Properties

Label 55.3.i.a.51.1
Level $55$
Weight $3$
Character 55.51
Analytic conductor $1.499$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [55,3,Mod(6,55)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(55, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 9])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("55.6"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.i (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 51.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 55.51
Dual form 55.3.i.a.41.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.80902 + 2.48990i) q^{2} +(-1.23607 + 3.80423i) q^{3} +(-1.69098 - 5.20431i) q^{4} +(-1.80902 + 1.31433i) q^{5} +(-7.23607 - 9.95959i) q^{6} +(7.66312 - 2.48990i) q^{7} +(4.30902 + 1.40008i) q^{8} +(-5.66312 - 4.11450i) q^{9} -6.88191i q^{10} +(-10.8713 + 1.67760i) q^{11} +21.8885 q^{12} +(-8.25329 + 11.3597i) q^{13} +(-7.66312 + 23.5847i) q^{14} +(-2.76393 - 8.50651i) q^{15} +(6.42705 - 4.66953i) q^{16} +(14.2705 + 19.6417i) q^{17} +(20.4894 - 6.65740i) q^{18} +(8.02786 + 2.60841i) q^{19} +(9.89919 + 7.19218i) q^{20} +32.2299i q^{21} +(15.4894 - 30.1033i) q^{22} -25.3820 q^{23} +(-10.6525 + 14.6619i) q^{24} +(1.54508 - 4.75528i) q^{25} +(-13.3541 - 41.0997i) q^{26} +(-6.47214 + 4.70228i) q^{27} +(-25.9164 - 35.6709i) q^{28} +(34.7984 - 11.3067i) q^{29} +(26.1803 + 8.50651i) q^{30} +(8.38197 + 6.08985i) q^{31} +42.5730i q^{32} +(7.05573 - 43.4306i) q^{33} -74.7214 q^{34} +(-10.5902 + 14.5761i) q^{35} +(-11.8369 + 36.4302i) q^{36} +(-6.26393 - 19.2784i) q^{37} +(-21.0172 + 15.2699i) q^{38} +(-33.0132 - 45.4387i) q^{39} +(-9.63525 + 3.13068i) q^{40} +(53.1140 + 17.2578i) q^{41} +(-80.2492 - 58.3045i) q^{42} +37.2752i q^{43} +(27.1140 + 53.7409i) q^{44} +15.6525 q^{45} +(45.9164 - 63.1985i) q^{46} +(26.4230 - 81.3216i) q^{47} +(9.81966 + 30.2218i) q^{48} +(12.8820 - 9.35930i) q^{49} +(9.04508 + 12.4495i) q^{50} +(-92.3607 + 30.0098i) q^{51} +(73.0755 + 23.7437i) q^{52} +(44.1525 + 32.0787i) q^{53} -24.6215i q^{54} +(17.4615 - 17.3233i) q^{55} +36.5066 q^{56} +(-19.8460 + 27.3156i) q^{57} +(-34.7984 + 107.098i) q^{58} +(18.3115 + 56.3571i) q^{59} +(-39.5967 + 28.7687i) q^{60} +(21.5836 + 29.7073i) q^{61} +(-30.3262 + 9.85359i) q^{62} +(-53.6418 - 17.4293i) q^{63} +(-80.2943 - 58.3372i) q^{64} -31.3974i q^{65} +(95.3738 + 96.1347i) q^{66} +17.8197 q^{67} +(78.0902 - 107.482i) q^{68} +(31.3738 - 96.5587i) q^{69} +(-17.1353 - 52.7369i) q^{70} +(-4.70820 + 3.42071i) q^{71} +(-18.6418 - 25.6583i) q^{72} +(48.6656 - 15.8124i) q^{73} +(59.3328 + 19.2784i) q^{74} +(16.1803 + 11.7557i) q^{75} -46.1903i q^{76} +(-79.1312 + 39.9241i) q^{77} +172.859 q^{78} +(20.1722 - 27.7647i) q^{79} +(-5.48936 + 16.8945i) q^{80} +(-29.3566 - 90.3504i) q^{81} +(-139.054 + 101.029i) q^{82} +(-85.7295 - 117.997i) q^{83} +(167.735 - 54.5002i) q^{84} +(-51.6312 - 16.7760i) q^{85} +(-92.8115 - 67.4315i) q^{86} +146.357i q^{87} +(-49.1935 - 7.99197i) q^{88} -127.949 q^{89} +(-28.3156 + 38.9731i) q^{90} +(-34.9615 + 107.600i) q^{91} +(42.9205 + 132.096i) q^{92} +(-33.5279 + 24.3594i) q^{93} +(154.683 + 212.903i) q^{94} +(-17.9508 + 5.83258i) q^{95} +(-161.957 - 52.6232i) q^{96} +(73.0689 + 53.0877i) q^{97} +49.0059i q^{98} +(68.4681 + 35.2296i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{2} + 4 q^{3} - 9 q^{4} - 5 q^{5} - 20 q^{6} + 15 q^{7} + 15 q^{8} - 7 q^{9} - q^{11} + 16 q^{12} + 5 q^{13} - 15 q^{14} - 20 q^{15} + 19 q^{16} - 10 q^{17} + 35 q^{18} + 50 q^{19} + 15 q^{20}+ \cdots + 133 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80902 + 2.48990i −0.904508 + 1.24495i 0.0644990 + 0.997918i \(0.479455\pi\)
−0.969007 + 0.247031i \(0.920545\pi\)
\(3\) −1.23607 + 3.80423i −0.412023 + 1.26808i 0.502864 + 0.864365i \(0.332280\pi\)
−0.914887 + 0.403710i \(0.867720\pi\)
\(4\) −1.69098 5.20431i −0.422746 1.30108i
\(5\) −1.80902 + 1.31433i −0.361803 + 0.262866i
\(6\) −7.23607 9.95959i −1.20601 1.65993i
\(7\) 7.66312 2.48990i 1.09473 0.355700i 0.294658 0.955603i \(-0.404794\pi\)
0.800073 + 0.599903i \(0.204794\pi\)
\(8\) 4.30902 + 1.40008i 0.538627 + 0.175011i
\(9\) −5.66312 4.11450i −0.629235 0.457166i
\(10\) 6.88191i 0.688191i
\(11\) −10.8713 + 1.67760i −0.988302 + 0.152509i
\(12\) 21.8885 1.82405
\(13\) −8.25329 + 11.3597i −0.634868 + 0.873821i −0.998329 0.0577883i \(-0.981595\pi\)
0.363460 + 0.931610i \(0.381595\pi\)
\(14\) −7.66312 + 23.5847i −0.547366 + 1.68462i
\(15\) −2.76393 8.50651i −0.184262 0.567101i
\(16\) 6.42705 4.66953i 0.401691 0.291845i
\(17\) 14.2705 + 19.6417i 0.839442 + 1.15539i 0.986091 + 0.166204i \(0.0531510\pi\)
−0.146650 + 0.989188i \(0.546849\pi\)
\(18\) 20.4894 6.65740i 1.13830 0.369855i
\(19\) 8.02786 + 2.60841i 0.422519 + 0.137285i 0.512556 0.858654i \(-0.328699\pi\)
−0.0900372 + 0.995938i \(0.528699\pi\)
\(20\) 9.89919 + 7.19218i 0.494959 + 0.359609i
\(21\) 32.2299i 1.53476i
\(22\) 15.4894 30.1033i 0.704062 1.36833i
\(23\) −25.3820 −1.10356 −0.551782 0.833988i \(-0.686052\pi\)
−0.551782 + 0.833988i \(0.686052\pi\)
\(24\) −10.6525 + 14.6619i −0.443853 + 0.610911i
\(25\) 1.54508 4.75528i 0.0618034 0.190211i
\(26\) −13.3541 41.0997i −0.513619 1.58076i
\(27\) −6.47214 + 4.70228i −0.239709 + 0.174159i
\(28\) −25.9164 35.6709i −0.925586 1.27396i
\(29\) 34.7984 11.3067i 1.19994 0.389885i 0.360204 0.932874i \(-0.382707\pi\)
0.839740 + 0.542988i \(0.182707\pi\)
\(30\) 26.1803 + 8.50651i 0.872678 + 0.283550i
\(31\) 8.38197 + 6.08985i 0.270386 + 0.196447i 0.714713 0.699418i \(-0.246557\pi\)
−0.444327 + 0.895865i \(0.646557\pi\)
\(32\) 42.5730i 1.33041i
\(33\) 7.05573 43.4306i 0.213810 1.31608i
\(34\) −74.7214 −2.19769
\(35\) −10.5902 + 14.5761i −0.302576 + 0.416461i
\(36\) −11.8369 + 36.4302i −0.328802 + 1.01195i
\(37\) −6.26393 19.2784i −0.169295 0.521038i 0.830032 0.557716i \(-0.188322\pi\)
−0.999327 + 0.0366784i \(0.988322\pi\)
