 190.947i 0.224484 0.308976i
\(619\) −11.1606 + 34.3488i −0.0180301 + 0.0554908i −0.959667 0.281140i \(-0.909287\pi\)
0.941637 + 0.336631i \(0.109287\pi\)
\(620\) 0 0
\(621\) 164.276 119.353i 0.264534 0.192195i
\(622\) 675.055 + 929.133i 1.08530 + 1.49378i
\(623\) 980.491 318.581i 1.57382 0.511366i
\(624\) −424.354 137.881i −0.680055 0.220963i
\(625\) 0 0
\(626\) 976.745i 1.56030i
\(627\) −169.927 + 330.251i −0.271016 + 0.526716i
\(628\) −942.616 −1.50098
\(629\) 289.271 398.147i 0.459890 0.632984i
\(630\) 0 0
\(631\) 311.846 + 959.763i 0.494209 + 1.52102i 0.818186 + 0.574954i \(0.194980\pi\)
−0.323976 + 0.946065i \(0.605020\pi\)
\(632\) −125.795 + 91.3956i −0.199043 + 0.144613i
\(633\) 180.118 + 247.911i 0.284546 + 0.391644i
\(634\) 804.340 261.346i 1.26867 0.412217i
\(635\) 0 0
\(636\) 966.433 + 702.155i 1.51955 + 1.10402i
\(637\) 223.580i 0.350989i
\(638\) −198.636 + 1222.68i −0.311342 + 1.91642i
\(639\) 40.7376 0.0637521
\(640\) 0 0
\(641\) −33.2415 + 102.307i −0.0518588 + 0.159605i −0.973632 0.228125i \(-0.926741\pi\)
0.921773 + 0.387730i \(0.126741\pi\)
\(642\) −366.217 1127.10i −0.570431 1.75561i
\(643\) −21.8723 + 15.8911i −0.0340160 + 0.0247141i −0.604663 0.796481i \(-0.706692\pi\)
0.570647 + 0.821195i \(0.306692\pi\)
\(644\) 657.809 + 905.397i 1.02144 + 1.40590i
\(645\) 0 0
\(646\) −599.853 194.904i −0.928565 0.301709i
\(647\) −903.123 656.158i −1.39586 1.01415i −0.995193 0.0979314i \(-0.968777\pi\)
−0.400670 0.916222i \(-0.631223\pi\)
\(648\) 430.423i 0.664233i
\(649\) −293.615 581.957i −0.452412 0.896698i
\(650\) 0 0
\(651\) −196.276 + 270.150i −0.301499 + 0.414977i
\(652\) 428.118 1317.61i 0.656623 2.02088i
\(653\) 338.002 + 1040.26i 0.517615 + 1.59305i 0.778474 + 0.627677i \(0.215994\pi\)
−0.260859 + 0.965377i \(0.584006\pi\)
\(654\) 209.941 152.531i 0.321011 0.233228i
\(655\) 0 0
\(656\) 421.952 137.100i 0.643219 0.208995i
\(657\) 340.659 + 110.687i 0.518507 + 0.168473i
\(658\) −1715.46 1246.35i −2.60708 1.89416i
\(659\) 587.822i 0.891991i 0.895035 + 0.445996i \(0.147150\pi\)
−0.895035 + 0.445996i \(0.852850\pi\)
\(660\) 0 0
\(661\) 389.155 0.588736 0.294368 0.955692i \(-0.404891\pi\)
0.294368 + 0.955692i \(0.404891\pi\)
\(662\) 744.737 1025.04i 1.12498 1.54840i
\(663\) −421.378 + 1296.87i −0.635562 + 1.95606i
\(664\) −204.205 628.478i −0.307537 0.946502i
\(665\) 0 0
\(666\) −256.688 353.301i −0.385417 0.530481i
\(667\) 883.251 286.986i 1.32421 0.430263i
\(668\) 392.317 + 127.471i 0.587300 + 0.190825i
\(669\) 378.243 + 274.810i 0.565386 + 0.410777i
\(670\) 0 0
\(671\) −284.479 286.749i −0.423963 0.427345i
\(672\) 1372.13 2.04185
\(673\) −602.060 + 828.664i −0.894591 + 1.23130i 0.0775708 + 0.996987i \(0.475284\pi\)