\(38\) −21.0172 + 15.2699i −0.553085 + 0.401840i
\(39\) −33.0132 45.4387i −0.846491 1.16510i
\(40\) −9.63525 + 3.13068i −0.240881 + 0.0782671i
\(41\) 53.1140 + 17.2578i 1.29546 + 0.420921i 0.874001 0.485925i \(-0.161517\pi\)
0.421462 + 0.906846i \(0.361517\pi\)
\(42\) −80.2492 58.3045i −1.91070 1.38820i
\(43\) 37.2752i 0.866866i 0.901186 + 0.433433i \(0.142698\pi\)
−0.901186 + 0.433433i \(0.857302\pi\)
\(44\) 27.1140 + 53.7409i 0.616227 + 1.22139i
\(45\) 15.6525 0.347833
\(46\) 45.9164 63.1985i 0.998183 1.37388i
\(47\) 26.4230 81.3216i 0.562191 1.73025i −0.113962 0.993485i \(-0.536354\pi\)
0.676153 0.736761i \(-0.263646\pi\)
\(48\) 9.81966 + 30.2218i 0.204576 + 0.629621i
\(49\) 12.8820 9.35930i 0.262897 0.191006i
\(50\) 9.04508 + 12.4495i 0.180902 + 0.248990i
\(51\) −92.3607 + 30.0098i −1.81099 + 0.588428i
\(52\) 73.0755 + 23.7437i 1.40530 + 0.456609i
\(53\) 44.1525 + 32.0787i 0.833066 + 0.605258i 0.920425 0.390919i \(-0.127843\pi\)
−0.0873594 + 0.996177i \(0.527843\pi\)
\(54\) 24.6215i 0.455953i
\(55\) 17.4615 17.3233i 0.317482 0.314969i
\(56\) 36.5066 0.651903
\(57\) −19.8460 + 27.3156i −0.348175 + 0.479222i
\(58\) −34.7984 + 107.098i −0.599972 + 1.84652i
\(59\) 18.3115 + 56.3571i 0.310365 + 0.955205i 0.977621 + 0.210376i \(0.0674689\pi\)
−0.667256 + 0.744829i \(0.732531\pi\)
\(60\) −39.5967 + 28.7687i −0.659946 + 0.479479i
\(61\) 21.5836 + 29.7073i 0.353829 + 0.487004i 0.948417 0.317027i \(-0.102685\pi\)
−0.594587 + 0.804031i \(0.702685\pi\)
\(62\) −30.3262 + 9.85359i −0.489133 + 0.158929i
\(63\) −53.6418 17.4293i −0.851458 0.276655i
\(64\) −80.2943 58.3372i −1.25460 0.911519i
\(65\) 31.3974i 0.483037i
\(66\) 95.3738 + 96.1347i 1.44506 + 1.45659i
\(67\) 17.8197 0.265965 0.132983 0.991118i \(-0.457545\pi\)
0.132983 + 0.991118i \(0.457545\pi\)
\(68\) 78.0902 107.482i 1.14838 1.58062i
\(69\) 31.3738 96.5587i 0.454693 1.39940i
\(70\) −17.1353 52.7369i −0.244789 0.753384i
\(71\) −4.70820 + 3.42071i −0.0663127 + 0.0481790i −0.620448 0.784248i \(-0.713049\pi\)
0.554135 + 0.832427i \(0.313049\pi\)
\(72\) −18.6418 25.6583i −0.258914 0.356365i
\(73\) 48.6656 15.8124i 0.666652 0.216609i 0.0439101 0.999035i \(-0.486018\pi\)
0.622742 + 0.782427i \(0.286018\pi\)
\(74\) 59.3328 + 19.2784i 0.801795 + 0.260519i
\(75\) 16.1803 + 11.7557i 0.215738 + 0.156743i
\(76\) 46.1903i 0.607767i
\(77\) −79.1312 + 39.9241i −1.02768 + 0.518495i
\(78\) 172.859 2.21614
\(79\) 20.1722 27.7647i 0.255344 0.351451i −0.662030 0.749478i \(-0.730305\pi\)
0.917374 + 0.398026i \(0.130305\pi\)
\(80\) −5.48936 + 16.8945i −0.0686170 + 0.211181i
\(81\) −29.3566 90.3504i −0.362427 1.11544i
\(82\) −139.054 + 101.029i −1.69578 + 1.23206i
\(83\) −85.7295 117.997i −1.03289 1.42164i −0.902759 0.430147i \(-0.858462\pi\)
−0.130127 0.991497i \(-0.541538\pi\)
\(84\) 167.735 54.5002i 1.99684 0.648812i
\(85\) −51.6312 16.7760i −0.607426 0.197365i
\(86\) −92.8115 67.4315i −1.07920 0.784087i
\(87\) 146.357i 1.68226i
\(88\) −49.1935 7.99197i −0.559017 0.0908178i
\(89\) −127.949 −1.43763 −0.718816 0.695200i \(-0.755316\pi\)
−0.718816 + 0.695200i \(0.755316\pi\)
\(90\) −28.3156 + 38.9731i −0.314618 + 0.433034i
\(91\) −34.9615 + 107.600i −0.384192 + 1.18242i
\(92\) 42.9205 + 132.096i 0.466527 + 1.43582i
\(93\) −33.5279 + 24.3594i −0.360515 + 0.261929i
\(94\) 154.683 + 212.903i 1.64556 + 2.26492i
\(95\) −17.9508 + 5.83258i −0.188956 + 0.0613956i
\(96\) −161.957 52.6232i −1.68706 0.548158i
\(97\) 73.0689 + 53.0877i 0.753287 + 0.547295i 0.896844 0.442347i \(-0.145854\pi\)
−0.143557 + 0.989642i \(0.545854\pi\)
\(98\) 49.0059i 0.500060i
\(99\) 68.4681 + 35.2296i 0.691597 + 0.355854i
\(100\) −27.3607 −0.273607
\(101\) 63.4164 87.2852i 0.627885 0.864210i −0.370012 0.929027i \(-0.620646\pi\)
0.997897 + 0.0648171i \(0.0206464\pi\)
\(102\) 92.3607 284.257i 0.905497 2.78683i
\(103\) −5.92454 18.2339i −0.0575198 0.177028i 0.918169 0.396190i \(-0.129668\pi\)
−0.975689 + 0.219162i \(0.929668\pi\)
\(104\) −51.4681 + 37.3937i −0.494885 + 0.359555i
\(105\) −42.3607 58.3045i −0.403435 0.555281i
\(106\) −159.745 + 51.9043i −1.50703 + 0.489664i
\(107\) −91.5542 29.7478i −0.855646 0.278016i −0.151837 0.988405i \(-0.548519\pi\)
−0.703809 + 0.710389i \(0.748519\pi\)
\(108\) 35.4164 + 25.7315i 0.327930 + 0.238255i
\(109\) 21.0793i 0.193388i 0.995314 + 0.0966940i \(0.0308268\pi\)
−0.995314 + 0.0966940i \(0.969173\pi\)
\(110\) 11.5451 + 74.8155i 0.104955 + 0.680141i
\(111\) 81.0820 0.730469
\(112\) 37.6246 51.7858i 0.335934 0.462374i
\(113\) 22.1327 68.1176i 0.195865 0.602810i −0.804100 0.594493i \(-0.797353\pi\)
0.999965 0.00831694i \(-0.00264740\pi\)
\(114\) −32.1115 98.8289i −0.281679 0.866920i
\(115\) 45.9164 33.3602i 0.399273 0.290089i
\(116\) −117.687 161.982i −1.01454 1.39640i
\(117\) 93.4787 30.3731i 0.798963 0.259599i
\(118\) −173.449 56.3571i −1.46991 0.477602i
\(119\) 158.262 + 114.984i 1.32994 + 0.966255i
\(120\) 40.5244i 0.337704i
\(121\) 115.371 36.4754i 0.953482 0.301450i
\(122\) −113.013 −0.926337
\(123\) −131.305 + 180.726i −1.06752 + 1.46932i
\(124\) 17.5197 53.9202i 0.141288 0.434840i
\(125\) 3.45492 + 10.6331i 0.0276393 + 0.0850651i
\(126\) 140.436 102.033i 1.11457 0.809784i
\(127\) −15.8450 21.8088i −0.124764 0.171723i 0.742066 0.670327i \(-0.233846\pi\)
−0.866830 + 0.498604i \(0.833846\pi\)
\(128\) 128.550 41.7685i 1.00430 0.326316i
\(129\) −141.803 46.0747i −1.09925 0.357168i
\(130\) 78.1763 + 56.7984i 0.601356 + 0.436911i
\(131\) 88.8193i 0.678010i −0.940785 0.339005i \(-0.889910\pi\)
0.940785 0.339005i \(-0.110090\pi\)
\(132\) −237.957 + 36.7202i −1.80271 + 0.278183i
\(133\) 68.0132 0.511377
\(134\) −32.2361 + 44.3691i −0.240568 + 0.331113i
\(135\) 5.52786 17.0130i 0.0409471 0.126022i
\(136\) 33.9919 + 104.616i 0.249940 + 0.769237i
\(137\) 97.1378 70.5747i 0.709035 0.515144i −0.173827 0.984776i \(-0.555613\pi\)
0.882862 + 0.469632i \(0.155613\pi\)
\(138\) 183.666 + 252.794i 1.33091 + 1.83184i
\(139\) 3.34501 1.08686i 0.0240648 0.00781914i −0.296960 0.954890i \(-0.595973\pi\)
0.321025 + 0.947071i \(0.395973\pi\)
\(140\) 93.7664 + 30.4666i 0.669760 + 0.217618i
\(141\) 276.705 + 201.038i 1.96245 + 1.42580i
\(142\) 17.9111i 0.126134i
\(143\) 70.6672 137.340i 0.494176 0.960423i
\(144\) −55.6099 −0.386180
\(145\) −48.0902 + 66.1904i −0.331656 + 0.456486i
\(146\) −48.6656 + 149.777i −0.333326 + 1.02587i
\(147\) 19.6819 + 60.5746i 0.133890 + 0.412072i
\(148\) −89.7386 + 65.1989i −0.606342 + 0.440533i
\(149\) 54.8460 + 75.4890i 0.368094 + 0.506638i 0.952381 0.304909i \(-0.0986260\pi\)
−0.584288 + 0.811547i \(0.698626\pi\)
\(150\) −58.5410 + 19.0211i −0.390273 + 0.126808i
\(151\) 93.2148 + 30.2873i 0.617316 + 0.200578i 0.600948 0.799288i \(-0.294790\pi\)
0.0163680 + 0.999866i \(0.494790\pi\)
\(152\) 30.9402 + 22.4794i 0.203554 + 0.147891i
\(153\) 169.949i 1.11078i
\(154\) 43.7426 269.252i 0.284043 1.74839i
\(155\) −23.1672 −0.149466
\(156\) −180.652 + 248.647i −1.15803 + 1.59389i
\(157\) −53.2304 + 163.826i −0.339047 + 1.04348i 0.625646 + 0.780107i \(0.284835\pi\)
−0.964694 + 0.263374i \(0.915165\pi\)
\(158\) 32.6393 + 100.453i 0.206578 + 0.635782i
\(159\) −176.610 + 128.315i −1.11075 + 0.807010i
\(160\) −55.9549 77.0153i −0.349718 0.481346i
\(161\) −194.505 + 63.1985i −1.20811 + 0.392537i
\(162\) 278.070 + 90.3504i 1.71648 + 0.557718i
\(163\) −204.825 148.814i −1.25659 0.912968i −0.258008 0.966143i \(-0.583066\pi\)
−0.998585 + 0.0531744i \(0.983066\pi\)
\(164\) 305.604i 1.86344i
\(165\) 44.3181 + 87.8402i 0.268595 + 0.532365i
\(166\) 448.885 2.70413
\(167\) 44.3090 60.9861i 0.265323 0.365186i −0.655481 0.755212i \(-0.727534\pi\)
0.920804 + 0.390026i \(0.127534\pi\)
\(168\) −45.1246 + 138.879i −0.268599 + 0.826662i
\(169\) −8.70163 26.7809i −0.0514889 0.158467i
\(170\) 135.172 98.2084i 0.795131 0.577696i
\(171\) −34.7304 47.8024i −0.203102 0.279546i
\(172\) 193.992 63.0318i 1.12786 0.366464i
\(173\) 106.578 + 34.6293i 0.616058 + 0.200169i 0.600389 0.799708i \(-0.295012\pi\)
0.0156685 + 0.999877i \(0.495012\pi\)
\(174\) −364.413 264.762i −2.09433 1.52162i
\(175\) 40.2874i 0.230214i
\(176\) −62.0370 + 61.5459i −0.352483 + 0.349693i
\(177\) −237.029 −1.33915
\(178\) 231.462 318.581i 1.30035 1.78978i
\(179\) −64.4321 + 198.302i −0.359956 + 1.10783i 0.593124 + 0.805111i \(0.297894\pi\)
−0.953080 + 0.302719i \(0.902106\pi\)
\(180\) −26.4681 81.4603i −0.147045 0.452557i
\(181\) −64.7082 + 47.0133i −0.357504 + 0.259742i −0.752010 0.659151i \(-0.770916\pi\)
0.394506 + 0.918893i \(0.370916\pi\)
\(182\) −204.668 281.702i −1.12455 1.54781i
\(183\) −139.692 + 45.3887i −0.763344 + 0.248025i
\(184\) −109.371 35.5369i −0.594409 0.193135i
\(185\) 36.6697 + 26.6421i 0.198215 + 0.144011i
\(186\) 127.548i 0.685740i
\(187\) −188.090 189.591i −1.00583 1.01385i
\(188\) −467.904 −2.48885
\(189\) −37.8885 + 52.1491i −0.200468 + 0.275921i
\(190\) 17.9508 55.2470i 0.0944782 0.290774i
\(191\) −26.9443 82.9259i −0.141069 0.434167i 0.855415 0.517943i \(-0.173302\pi\)
−0.996485 + 0.0837757i \(0.973302\pi\)
\(192\) 321.177 233.349i 1.67280 1.21536i
\(193\) 110.528 + 152.129i 0.572683 + 0.788231i 0.992869 0.119207i \(-0.0380352\pi\)
−0.420186 + 0.907438i \(0.638035\pi\)
\(194\) −264.366 + 85.8976i −1.36271 + 0.442771i
\(195\) 119.443 + 38.8093i 0.612527 + 0.199022i
\(196\) −70.4919 51.2153i −0.359652 0.261303i
\(197\) 10.5087i 0.0533437i −0.999644 0.0266719i \(-0.991509\pi\)
0.999644 0.0266719i \(-0.00849093\pi\)
\(198\) −211.578 + 106.748i −1.06858 + 0.539129i
\(199\) 8.30806 0.0417490 0.0208745 0.999782i \(-0.493355\pi\)
0.0208745 + 0.999782i \(0.493355\pi\)
\(200\) 13.3156 18.3273i 0.0665780 0.0916367i
\(201\) −22.0263 + 67.7900i −0.109584 + 0.337264i
\(202\) 102.610 + 315.801i 0.507970 + 1.56337i
\(203\) 238.512 173.289i 1.17493 0.853640i
\(204\) 312.361 + 429.928i 1.53118 + 2.10749i
\(205\) −118.766 + 38.5896i −0.579349 + 0.188242i
\(206\) 56.1180 + 18.2339i 0.272418 + 0.0885139i
\(207\) 143.741 + 104.434i 0.694401 + 0.504512i
\(208\) 111.548i 0.536289i
\(209\) −91.6494 14.8893i −0.438514 0.0712409i
\(210\) 221.803 1.05621
\(211\) −45.0294 + 61.9777i −0.213410 + 0.293733i −0.902279 0.431152i \(-0.858107\pi\)
0.688870 + 0.724885i \(0.258107\pi\)
\(212\) 92.2862 284.028i 0.435312 1.33975i
\(213\) −7.19350 22.1393i −0.0337723 0.103940i
\(214\) 239.692 174.146i 1.12006 0.813768i
\(215\) −48.9919 67.4315i −0.227869 0.313635i
\(216\) −34.4721 + 11.2007i −0.159593 + 0.0518550i
\(217\) 79.3951 + 25.7970i 0.365876 + 0.118880i
\(218\) −52.4853 38.1328i −0.240758 0.174921i
\(219\) 204.680i 0.934613i
\(220\) −119.683 61.5816i −0.544013 0.279917i
\(221\) −340.902 −1.54254
\(222\) −146.679 + 201.886i −0.660715 + 0.909397i
\(223\) 36.1190 111.163i 0.161969 0.498488i −0.836832 0.547460i \(-0.815595\pi\)
0.998800 + 0.0489724i \(0.0155946\pi\)
\(224\) 106.003 + 326.242i 0.473226 + 1.45644i
\(225\) −28.3156 + 20.5725i −0.125847 + 0.0914333i
\(226\) 129.567 + 178.334i 0.573307 + 0.789089i
\(227\) 368.761 119.818i 1.62450 0.527831i 0.651500 0.758649i \(-0.274140\pi\)
0.972997 + 0.230818i \(0.0741401\pi\)
\(228\) 175.718 + 57.0943i 0.770694 + 0.250414i
\(229\) −112.172 81.4979i −0.489835 0.355886i 0.315286 0.948997i \(-0.397900\pi\)
−0.805121 + 0.593111i \(0.797900\pi\)
\(230\) 174.676i 0.759463i
\(231\) −54.0689 350.382i −0.234064 1.51680i
\(232\) 165.777 0.714556
\(233\) −109.674 + 150.953i −0.470703 + 0.647867i −0.976685 0.214677i \(-0.931130\pi\)
0.505982 + 0.862544i \(0.331130\pi\)
\(234\) −93.4787 + 287.698i −0.399482 + 1.22948i
\(235\) 59.0836 + 181.841i 0.251420 + 0.773790i
\(236\) 262.335 190.598i 1.11159 0.807618i
\(237\) 80.6888 + 111.059i 0.340459 + 0.468602i
\(238\) −572.599 + 186.049i −2.40588 + 0.781717i
\(239\) −165.902 53.9047i −0.694149 0.225543i −0.0593698 0.998236i \(-0.518909\pi\)