−0.972162 + 0.234312i \(0.924716\pi\)
\(674\) 440.410 1355.44i 0.653428 2.01104i
\(675\) 0 0
\(676\) −124.662 + 90.5719i −0.184411 + 0.133982i
\(677\) −145.396 200.121i −0.214766 0.295599i 0.688019 0.725693i \(-0.258481\pi\)
−0.902784 + 0.430093i \(0.858481\pi\)
\(678\) 838.577 272.470i 1.23684 0.401874i
\(679\) 692.118 + 224.883i 1.01932 + 0.331197i
\(680\) 0 0
\(681\) 1550.95i 2.27746i
\(682\) −313.156 + 157.997i −0.459173 + 0.231667i
\(683\) 979.967 1.43480 0.717399 0.696662i \(-0.245332\pi\)
0.717399 + 0.696662i \(0.245332\pi\)
\(684\) −190.050 + 261.581i −0.277851 + 0.382428i
\(685\) 0 0
\(686\) −253.473 780.110i −0.369494 1.13719i
\(687\) −448.689 + 325.992i −0.653113 + 0.474515i
\(688\) −174.058 239.570i −0.252991 0.348212i
\(689\) −728.806 + 236.804i −1.05777 + 0.343692i
\(690\) 0 0
\(691\) 537.473 + 390.497i 0.777818 + 0.565118i 0.904323 0.426848i \(-0.140376\pi\)
−0.126505 + 0.991966i \(0.540376\pi\)
\(692\) 613.222i 0.886160i
\(693\) −612.397 99.4899i −0.883690 0.143564i
\(694\) 526.217 0.758237
\(695\) 0 0
\(696\) −204.912 + 630.654i −0.294413 + 0.906111i
\(697\) −418.992 1289.52i −0.601136 1.85011i
\(698\) −430.113 + 312.496i −0.616208 + 0.447702i
\(699\) −438.695 603.812i −0.627604 0.863823i
\(700\) 0 0
\(701\) −984.515 319.888i −1.40444 0.456332i −0.493819 0.869565i \(-0.664399\pi\)
−0.910625 + 0.413233i \(0.864399\pi\)
\(702\) −279.692 203.208i −0.398422 0.289470i
\(703\) 171.103i 0.243390i
\(704\) 970.772 + 499.501i 1.37894 + 0.709519i
\(705\) 0 0
\(706\) 894.622 1231.34i 1.26717 1.74411i
\(707\) −268.636 + 826.777i −0.379966 + 1.16942i
\(708\) −400.813 1233.57i −0.566120 1.74234i
\(709\) 996.643 724.104i 1.40570 1.02130i 0.411773 0.911287i \(-0.364910\pi\)
0.993930 0.110016i \(-0.0350903\pi\)
\(710\) 0 0
\(711\) −228.475 + 74.2361i −0.321344 + 0.104411i
\(712\) 551.336 + 179.140i 0.774348 + 0.251601i
\(713\) 212.751 + 154.572i 0.298388 + 0.216792i
\(714\) 2408.26i 3.37292i
\(715\) 0 0
\(716\) 1140.98 1.59354
\(717\) −410.132 + 564.498i −0.572011 + 0.787305i
\(718\) 146.418 450.629i 0.203925 0.627617i
\(719\) 229.638 + 706.754i 0.319385 + 0.982967i 0.973912 + 0.226928i \(0.0728682\pi\)
−0.654526 + 0.756039i \(0.727132\pi\)
\(720\) 0 0
\(721\) −90.8009 124.977i −0.125937 0.173338i
\(722\) −848.112 + 275.568i −1.17467 + 0.381673i
\(723\) −872.338 283.440i −1.20655 0.392033i
\(724\) 354.092 + 257.263i 0.489077 + 0.355336i
\(725\) 0 0
\(726\) −1198.12 885.113i −1.65030 1.21916i
\(727\) 10.4678 0.0143987 0.00719934 0.999974i \(-0.497708\pi\)
0.00719934 + 0.999974i \(0.497708\pi\)
\(728\) 301.299 414.703i 0.413873 0.569647i
\(729\) −116.499 + 358.548i −0.159807 + 0.491836i
\(730\) 0 0
\(731\) −732.148 + 531.937i −1.00157 + 0.727683i
\(732\) −472.433 650.249i −0.645401 0.888318i
\(733\) −961.151 + 312.297i −1.31126 + 0.426053i −0.879484 0.475929i \(-0.842112\pi\)
−0.431773 + 0.901982i \(0.642112\pi\)
\(734\) 543.530 + 176.604i 0.740504 + 0.240604i
\(735\) 0 0
\(736\) 1080.59i 1.46819i
\(737\) 193.723 29.8942i 0.262854 0.0405621i
\(738\) −1203.16 −1.63030
\(739\) −339.077 + 466.699i −0.458832 + 0.631528i −0.974266 0.225401i \(-0.927631\pi\)
0.515434 + 0.856929i \(0.327631\pi\)
\(740\) 0 0
\(741\) −146.502 450.888i −0.197709 0.608485i
\(742\) 1094.91 795.498i 1.47562 1.07210i
\(743\) −677.947 933.113i −0.912445 1.25587i −0.966325 0.257325i \(-0.917159\pi\)
0.0538800 0.998547i \(-0.482841\pi\)
\(744\) −178.577 + 58.0233i −0.240023 + 0.0779883i
\(745\) 0 0
\(746\) 669.393 + 486.342i 0.897310 + 0.651934i
\(747\) 1020.96i 1.36675i
\(748\) 668.632 1299.47i 0.893893 1.73727i
\(749\) −775.659 −1.03559
\(750\) 0 0
\(751\) 447.403 1376.97i 0.595743 1.83351i 0.0447527 0.998998i \(-0.485750\pi\)
0.550991 0.834511i \(-0.314250\pi\)
\(752\) 209.911 + 646.041i 0.279137 + 0.859097i
\(753\) 342.912 249.140i 0.455394 0.330863i
\(754\) −929.402 1279.21i −1.23263 1.69657i
\(755\) 0 0
\(756\) 335.469 + 109.000i 0.443742 + 0.144181i
\(757\) 427.516 + 310.608i 0.564750 + 0.410315i 0.833194 0.552980i \(-0.186510\pi\)
−0.268444 + 0.963295i \(0.586510\pi\)
\(758\) 927.982i 1.22425i
\(759\) −179.088 + 1102.35i −0.235953 + 1.45238i
\(760\) 0 0
\(761\) 128.577 176.972i 0.168958 0.232551i −0.716138 0.697958i \(-0.754092\pi\)
0.885097 + 0.465407i \(0.154092\pi\)
\(762\) 102.551 315.620i 0.134581 0.414199i
\(763\) −52.4853 161.533i −0.0687881 0.211708i
\(764\) −386.010 + 280.453i −0.505249 + 0.367085i
\(765\) 0 0
\(766\) −1425.11 + 463.048i −1.86046 + 0.604501i
\(767\) 791.329 + 257.118i 1.03172 + 0.335226i
\(768\) 61.4853 + 44.6717i 0.0800590 + 0.0581662i
\(769\) 162.687i 0.211557i −0.994390 0.105778i \(-0.966267\pi\)
0.994390 0.105778i \(-0.0337334\pi\)
\(770\) 0 0
\(771\) 1030.83 1.33701
\(772\) −604.823 + 832.468i −0.783450 + 1.07833i
\(773\) −100.881 + 310.480i −0.130506 + 0.401656i −0.994864 0.101221i \(-0.967725\pi\)
0.864358 + 0.502877i \(0.167725\pi\)
\(774\) 248.156 + 763.745i 0.320615 + 0.986751i
\(775\) 0 0
\(776\) 240.528 + 331.058i 0.309959 + 0.426621i
\(777\) −621.341 + 201.886i −0.799667 + 0.259828i
\(778\) 1118.44 + 363.404i 1.43759 + 0.467100i
\(779\) 381.376 + 277.086i 0.489572 + 0.355695i
\(780\) 0 0
\(781\) 45.4458 45.0861i 0.0581893 0.0577287i
\(782\) −1896.58 −2.42529
\(783\) 172.053 236.810i 0.219735 0.302439i
\(784\) 39.0896 120.305i 0.0498592 0.153451i
\(785\) 0 0
\(786\) −884.604 + 642.702i −1.12545 + 0.817687i
\(787\) −227.621 313.294i −0.289226 0.398086i 0.639536 0.768761i \(-0.279126\pi\)