−0.634780 + 0.772693i \(0.718909\pi\)
\(240\) −57.4853 41.7655i −0.239522 0.174023i
\(241\) 229.308i 0.951484i −0.879585 0.475742i \(-0.842180\pi\)
0.879585 0.475742i \(-0.157820\pi\)
\(242\) −117.889 + 353.248i −0.487143 + 1.45970i
\(243\) 308.000 1.26749
\(244\) 118.108 162.562i 0.484051 0.666239i
\(245\) −11.0025 + 33.8623i −0.0449082 + 0.138213i
\(246\) −212.456 653.872i −0.863642 2.65802i
\(247\) −95.8870 + 69.6660i −0.388206 + 0.282048i
\(248\) 27.5917 + 37.9767i 0.111257 + 0.153132i
\(249\) 554.853 180.283i 2.22832 0.724027i
\(250\) −32.7254 10.6331i −0.130902 0.0425325i
\(251\) 85.7279 + 62.2850i 0.341546 + 0.248147i 0.745314 0.666714i \(-0.232300\pi\)
−0.403768 + 0.914861i \(0.632300\pi\)
\(252\) 308.641i 1.22477i
\(253\) 275.936 42.5808i 1.09065 0.168303i
\(254\) 82.9656 0.326636
\(255\) 127.639 175.680i 0.500546 0.688943i
\(256\) −5.87132 + 18.0701i −0.0229349 + 0.0705862i
\(257\) −79.6362 245.095i −0.309869 0.953677i −0.977815 0.209468i \(-0.932827\pi\)
0.667947 0.744209i \(-0.267173\pi\)
\(258\) 371.246 269.726i 1.43894 1.04545i
\(259\) −96.0025 132.136i −0.370666 0.510178i
\(260\) −163.402 + 53.0924i −0.628468 + 0.204202i
\(261\) −243.589 79.1467i −0.933290 0.303244i
\(262\) 221.151 + 160.676i 0.844087 + 0.613265i
\(263\) 290.347i 1.10398i 0.833851 + 0.551990i \(0.186131\pi\)
−0.833851 + 0.551990i \(0.813869\pi\)
\(264\) 91.2098 177.265i 0.345492 0.671457i
\(265\) −122.034 −0.460507
\(266\) −123.037 + 169.346i −0.462545 + 0.636638i
\(267\) 158.154 486.748i 0.592337 1.82303i
\(268\) −30.1327 92.7390i −0.112436 0.346041i
\(269\) 267.615 194.434i 0.994851 0.722802i 0.0338730 0.999426i \(-0.489216\pi\)
0.960978 + 0.276625i \(0.0892158\pi\)
\(270\) 32.3607 + 44.5407i 0.119854 + 0.164965i
\(271\) 206.661 67.1481i 0.762585 0.247779i 0.0981974 0.995167i \(-0.468692\pi\)
0.664388 + 0.747388i \(0.268692\pi\)
\(272\) 183.435 + 59.6015i 0.674392 + 0.219123i
\(273\) −366.122 266.003i −1.34110 0.974369i
\(274\) 369.534i 1.34866i
\(275\) −8.81966 + 54.2882i −0.0320715 + 0.197412i
\(276\) −555.574 −2.01295
\(277\) −263.699 + 362.950i −0.951980 + 1.31029i −0.00133803 + 0.999999i \(0.500426\pi\)
−0.950642 + 0.310289i \(0.899574\pi\)
\(278\) −3.34501 + 10.2949i −0.0120324 + 0.0370320i
\(279\) −22.4114 68.9751i −0.0803275 0.247223i
\(280\) −66.0410 + 47.9816i −0.235861 + 0.171363i
\(281\) 55.0658 + 75.7915i 0.195964 + 0.269721i 0.895679 0.444701i \(-0.146690\pi\)
−0.699716 + 0.714421i \(0.746690\pi\)
\(282\) −1001.13 + 325.286i −3.55010 + 1.15350i
\(283\) −278.002 90.3283i −0.982339 0.319181i −0.226552 0.973999i \(-0.572745\pi\)
−0.755787 + 0.654818i \(0.772745\pi\)
\(284\) 25.7639 + 18.7186i 0.0907181 + 0.0659105i
\(285\) 75.4986i 0.264907i
\(286\) 214.126 + 424.405i 0.748691 + 1.48393i
\(287\) 449.989 1.56791
\(288\) 175.167 241.096i 0.608217 0.837139i
\(289\) −92.8419 + 285.738i −0.321252 + 0.988713i
\(290\) −77.8115 239.479i −0.268316 0.825791i
\(291\) −292.276 + 212.351i −1.00438 + 0.729727i
\(292\) −164.586 226.533i −0.563649 0.775796i
\(293\) 329.140 106.944i 1.12335 0.364997i 0.312302 0.949983i \(-0.398900\pi\)
0.811044 + 0.584986i \(0.198900\pi\)
\(294\) −186.430 60.5746i −0.634114 0.206036i
\(295\) −107.198 77.8836i −0.363382 0.264012i
\(296\) 91.8410i 0.310274i
\(297\) 62.4721 61.9777i 0.210344 0.208679i
\(298\) −287.177 −0.963682
\(299\) 209.485 288.331i 0.700618 0.964318i
\(300\) 33.8197 104.086i 0.112732 0.346954i
\(301\) 92.8115 + 285.645i 0.308344 + 0.948985i
\(302\) −244.039 + 177.305i −0.808078 + 0.587103i
\(303\) 253.666 + 349.141i 0.837180 + 1.15228i
\(304\) 63.7755 20.7219i 0.209788 0.0681642i
\(305\) −78.0902 25.3730i −0.256033 0.0831903i
\(306\) 423.156 + 307.441i 1.38286 + 1.00471i
\(307\) 180.826i 0.589009i −0.955650 0.294505i \(-0.904845\pi\)
0.955650 0.294505i \(-0.0951546\pi\)
\(308\) 341.587 + 344.312i 1.10905 + 1.11790i
\(309\) 76.6888 0.248184
\(310\) 41.9098 57.6839i 0.135193 0.186077i
\(311\) −115.313 + 354.897i −0.370782 + 1.14115i 0.575499 + 0.817802i \(0.304808\pi\)
−0.946281 + 0.323346i \(0.895192\pi\)
\(312\) −78.6362 242.017i −0.252039 0.775697i
\(313\) −256.753 + 186.542i −0.820296 + 0.595980i −0.916797 0.399353i \(-0.869235\pi\)
0.0965012 + 0.995333i \(0.469235\pi\)
\(314\) −311.616 428.903i −0.992409 1.36593i
\(315\) 119.947 38.9731i 0.380783 0.123724i
\(316\) −178.607 58.0329i −0.565211 0.183648i
\(317\) −222.314 161.521i −0.701306 0.509529i 0.179051 0.983840i \(-0.442697\pi\)
−0.880357 + 0.474311i \(0.842697\pi\)
\(318\) 671.864i 2.11278i
\(319\) −359.336 + 181.296i −1.12645 + 0.568327i
\(320\) 221.928 0.693525
\(321\) 226.334 311.523i 0.705091 0.970475i
\(322\) 194.505 598.625i 0.604053 1.85908i
\(323\) 63.3282 + 194.904i 0.196062 + 0.603418i
\(324\) −420.570 + 305.562i −1.29806 + 0.943092i
\(325\) 41.2664 + 56.7984i 0.126974 + 0.174764i
\(326\) 741.063 240.786i 2.27320 0.738607i
\(327\) −80.1904 26.0554i −0.245231 0.0796802i
\(328\) 204.707 + 148.728i 0.624106 + 0.453439i
\(329\) 688.968i 2.09413i
\(330\) −298.885 48.5569i −0.905713 0.147142i
\(331\) 411.681 1.24375 0.621874 0.783117i \(-0.286372\pi\)
0.621874 + 0.783117i \(0.286372\pi\)
\(332\) −469.123 + 645.693i −1.41302 + 1.94486i
\(333\) −43.8475 + 134.949i −0.131674 + 0.405252i
\(334\) 71.6935 + 220.650i 0.214651 + 0.660628i
\(335\) −32.2361 + 23.4209i −0.0962271 + 0.0699131i
\(336\) 150.498 + 207.143i 0.447912 + 0.616498i
\(337\) −440.410 + 143.098i −1.30686 + 0.424623i −0.877961 0.478732i \(-0.841097\pi\)
−0.428894 + 0.903355i \(0.641097\pi\)
\(338\) 82.4230 + 26.7809i 0.243855 + 0.0792333i
\(339\) 231.777 + 168.396i 0.683708 + 0.496743i
\(340\) 297.073i 0.873743i
\(341\) −101.339 52.1432i −0.297183 0.152913i
\(342\) 181.851 0.531728
\(343\) −156.655 + 215.617i −0.456720 + 0.628621i
\(344\) −52.1885 + 160.620i −0.151711 + 0.466917i
\(345\) 70.1540 + 215.912i 0.203345 + 0.625832i
\(346\) −279.025 + 202.723i −0.806430 + 0.585906i
\(347\) −100.498 138.324i −0.289621 0.398629i 0.639270 0.768982i \(-0.279237\pi\)
−0.928891 + 0.370353i \(0.879237\pi\)
\(348\) 761.686 247.487i 2.18875 0.711169i
\(349\) −164.289 53.3806i −0.470741 0.152953i 0.0640335 0.997948i \(-0.479604\pi\)
−0.534775 + 0.844995i \(0.679604\pi\)
\(350\) 100.312 + 72.8806i 0.286604 + 0.208230i
\(351\) 112.331i 0.320030i
\(352\) −71.4205 462.825i −0.202899 1.31484i
\(353\) −494.535 −1.40095 −0.700474 0.713678i \(-0.747028\pi\)
−0.700474 + 0.713678i \(0.747028\pi\)
\(354\) 428.790 590.179i 1.21127 1.66717i
\(355\) 4.02129 12.3762i 0.0113276 0.0348627i
\(356\) 216.360 + 665.888i 0.607753 + 1.87047i
\(357\) −633.050 + 459.937i −1.77325 + 1.28834i
\(358\) −377.192 519.160i −1.05361 1.45017i
\(359\) 146.418 47.5742i 0.407850 0.132519i −0.0979045 0.995196i \(-0.531214\pi\)
0.505755 + 0.862677i \(0.331214\pi\)
\(360\) 67.4468 + 21.9148i 0.187352 + 0.0608744i
\(361\) −234.412 170.311i −0.649342 0.471774i
\(362\) 246.165i 0.680013i
\(363\) −3.84597 + 483.985i −0.0105950 + 1.33329i
\(364\) 619.105 1.70084
\(365\) −67.2542 + 92.5675i −0.184258 + 0.253610i
\(366\) 139.692 429.928i 0.381672 1.17467i
\(367\) −57.3820 176.604i −0.156354 0.481209i 0.841941 0.539569i \(-0.181413\pi\)
−0.998296 + 0.0583604i \(0.981413\pi\)
\(368\) −163.131 + 118.522i −0.443291 + 0.322070i
\(369\) −229.784 316.270i −0.622720 0.857100i
\(370\) −132.672 + 43.1078i −0.358574 + 0.116508i
\(371\) 418.218 + 135.887i 1.12727 + 0.366273i
\(372\) 183.469 + 133.298i 0.493196 + 0.358328i
\(373\) 268.844i 0.720760i −0.932806 0.360380i \(-0.882647\pi\)
0.932806 0.360380i \(-0.117353\pi\)
\(374\) 812.320 125.352i 2.17198 0.335167i
\(375\) −44.7214 −0.119257
\(376\) 227.714 313.422i 0.605623 0.833568i
\(377\) −158.761 + 488.616i −0.421116 + 1.29606i
\(378\) −61.3050 188.677i −0.162182 0.499146i
\(379\) 243.935 177.229i 0.643627 0.467622i −0.217467 0.976068i \(-0.569780\pi\)
0.861094 + 0.508445i \(0.169780\pi\)
\(380\) 60.7092 + 83.5590i 0.159761 + 0.219892i
\(381\) 102.551 33.3209i 0.269163 0.0874563i
\(382\) 255.220 + 82.9259i 0.668115 + 0.217084i
\(383\) 393.892 + 286.179i 1.02844 + 0.747204i 0.967996 0.250967i \(-0.0807486\pi\)
0.0604431 + 0.998172i \(0.480749\pi\)
\(384\) 540.662i 1.40797i
\(385\) 90.6763 176.228i 0.235523 0.457734i
\(386\) −578.731 −1.49930
\(387\) 153.369 211.094i 0.396302 0.545463i
\(388\) 152.726 470.043i 0.393625 1.21145i
\(389\) 118.077 + 363.404i 0.303540 + 0.934200i 0.980218 + 0.197921i \(0.0634189\pi\)
−0.676678 + 0.736279i \(0.736581\pi\)
\(390\) −312.705 + 227.194i −0.801808 + 0.582548i
\(391\) −362.214 498.544i −0.926377 1.27505i
\(392\) 68.6124 22.2935i 0.175032 0.0568712i
\(393\) 337.889 + 109.787i 0.859767 + 0.279355i
\(394\) 26.1656 + 19.0104i 0.0664102 + 0.0482499i
\(395\) 76.7396i 0.194278i
\(396\) 67.5673 415.902i 0.170625 1.05026i
\(397\) 668.123 1.68293 0.841465 0.540311i \(-0.181693\pi\)
0.841465 + 0.540311i \(0.181693\pi\)
\(398\) −15.0294 + 20.6862i −0.0377624 + 0.0519754i
\(399\) −84.0689 + 258.737i −0.210699 + 0.648465i
\(400\) −12.2746 37.7773i −0.0306864 0.0944431i
\(401\) −291.301 + 211.642i −0.726436 + 0.527787i −0.888434 0.459004i \(-0.848206\pi\)
0.161998 + 0.986791i \(0.448206\pi\)
\(402\) −128.944 177.477i −0.320757 0.441484i
\(403\) −138.358 + 44.9551i −0.343319 + 0.111551i
\(404\) −561.495 182.441i −1.38984 0.451586i
\(405\) 171.857 + 124.861i 0.424337 + 0.308299i
\(406\) 907.352i 2.23486i
\(407\) 100.439 + 199.073i 0.246778 + 0.489124i
\(408\) −440.000 −1.07843
\(409\) −21.2846 + 29.2958i −0.0520406 + 0.0716278i −0.834244 0.551395i \(-0.814096\pi\)
0.782204 + 0.623023i \(0.214096\pi\)
\(410\) 118.766 365.526i 0.289674 0.891526i
\(411\) 148.413 + 456.769i 0.361103 + 1.11136i
\(412\) −84.8763 + 61.6663i −0.206011 + 0.149675i
\(413\) 280.647 + 386.277i 0.679532 + 0.935296i
\(414\) −520.060 + 168.978i −1.25618 + 0.408159i
\(415\) 310.172 + 100.781i 0.747403 + 0.242846i
\(416\) −483.616 351.368i −1.16254 0.844633i
\(417\) 14.0686i 0.0337377i
\(418\) 202.868 201.263i 0.485331 0.481489i
\(419\) −423.543 −1.01084 −0.505421 0.862873i \(-0.668663\pi\)
−0.505421 + 0.862873i \(0.668663\pi\)
\(420\) −231.803 + 319.050i −0.551913 + 0.759643i
\(421\) 211.289 650.280i 0.501873 1.54461i −0.304091 0.952643i \(-0.598353\pi\)
0.805964 0.591964i \(-0.201647\pi\)
\(422\) −72.8591 224.237i −0.172652 0.531368i
\(423\) −484.234 + 351.817i −1.14476 + 0.831718i
\(424\) 145.341 + 200.045i 0.342785 + 0.471803i
\(425\) 115.451 37.5123i 0.271649 0.0882641i
\(426\) 68.1378 + 22.1393i 0.159948 + 0.0519702i
\(427\) 239.366 + 173.909i 0.560575 + 0.407282i
\(428\) 526.779i 1.23079i
\(429\) 435.125 + 438.596i 1.01428 + 1.02237i
\(430\) 256.525 0.596569
\(431\) 75.8653 104.420i 0.176022 0.242273i −0.711886 0.702295i \(-0.752159\pi\)
0.887907 + 0.460022i \(0.152159\pi\)
\(432\) −19.6393 + 60.4436i −0.0454614 + 0.139916i
\(433\) −170.382 524.382i −0.393492 1.21104i −0.930130 0.367231i \(-0.880306\pi\)
0.536638 0.843813i \(-0.319694\pi\)
\(434\) −207.859 + 151.018i −0.478938 + 0.347969i
\(435\) −192.361 264.762i −0.442208 0.608648i
\(436\) 109.703 35.6447i 0.251613 0.0817540i
\(437\) −203.763 66.2066i −0.466277 0.151503i
\(438\) −509.633 370.270i −1.16355 0.845366i
\(439\) 470.583i 1.07194i 0.844236 + 0.535972i \(0.180055\pi\)
−0.844236 + 0.535972i \(0.819945\pi\)
\(440\) 99.4959 50.1988i 0.226127 0.114088i
\(441\) −111.461 −0.252746
\(442\) 616.697 848.811i 1.39524 1.92039i
\(443\) 30.6738 94.4041i 0.0692410 0.213102i −0.910448 0.413622i \(-0.864263\pi\)
0.979689 + 0.200521i \(0.0642634\pi\)
\(444\) −137.108 421.976i −0.308803 0.950397i
\(445\) 231.462 168.167i 0.520140 0.377904i
\(446\) 211.444 + 291.028i 0.474090 + 0.652529i
\(447\) −354.971 + 115.337i −0.794118 + 0.258024i
\(448\) −760.559 247.120i −1.69768 0.551608i