−0.928763 + 0.370675i \(0.879126\pi\)
\(788\) 54.6906 17.7701i 0.0694043 0.0225508i
\(789\) −1104.54 358.888i −1.39993 0.454865i
\(790\) 0 0
\(791\) 577.101i 0.729585i
\(792\) −245.706 247.666i −0.310234 0.312710i
\(793\) 515.601 0.650190
\(794\) −1208.65 + 1663.56i −1.52222 + 2.09516i
\(795\) 0 0
\(796\) −14.0488 43.2377i −0.0176492 0.0543187i
\(797\) −17.7812 + 12.9188i −0.0223101 + 0.0162092i −0.598884 0.800835i \(-0.704389\pi\)
0.576574 + 0.817045i \(0.304389\pi\)
\(798\) 492.148 + 677.383i 0.616727 + 0.848851i
\(799\) 1974.36 641.509i 2.47104 0.802890i
\(800\) 0 0
\(801\) 724.592 + 526.447i 0.904609 + 0.657237i
\(802\) 1108.17i 1.38176i
\(803\) 502.533 253.543i 0.625819 0.315745i
\(804\) 390.046 0.485132
\(805\) 0 0
\(806\) 138.358 425.821i 0.171660 0.528314i
\(807\) −408.879 1258.40i −0.506666 1.55936i
\(808\) −395.469 + 287.325i −0.489442 + 0.355600i
\(809\) 599.477 + 825.109i 0.741010 + 1.01991i 0.998560 + 0.0536476i \(0.0170848\pi\)
−0.257550 + 0.966265i \(0.582915\pi\)
\(810\) 0 0
\(811\) −940.701 305.652i −1.15993 0.376883i −0.335053 0.942199i \(-0.608754\pi\)
−0.824875 + 0.565316i \(0.808754\pi\)
\(812\) 1305.17 + 948.260i 1.60735 + 1.16781i
\(813\) 869.183i 1.06911i
\(814\) −677.368 110.045i −0.832147 0.135190i
\(815\) 0 0
\(816\) −453.475 + 624.155i −0.555729 + 0.764896i
\(817\) 97.2291 299.240i 0.119007 0.366267i
\(818\) 34.4392 + 105.993i 0.0421018 + 0.129576i
\(819\) 640.713 465.505i 0.782311 0.568382i
\(820\) 0 0
\(821\) −729.758 + 237.113i −0.888864 + 0.288810i −0.717633 0.696421i \(-0.754775\pi\)
−0.171231 + 0.985231i \(0.554775\pi\)
\(822\) 1405.79 + 456.769i 1.71021 + 0.555680i
\(823\) 674.965 + 490.391i 0.820128 + 0.595858i 0.916749 0.399463i \(-0.130804\pi\)
−0.0966212 + 0.995321i \(0.530804\pi\)
\(824\) 86.8648i 0.105418i
\(825\) 0 0
\(826\) −1469.49 −1.77904
\(827\) 329.248 453.171i 0.398123 0.547970i −0.562148 0.827036i \(-0.690025\pi\)
0.960272 + 0.279067i \(0.0900250\pi\)
\(828\) −300.443 + 924.669i −0.362854 + 1.11675i
\(829\) −371.006 1141.84i −0.447534 1.37737i −0.879681 0.475565i \(-0.842244\pi\)
0.432147 0.901803i \(-0.357756\pi\)
\(830\) 0 0
\(831\) −1054.79 1451.80i −1.26931 1.74705i
\(832\) −1325.38 + 430.643i −1.59301 + 0.517600i
\(833\) −367.664 119.461i −0.441374 0.143411i
\(834\) −35.0294 25.4504i −0.0420017 0.0305160i
\(835\) 0 0
\(836\) 77.4888 + 502.149i 0.0926899 + 0.600657i
\(837\) 82.8854 0.0990268
\(838\) −766.196 + 1054.58i −0.914315 + 1.25845i
\(839\) 162.370 499.723i 0.193528 0.595618i −0.806463 0.591285i \(-0.798621\pi\)
0.999991 0.00433286i \(-0.00137920\pi\)
\(840\) 0 0
\(841\) 402.703 292.581i 0.478838 0.347896i
\(842\) −1236.91 1702.45i −1.46901 2.02192i
\(843\) 356.393 115.799i 0.422768 0.137366i