\(449\) −110.271 80.1169i −0.245593 0.178434i 0.458178 0.888860i \(-0.348502\pi\)
−0.703772 + 0.710426i \(0.748502\pi\)
\(450\) 107.719i 0.239375i
\(451\) −606.371 98.5109i −1.34450 0.218428i
\(452\) −391.931 −0.867104
\(453\) −230.440 + 317.173i −0.508697 + 0.700161i
\(454\) −368.761 + 1134.93i −0.812249 + 2.49984i
\(455\) −78.1763 240.602i −0.171816 0.528795i
\(456\) −123.761 + 89.9175i −0.271405 + 0.197188i
\(457\) −18.1014 24.9144i −0.0396092 0.0545174i 0.788753 0.614710i \(-0.210727\pi\)
−0.828362 + 0.560193i \(0.810727\pi\)
\(458\) 405.843 131.866i 0.886120 0.287918i
\(459\) −184.721 60.0196i −0.402443 0.130762i
\(460\) −251.261 182.552i −0.546219 0.396851i
\(461\) 142.653i 0.309442i 0.987958 + 0.154721i \(0.0494478\pi\)
−0.987958 + 0.154721i \(0.950552\pi\)
\(462\) 970.227 + 499.221i 2.10006 + 1.08056i
\(463\) 490.864 1.06018 0.530091 0.847941i \(-0.322158\pi\)
0.530091 + 0.847941i \(0.322158\pi\)
\(464\) 170.854 235.160i 0.368220 0.506811i
\(465\) 28.6362 88.1332i 0.0615833 0.189534i
\(466\) −177.456 546.153i −0.380807 1.17200i
\(467\) 613.182 445.503i 1.31302 0.953968i 0.313033 0.949742i \(-0.398655\pi\)
0.999991 0.00422562i \(-0.00134506\pi\)
\(468\) −316.142 435.132i −0.675517 0.929769i
\(469\) 136.554 44.3691i 0.291160 0.0946037i
\(470\) −559.648 181.841i −1.19074 0.386895i
\(471\) −557.437 405.001i −1.18352 0.859875i
\(472\) 268.481i 0.568816i
\(473\) −62.5329 405.231i −0.132205 0.856725i
\(474\) −422.492 −0.891334
\(475\) 24.8075 34.1445i 0.0522262 0.0718833i
\(476\) 330.795 1018.08i 0.694948 2.13883i
\(477\) −118.053 363.330i −0.247491 0.761699i
\(478\) 434.336 315.564i 0.908653 0.660175i
\(479\) −364.989 502.364i −0.761981 1.04878i −0.997047 0.0767971i \(-0.975531\pi\)
0.235066 0.971979i \(-0.424469\pi\)
\(480\) 362.148 117.669i 0.754475 0.245144i
\(481\) 270.694 + 87.9540i 0.562774 + 0.182856i
\(482\) 570.953 + 414.821i 1.18455 + 0.860625i
\(483\) 818.059i 1.69370i
\(484\) −384.920 538.749i −0.795290 1.11312i
\(485\) −201.957 −0.416407
\(486\) −557.177 + 766.889i −1.14646 + 1.57796i
\(487\) −121.664 + 374.442i −0.249823 + 0.768876i 0.744983 + 0.667084i \(0.232458\pi\)
−0.994806 + 0.101792i \(0.967542\pi\)
\(488\) 51.4114 + 158.228i 0.105351 + 0.324238i
\(489\) 819.299 595.255i 1.67546 1.21729i
\(490\) −64.4098 88.6525i −0.131449 0.180924i
\(491\) −616.943 + 200.457i −1.25650 + 0.408262i −0.860247 0.509878i \(-0.829691\pi\)
−0.396256 + 0.918140i \(0.629691\pi\)
\(492\) 1162.59 + 377.748i 2.36298 + 0.767780i
\(493\) 718.673 + 522.146i 1.45775 + 1.05912i
\(494\) 364.776i 0.738413i
\(495\) −170.163 + 26.2586i −0.343764 + 0.0530476i
\(496\) 82.3081 0.165944
\(497\) −27.5623 + 37.9363i −0.0554574 + 0.0763305i
\(498\) −554.853 + 1707.66i −1.11416 + 3.42904i
\(499\) −221.573 681.931i −0.444034 1.36660i −0.883540 0.468356i \(-0.844846\pi\)
0.439506 0.898240i \(-0.355154\pi\)
\(500\) 49.4959 35.9609i 0.0989919 0.0719218i
\(501\) 177.236 + 243.945i 0.353765 + 0.486915i
\(502\) −310.167 + 100.779i −0.617862 + 0.200755i
\(503\) 596.635 + 193.858i 1.18615 + 0.385404i 0.834649 0.550782i \(-0.185671\pi\)
0.351503 + 0.936187i \(0.385671\pi\)
\(504\) −206.741 150.206i −0.410201 0.298028i
\(505\) 241.250i 0.477723i
\(506\) −393.150 + 764.081i −0.776977 + 1.51004i
\(507\) 112.636 0.222162
\(508\) −86.7061 + 119.341i −0.170681 + 0.234923i
\(509\) −79.8228 + 245.669i −0.156823 + 0.482651i −0.998341 0.0575779i \(-0.981662\pi\)
0.841518 + 0.540229i \(0.181662\pi\)
\(510\) 206.525 + 635.618i 0.404951 + 1.24631i
\(511\) 333.559 242.345i 0.652758 0.474256i
\(512\) 283.422 + 390.097i 0.553559 + 0.761908i
\(513\) −64.2229 + 20.8673i −0.125191 + 0.0406770i
\(514\) 754.325 + 245.095i 1.46756 + 0.476839i
\(515\) 34.6829 + 25.1986i 0.0673453 + 0.0489293i
\(516\) 815.900i 1.58120i
\(517\) −150.828 + 928.400i −0.291737 + 1.79575i
\(518\) 502.676 0.970416
\(519\) −263.475 + 362.643i −0.507659 + 0.698733i
\(520\) 43.9590 135.292i 0.0845365 0.260177i
\(521\) 92.8597 + 285.793i 0.178234 + 0.548547i 0.999766 0.0216146i \(-0.00688069\pi\)
−0.821533 + 0.570161i \(0.806881\pi\)
\(522\) 637.723 463.333i 1.22169 0.887611i
\(523\) 247.497 + 340.650i 0.473225 + 0.651338i 0.977185 0.212389i \(-0.0681243\pi\)
−0.503961 + 0.863727i \(0.668124\pi\)
\(524\) −462.243 + 150.192i −0.882143 + 0.286626i
\(525\) 153.262 + 49.7980i 0.291928 + 0.0948533i
\(526\) −722.934 525.242i −1.37440 0.998559i
\(527\) 251.541i 0.477308i
\(528\) −157.453 312.078i −0.298206 0.591056i
\(529\) 115.244 0.217853
\(530\) 220.762 303.853i 0.416533 0.573308i
\(531\) 128.181 394.500i 0.241395 0.742937i
\(532\) −115.009 353.962i −0.216183 0.665341i
\(533\) −634.408 + 460.924i −1.19026 + 0.864773i
\(534\) 925.850 + 1274.32i 1.73380 + 2.38637i
\(535\) 204.721 66.5180i 0.382657 0.124333i
\(536\) 76.7852 + 24.9490i 0.143256 + 0.0465467i
\(537\) −674.741 490.228i −1.25650 0.912902i
\(538\) 1018.07i 1.89232i
\(539\) −124.343 + 123.359i −0.230692 + 0.228866i
\(540\) −97.8885 −0.181275
\(541\) 112.764 155.206i 0.208436 0.286888i −0.691981 0.721916i \(-0.743262\pi\)
0.900417 + 0.435028i \(0.143262\pi\)
\(542\) −206.661 + 636.036i −0.381293 + 1.17350i
\(543\) −98.8653 304.276i −0.182072 0.560361i
\(544\) −836.205 + 607.539i −1.53714 + 1.11680i
\(545\) −27.7051 38.1328i −0.0508350 0.0699684i
\(546\) 1324.64 430.402i 2.42608 0.788281i
\(547\) 189.538 + 61.5846i 0.346504 + 0.112586i 0.477099 0.878850i \(-0.341688\pi\)
−0.130594 + 0.991436i \(0.541688\pi\)
\(548\) −531.551 386.194i −0.969984 0.704734i
\(549\) 257.041i 0.468199i
\(550\) −119.217 120.168i −0.216759 0.218488i
\(551\) 308.849 0.560525
\(552\) 270.381 372.147i 0.489820 0.674180i
\(553\) 85.4508 262.991i 0.154522 0.475571i
\(554\) −426.673 1313.16i −0.770168 2.37033i
\(555\) −146.679 + 106.568i −0.264286 + 0.192015i
\(556\) −11.3127 15.5706i −0.0203466 0.0280047i