\(844\) 398.695 + 129.544i 0.472387 + 0.153488i
\(845\) 0 0
\(846\) 1842.14i 2.17746i
\(847\) −793.284 + 566.779i −0.936581 + 0.669160i
\(848\) −433.562 −0.511276
\(849\) 687.259 945.930i 0.809492 1.11417i
\(850\) 0 0
\(851\) 158.991 + 489.324i 0.186828 + 0.574998i
\(852\) 103.056 74.8744i 0.120957 0.0878807i
\(853\) −563.318 775.340i −0.660396 0.908957i 0.339099 0.940751i \(-0.389878\pi\)
−0.999494 + 0.0317938i \(0.989878\pi\)
\(854\) −866.033 + 281.391i −1.01409 + 0.329498i
\(855\) 0 0
\(856\) −352.859 256.367i −0.412219 0.299494i
\(857\) 56.2536i 0.0656402i 0.999461 + 0.0328201i \(0.0104488\pi\)
−0.999461 + 0.0328201i \(0.989551\pi\)
\(858\) 1879.21 289.988i 2.19022 0.337982i
\(859\) −1517.29 −1.76634 −0.883171 0.469051i \(-0.844596\pi\)
−0.883171 + 0.469051i \(0.844596\pi\)
\(860\) 0 0
\(861\) −556.217 + 1711.86i −0.646012 + 1.98822i
\(862\) −122.753 377.794i −0.142405 0.438276i
\(863\) −887.101 + 644.517i −1.02793 + 0.746833i −0.967893 0.251363i \(-0.919121\pi\)
−0.0600344 + 0.998196i \(0.519121\pi\)
\(864\) −200.190 275.538i −0.231702 0.318910i
\(865\) 0 0
\(866\) 1613.88 + 524.382i 1.86360 + 0.605522i
\(867\) 972.253 + 706.383i 1.12140 + 0.814744i
\(868\) 456.819i 0.526289i
\(869\) −172.721 + 335.680i −0.198758 + 0.386283i
\(870\) 0 0
\(871\) −147.071 + 202.426i −0.168853 + 0.232406i
\(872\) 29.5128 90.8310i 0.0338449 0.104164i
\(873\) 195.369 + 601.283i 0.223790 + 0.688755i
\(874\) 533.458 387.580i 0.610364 0.443456i
\(875\) 0 0
\(876\) 1065.22 346.111i 1.21600 0.395104i
\(877\) 1081.62 + 351.441i 1.23332 + 0.400731i 0.851917 0.523677i \(-0.175440\pi\)
0.381405 + 0.924408i \(0.375440\pi\)
\(878\) 1171.70 + 851.293i 1.33451 + 0.969582i
\(879\) 1384.31i 1.57487i
\(880\) 0 0
\(881\) 850.822 0.965746 0.482873 0.875690i \(-0.339593\pi\)
0.482873 + 0.875690i \(0.339593\pi\)
\(882\) −201.635 + 277.526i −0.228611 + 0.314656i
\(883\) −157.572 + 484.958i −0.178451 + 0.549216i −0.999774 0.0212471i \(-0.993236\pi\)
0.821323 + 0.570463i \(0.193236\pi\)
\(884\) 576.459 + 1774.16i 0.652103 + 2.00697i
\(885\) 0 0
\(886\) 179.567 + 247.153i 0.202672 + 0.278954i
\(887\) 554.947 180.313i 0.625645 0.203284i 0.0209998 0.999779i \(-0.493315\pi\)
0.604645 + 0.796495i \(0.293315\pi\)
\(888\) −349.384 113.522i −0.393450 0.127840i
\(889\) −175.724 127.671i −0.197665 0.143612i
\(890\) 0 0
\(891\) 470.717 + 932.979i 0.528302 + 1.04711i
\(892\) 639.603 0.717043
\(893\) −424.240 + 583.917i −0.475073 + 0.653882i
\(894\) 354.971 1092.49i 0.397059 1.22202i
\(895\) 0 0
\(896\) 881.096 640.153i 0.983366 0.714457i
\(897\) −837.939 1153.32i −0.934157 1.28576i
\(898\) −398.966 + 129.632i −0.444283 + 0.144356i
\(899\) 360.535 + 117.145i 0.401040 + 0.130306i
\(900\) 0 0
\(901\) 1325.01i 1.47060i
\(902\) −1342.22 + 1331.59i −1.48805 + 1.47627i
\(903\) 1201.38 1.33043
\(904\) 190.741 262.532i 0.210996 0.290412i
\(905\) 0 0
\(906\) −372.859 1147.54i −0.411544 1.26660i
\(907\) 518.177 376.478i 0.571309 0.415080i −0.264272 0.964448i \(-0.585132\pi\)
0.835580 + 0.549368i \(0.185132\pi\)
\(908\) 1247.14 + 1716.54i 1.37350 + 1.89046i
\(909\) −718.269 + 233.380i −0.790175 + 0.256744i
\(910\) 0 0
\(911\) 885.922 + 643.660i 0.972472 + 0.706542i 0.956014 0.293322i \(-0.0947609\pi\)
0.0164582 + 0.999865i \(0.494761\pi\)
\(912\) 268.230i 0.294112i
\(913\) −1129.94 1138.96i −1.23762 1.24749i
\(914\) 94.7802 0.103698
\(915\) 0 0
\(916\) −234.459 + 721.591i −0.255960 + 0.787763i
\(917\) 221.151 + 680.633i 0.241168 + 0.742238i
\(918\) −483.607 + 351.361i −0.526805 + 0.382746i
\(919\) −729.402 1003.94i −0.793691 1.09242i −0.993639 0.112615i \(-0.964077\pi\)
0.199948 0.979807i \(-0.435923\pi\)
\(920\) 0 0
\(921\) 687.902 + 223.513i 0.746908 + 0.242685i
\(922\) 355.190 + 258.061i 0.385239 + 0.279893i
\(923\) 81.7158i 0.0885328i
\(924\) −1732.07 + 873.881i −1.87453 + 0.945759i
\(925\) 0 0
\(926\) −887.982 + 1222.20i −0.958943 + 1.31987i
\(927\) 41.4718 127.637i 0.0447376 0.137688i
\(928\) −481.359 1481.47i −0.518706 1.59641i
\(929\) −834.947 + 606.624i −0.898758 + 0.652986i −0.938147 0.346238i \(-0.887459\pi\)
0.0393884 + 0.999224i \(0.487459\pi\)
\(930\) 0 0
\(931\) 127.828 41.5337i 0.137301 0.0446119i
\(932\) −971.063 315.517i −1.04191 0.338538i
\(933\) 1207.57 + 877.354i 1.29429 + 0.940358i
\(934\) 2332.68i 2.49752i
\(935\) 0 0
\(936\) 445.326 0.475776
\(937\) −180.209 + 248.036i −0.192325 + 0.264713i −0.894279 0.447509i \(-0.852311\pi\)
0.701954 + 0.712222i \(0.252311\pi\)
\(938\) 136.554 420.271i 0.145580 0.448050i
\(939\) −392.283 1207.32i −0.417767 1.28575i
\(940\) 0 0
\(941\) 11.2167 + 15.4385i 0.0119200 + 0.0164064i 0.814935 0.579552i \(-0.196772\pi\)
−0.803015 + 0.595958i \(0.796772\pi\)
\(942\) −2016.82 + 655.306i −2.14100 + 0.695654i
\(943\) 1348.14 + 438.036i 1.42963 + 0.464514i
\(944\) 380.850 + 276.704i 0.403443 + 0.293118i
\(945\) 0 0
\(946\) 1122.11 + 577.369i 1.18616 + 0.610327i
\(947\) 804.636 0.849669 0.424834 0.905271i \(-0.360332\pi\)
0.424834 + 0.905271i \(0.360332\pi\)
\(948\) −441.540 + 607.728i −0.465760 + 0.641063i
\(949\) −222.027 + 683.330i −0.233959 + 0.720053i
\(950\) 0 0
\(951\) 889.256 646.082i 0.935075 0.679372i
\(952\) −520.967 717.050i −0.547235 0.753204i
\(953\) 1763.40 572.962i 1.85036 0.601220i 0.853591 0.520944i \(-0.174420\pi\)
0.996773 0.0802758i \(-0.0255801\pi\)
\(954\) 1118.22 + 363.330i 1.17213 + 0.380850i
\(955\) 0 0
\(956\) 954.556i 0.998489i
\(957\) 245.528 + 1591.09i 0.256560 + 1.66258i
\(958\) −1911.11 −1.99489