\(557\) 720.414 234.077i 1.29338 0.420245i 0.420108 0.907474i \(-0.361992\pi\)
0.873274 + 0.487229i \(0.161992\pi\)
\(558\) 212.284 + 68.9751i 0.380437 + 0.123611i
\(559\) −423.435 307.643i −0.757486 0.550346i
\(560\) 143.133i 0.255594i
\(561\) 953.738 481.190i 1.70007 0.857737i
\(562\) −288.328 −0.513039
\(563\) 89.0871 122.618i 0.158236 0.217794i −0.722536 0.691333i \(-0.757024\pi\)
0.880773 + 0.473539i \(0.157024\pi\)
\(564\) 578.361 1780.01i 1.02546 3.15605i
\(565\) 49.4903 + 152.316i 0.0875935 + 0.269585i
\(566\) 727.818 528.791i 1.28590 0.934260i
\(567\) −449.926 619.271i −0.793521 1.09219i
\(568\) −25.0770 + 8.14802i −0.0441497 + 0.0143451i
\(569\) 836.163 + 271.686i 1.46953 + 0.477480i 0.930967 0.365104i \(-0.118967\pi\)
0.538565 + 0.842584i \(0.318967\pi\)
\(570\) 187.984 + 136.578i 0.329796 + 0.239611i
\(571\) 324.644i 0.568554i 0.958742 + 0.284277i \(0.0917536\pi\)
−0.958742 + 0.284277i \(0.908246\pi\)
\(572\) −834.259 135.534i −1.45850 0.236947i
\(573\) 348.774 0.608681
\(574\) −814.037 + 1120.43i −1.41818 + 1.95196i
\(575\) −39.2173 + 120.698i −0.0682040 + 0.209910i
\(576\) 214.688 + 660.741i 0.372722 + 1.14712i
\(577\) 421.177 306.003i 0.729943 0.530335i −0.159602 0.987181i \(-0.551021\pi\)
0.889545 + 0.456847i \(0.151021\pi\)
\(578\) −543.506 748.072i −0.940322 1.29424i
\(579\) −715.351 + 232.432i −1.23549 + 0.401437i
\(580\) 425.795 + 138.349i 0.734130 + 0.238533i
\(581\) −950.755 690.764i −1.63641 1.18892i
\(582\) 1111.88i 1.91045i
\(583\) −533.811 274.667i −0.915628 0.471127i
\(584\) 231.840 0.396986
\(585\) −129.184 + 177.807i −0.220828 + 0.303944i
\(586\) −329.140 + 1012.99i −0.561673 + 1.72865i
\(587\) −305.959 941.646i −0.521225 1.60417i −0.771661 0.636034i \(-0.780574\pi\)
0.250436 0.968133i \(-0.419426\pi\)
\(588\) 281.967 204.861i 0.479537 0.348404i
\(589\) 51.4044 + 70.7521i 0.0872741 + 0.120122i
\(590\) 387.844 126.018i 0.657363 0.213590i
\(591\) 39.9775 + 12.9895i 0.0676439 + 0.0219788i
\(592\) −130.280 94.6537i −0.220067 0.159888i
\(593\) 289.152i 0.487609i −0.969824 0.243804i \(-0.921604\pi\)
0.969824 0.243804i \(-0.0783955\pi\)
\(594\) 41.3050 + 267.668i 0.0695370 + 0.450619i
\(595\) −437.426 −0.735171
\(596\) 300.125 413.086i 0.503565 0.693097i
\(597\) −10.2693 + 31.6057i −0.0172015 + 0.0529409i
\(598\) 338.953 + 1043.19i 0.566812 + 1.74447i
\(599\) −674.089 + 489.754i −1.12536 + 0.817620i −0.985013 0.172483i \(-0.944821\pi\)
−0.140345 + 0.990103i \(0.544821\pi\)
\(600\) 53.2624 + 73.3094i 0.0887706 + 0.122182i
\(601\) −89.9741 + 29.2343i −0.149707 + 0.0486428i −0.382912 0.923785i \(-0.625079\pi\)
0.233205 + 0.972428i \(0.425079\pi\)
\(602\) −879.123 285.645i −1.46034 0.474493i
\(603\) −100.915 73.3189i −0.167355 0.121590i
\(604\) 536.334i 0.887970i
\(605\) −160.768 + 217.620i −0.265732 + 0.359703i
\(606\) −1328.21 −2.19177
\(607\) −124.839 + 171.826i −0.205666 + 0.283074i −0.899373 0.437183i \(-0.855976\pi\)
0.693707 + 0.720257i \(0.255976\pi\)
\(608\) −111.048 + 341.770i −0.182645 + 0.562123i
\(609\) 364.413 + 1121.55i 0.598380 + 1.84162i
\(610\) 204.443 148.536i 0.335152 0.243502i
\(611\) 705.710 + 971.327i 1.15501 + 1.58973i
\(612\) −884.468 + 287.381i −1.44521 + 0.469577i
\(613\) −750.498 243.852i −1.22430 0.397801i −0.375656 0.926759i \(-0.622583\pi\)
−0.848648 + 0.528958i \(0.822583\pi\)
\(614\) 450.238 + 327.117i 0.733287 + 0.532764i
\(615\) 499.514i 0.812217i
\(616\) −396.875 + 61.2434i −0.644277 + 0.0994211i
\(617\) 181.544 0.294237 0.147118 0.989119i \(-0.453000\pi\)
0.147118 + 0.989119i \(0.453000\pi\)
\(618\) −138.731 + 190.947i −0.224484 + 0.308976i
\(619\) −11.1606 + 34.3488i −0.0180301 + 0.0554908i −0.959667 0.281140i \(-0.909287\pi\)
0.941637 + 0.336631i \(0.109287\pi\)
\(620\) 39.1753 + 120.569i 0.0631860 + 0.194466i
\(621\) 164.276 119.353i 0.264534 0.192195i
\(622\) −675.055 929.133i −1.08530 1.49378i
\(623\) −980.491 + 318.581i −1.57382 + 0.511366i
\(624\) −424.354 137.881i −0.680055 0.220963i
\(625\) −20.2254 14.6946i −0.0323607 0.0235114i
\(626\) 976.745i 1.56030i
\(627\) 169.927 330.251i 0.271016 0.526716i
\(628\) 942.616 1.50098
\(629\) 289.271 398.147i 0.459890 0.632984i
\(630\) −119.947 + 369.158i −0.190392 + 0.585965i
\(631\) 311.846 + 959.763i 0.494209 + 1.52102i 0.818186 + 0.574954i \(0.194980\pi\)
−0.323976 + 0.946065i \(0.605020\pi\)
\(632\) 125.795 91.3956i 0.199043 0.144613i
\(633\) −180.118 247.911i −0.284546 0.391644i
\(634\) 804.340 261.346i 1.26867 0.412217i
\(635\) 57.3278 + 18.6269i 0.0902800 + 0.0293337i
\(636\) 966.433 + 702.155i 1.51955 + 1.10402i
\(637\) 223.580i 0.350989i
\(638\) 198.636 1222.68i 0.311342 1.91642i
\(639\) 40.7376 0.0637521
\(640\) −177.652 + 244.517i −0.277581 + 0.382058i
\(641\) −33.2415 + 102.307i −0.0518588 + 0.159605i −0.973632 0.228125i \(-0.926741\pi\)
0.921773 + 0.387730i \(0.126741\pi\)
\(642\) 366.217 + 1127.10i 0.570431 + 1.75561i
\(643\) 21.8723 15.8911i 0.0340160 0.0247141i −0.570647 0.821195i \(-0.693308\pi\)
0.604663 + 0.796481i \(0.293308\pi\)
\(644\) 657.809 + 905.397i 1.02144 + 1.40590i
\(645\) 317.082 103.026i 0.491600 0.159731i
\(646\) −599.853 194.904i −0.928565 0.301709i
\(647\) 903.123 + 656.158i 1.39586 + 1.01415i 0.995193 + 0.0979314i \(0.0312226\pi\)
0.400670 + 0.916222i \(0.368777\pi\)
\(648\) 430.423i 0.664233i
\(649\) −293.615 581.957i −0.452412 0.896698i
\(650\) −216.074 −0.332421
\(651\) −196.276 + 270.150i −0.301499 + 0.414977i
\(652\) −428.118 + 1317.61i −0.656623 + 2.02088i
\(653\) −338.002 1040.26i −0.517615 1.59305i −0.778474 0.627677i \(-0.784006\pi\)
0.260859 0.965377i \(-0.415994\pi\)
\(654\) 209.941 152.531i 0.321011 0.233228i
\(655\) 116.738 + 160.676i 0.178225 + 0.245306i
\(656\) 421.952 137.100i 0.643219 0.208995i
\(657\) −340.659 110.687i −0.518507 0.168473i
\(658\) 1715.46 + 1246.35i 2.60708 + 1.89416i
\(659\) 587.822i 0.891991i 0.895035 + 0.445996i \(0.147150\pi\)