\(959\) 568.654 782.686i 0.592966 0.816148i
\(960\) 0 0
\(961\) −263.794 811.875i −0.274500 0.844824i
\(962\) 708.687 514.891i 0.736681 0.535230i
\(963\) −396.085 545.164i −0.411303 0.566111i
\(964\) −1193.39 + 387.755i −1.23795 + 0.402236i
\(965\) 0 0
\(966\) 2036.88 + 1479.88i 2.10857 + 1.53197i
\(967\) 660.803i 0.683353i 0.939818 + 0.341677i \(0.110995\pi\)
−0.939818 + 0.341677i \(0.889005\pi\)
\(968\) −548.206 4.35630i −0.566328 0.00450031i
\(969\) −819.737 −0.845962
\(970\) 0 0
\(971\) −166.517 + 512.487i −0.171490 + 0.527793i −0.999456 0.0329859i \(-0.989498\pi\)
0.827965 + 0.560779i \(0.189498\pi\)
\(972\) 520.823 + 1602.93i 0.535826 + 1.64910i
\(973\) −22.9271 + 16.6575i −0.0235633 + 0.0171197i
\(974\) −712.232 980.303i −0.731244 1.00647i
\(975\) 0 0
\(976\) 277.438 + 90.1450i 0.284260 + 0.0923617i
\(977\) −243.828 177.151i −0.249568 0.181322i 0.455967 0.889996i \(-0.349293\pi\)
−0.705535 + 0.708675i \(0.749293\pi\)
\(978\) 3116.80i 3.18691i
\(979\) 1390.98 214.648i 1.42082 0.219252i
\(980\) 0 0
\(981\) 86.7307 119.375i 0.0884105 0.121687i
\(982\) −616.943 + 1898.75i −0.628251 + 1.93356i
\(983\) 238.319 + 733.472i 0.242441 + 0.746156i 0.996047 + 0.0888299i \(0.0283128\pi\)
−0.753606 + 0.657327i \(0.771687\pi\)
\(984\) −818.827 + 594.912i −0.832141 + 0.604586i
\(985\) 0 0
\(986\) −2600.18 + 844.850i −2.63710 + 0.856846i
\(987\) −2620.99 851.611i −2.65551 0.862827i
\(988\) −524.707 381.222i −0.531080 0.385852i
\(989\) 946.119i 0.956642i
\(990\) 0 0
\(991\) 118.312 0.119386 0.0596932 0.998217i \(-0.480988\pi\)
0.0596932 + 0.998217i \(0.480988\pi\)
\(992\) 259.264 356.846i 0.261354 0.359723i
\(993\) 508.865 1566.13i 0.512453 1.57717i
\(994\) −44.5967 137.255i −0.0448659 0.138083i
\(995\) 0 0
\(996\) −1876.49 2582.77i −1.88403 2.59314i
\(997\) −36.0263 + 11.7057i −0.0361347 + 0.0117409i −0.327029 0.945014i \(-0.606047\pi\)
0.290894 + 0.956755i \(0.406047\pi\)
\(998\) −2098.77 681.931i −2.10298 0.683298i
\(999\) 131.193 + 95.3177i 0.131325 + 0.0954131i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.x.d.51.1 4
5.2 odd 4 275.3.q.c.249.2 8
5.3 odd 4 275.3.q.c.249.1 8
5.4 even 2 55.3.i.a.51.1 yes 4
11.8 odd 10 inner 275.3.x.d.151.1 4
55.8 even 20 275.3.q.c.74.2 8
55.19 odd 10 55.3.i.a.41.1 4
55.39 odd 10 605.3.c.a.241.4 4
55.49 even 10 605.3.c.a.241.1 4
55.52 even 20 275.3.q.c.74.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.a.41.1 4 55.19 odd 10
55.3.i.a.51.1 yes 4 5.4 even 2
275.3.q.c.74.1 8 55.52 even 20
275.3.q.c.74.2 8 55.8 even 20
275.3.q.c.249.1 8 5.3 odd 4
275.3.q.c.249.2 8 5.2 odd 4
275.3.x.d.51.1 4 1.1 even 1 trivial
275.3.x.d.151.1 4 11.8 odd 10 inner
605.3.c.a.241.1 4 55.49 even 10
605.3.c.a.241.4 4 55.39 odd 10