−0.895035 + 0.445996i \(0.852850\pi\)
\(660\) 382.207 379.182i 0.579101 0.574517i
\(661\) 389.155 0.588736 0.294368 0.955692i \(-0.404891\pi\)
0.294368 + 0.955692i \(0.404891\pi\)
\(662\) −744.737 + 1025.04i −1.12498 + 1.54840i
\(663\) 421.378 1296.87i 0.635562 1.95606i
\(664\) −204.205 628.478i −0.307537 0.946502i
\(665\) −123.037 + 89.3916i −0.185018 + 0.134423i
\(666\) −256.688 353.301i −0.385417 0.530481i
\(667\) −883.251 + 286.986i −1.32421 + 0.430263i
\(668\) −392.317 127.471i −0.587300 0.190825i
\(669\) 378.243 + 274.810i 0.565386 + 0.410777i
\(670\) 122.633i 0.183035i
\(671\) −284.479 286.749i −0.423963 0.427345i
\(672\) −1372.13 −2.04185
\(673\) 602.060 828.664i 0.894591 1.23130i −0.0775708 0.996987i \(-0.524716\pi\)
0.972162 0.234312i \(-0.0752836\pi\)
\(674\) 440.410 1355.44i 0.653428 2.01104i
\(675\) 12.3607 + 38.0423i 0.0183121 + 0.0563589i
\(676\) −124.662 + 90.5719i −0.184411 + 0.133982i
\(677\) 145.396 + 200.121i 0.214766 + 0.295599i 0.902784 0.430093i \(-0.141519\pi\)
−0.688019 + 0.725693i \(0.741519\pi\)
\(678\) −838.577 + 272.470i −1.23684 + 0.401874i
\(679\) 692.118 + 224.883i 1.01932 + 0.331197i
\(680\) −198.992 144.576i −0.292635 0.212612i
\(681\) 1550.95i 2.27746i
\(682\) 313.156 157.997i 0.459173 0.231667i
\(683\) −979.967 −1.43480 −0.717399 0.696662i \(-0.754668\pi\)
−0.717399 + 0.696662i \(0.754668\pi\)
\(684\) −190.050 + 261.581i −0.277851 + 0.382428i
\(685\) −82.9656 + 255.342i −0.121118 + 0.372762i
\(686\) −253.473 780.110i −0.369494 1.13719i
\(687\) 448.689 325.992i 0.653113 0.474515i
\(688\) 174.058 + 239.570i 0.252991 + 0.348212i
\(689\) −728.806 + 236.804i −1.05777 + 0.343692i
\(690\) −664.508 215.912i −0.963056 0.312916i
\(691\) 537.473 + 390.497i 0.777818 + 0.565118i 0.904323 0.426848i \(-0.140376\pi\)
−0.126505 + 0.991966i \(0.540376\pi\)
\(692\) 613.222i 0.886160i
\(693\) 612.397 + 99.4899i 0.883690 + 0.143564i
\(694\) 526.217 0.758237
\(695\) −4.62269 + 6.36259i −0.00665136 + 0.00915481i
\(696\) −204.912 + 630.654i −0.294413 + 0.906111i
\(697\) 418.992 + 1289.52i 0.601136 + 1.85011i
\(698\) 430.113 312.496i 0.616208 0.447702i
\(699\) −438.695 603.812i −0.627604 0.863823i
\(700\) −209.668 + 68.1253i −0.299526 + 0.0973219i
\(701\) −984.515 319.888i −1.40444 0.456332i −0.493819 0.869565i \(-0.664399\pi\)
−0.910625 + 0.413233i \(0.864399\pi\)
\(702\) 279.692 + 203.208i 0.398422 + 0.289470i
\(703\) 171.103i 0.243390i
\(704\) 970.772 + 499.501i 1.37894 + 0.709519i
\(705\) −764.794 −1.08481
\(706\) 894.622 1231.34i 1.26717 1.74411i
\(707\) 268.636 826.777i 0.379966 1.16942i
\(708\) 400.813 + 1233.57i 0.566120 + 1.74234i
\(709\) 996.643 724.104i 1.40570 1.02130i 0.411773 0.911287i \(-0.364910\pi\)
0.993930 0.110016i \(-0.0350903\pi\)
\(710\) 23.5410 + 32.4014i 0.0331564 + 0.0456358i
\(711\) −228.475 + 74.2361i −0.321344 + 0.104411i
\(712\) −551.336 179.140i −0.774348 0.251601i
\(713\) −212.751 154.572i −0.298388 0.216792i
\(714\) 2408.26i 3.37292i
\(715\) 52.6722 + 341.331i 0.0736674 + 0.477386i
\(716\) 1140.98 1.59354
\(717\) 410.132 564.498i 0.572011 0.787305i
\(718\) −146.418 + 450.629i −0.203925 + 0.627617i
\(719\) 229.638 + 706.754i 0.319385 + 0.982967i 0.973912 + 0.226928i \(0.0728682\pi\)
−0.654526 + 0.756039i \(0.727132\pi\)
\(720\) 100.599 73.0896i 0.139721 0.101513i
\(721\) −90.8009 124.977i −0.125937 0.173338i
\(722\) 848.112 275.568i 1.17467 0.381673i
\(723\) 872.338 + 283.440i 1.20655 + 0.392033i
\(724\) 354.092 + 257.263i 0.489077 + 0.355336i
\(725\) 182.946i 0.252339i
\(726\) −1198.12 885.113i −1.65030 1.21916i
\(727\) −10.4678 −0.0143987 −0.00719934 0.999974i \(-0.502292\pi\)
−0.00719934 + 0.999974i \(0.502292\pi\)
\(728\) −301.299 + 414.703i −0.413873 + 0.569647i
\(729\) −116.499 + 358.548i −0.159807 + 0.491836i
\(730\) −108.820 334.912i −0.149068 0.458784i
\(731\) −732.148 + 531.937i −1.00157 + 0.727683i
\(732\) 472.433 + 650.249i 0.645401 + 0.888318i
\(733\) 961.151 312.297i 1.31126 0.426053i 0.431773 0.901982i \(-0.357888\pi\)
0.879484 + 0.475929i \(0.157888\pi\)
\(734\) 543.530 + 176.604i 0.740504 + 0.240604i
\(735\) −115.220 83.7121i −0.156762 0.113894i
\(736\) 1080.59i 1.46819i
\(737\) −193.723 + 29.8942i −0.262854 + 0.0405621i
\(738\) 1203.16 1.63030
\(739\) −339.077 + 466.699i −0.458832 + 0.631528i −0.974266 0.225401i \(-0.927631\pi\)
0.515434 + 0.856929i \(0.327631\pi\)
\(740\) 76.6459 235.892i 0.103576 0.318773i
\(741\) −146.502 450.888i −0.197709 0.608485i
\(742\) −1094.91 + 795.498i −1.47562 + 1.07210i
\(743\) 677.947 + 933.113i 0.912445 + 1.25587i 0.966325 + 0.257325i \(0.0828412\pi\)
−0.0538800 + 0.998547i \(0.517159\pi\)
\(744\) −178.577 + 58.0233i −0.240023 + 0.0779883i
\(745\) −198.435 64.4753i −0.266355 0.0865440i
\(746\) 669.393 + 486.342i 0.897310 + 0.651934i
\(747\) 1020.96i 1.36675i
\(748\) −668.632 + 1299.47i −0.893893 + 1.73727i
\(749\) −775.659 −1.03559
\(750\) 80.9017 111.352i 0.107869 0.148469i
\(751\) 447.403 1376.97i 0.595743 1.83351i 0.0447527 0.998998i \(-0.485750\pi\)
0.550991 0.834511i \(-0.314250\pi\)
\(752\) −209.911 646.041i −0.279137 0.859097i
\(753\) −342.912 + 249.140i −0.455394 + 0.330863i
\(754\) −929.402 1279.21i −1.23263 1.69657i
\(755\) −208.435 + 67.7245i −0.276072 + 0.0897013i
\(756\) 335.469 + 109.000i 0.443742 + 0.144181i
\(757\) −427.516 310.608i −0.564750 0.410315i 0.268444 0.963295i \(-0.413490\pi\)
−0.833194 + 0.552980i \(0.813490\pi\)
\(758\) 927.982i 1.22425i
\(759\) −179.088 + 1102.35i −0.235953 + 1.45238i
\(760\) −85.5166 −0.112522
\(761\) 128.577 176.972i 0.168958 0.232551i −0.716138 0.697958i \(-0.754092\pi\)
0.885097 + 0.465407i \(0.154092\pi\)
\(762\) −102.551 + 315.620i −0.134581 + 0.414199i
\(763\) 52.4853 + 161.533i 0.0687881 + 0.211708i
\(764\) −386.010 + 280.453i −0.505249 + 0.367085i
\(765\) 223.369 + 307.441i 0.291985 + 0.401883i
\(766\) −1425.11 + 463.048i −1.86046 + 0.604501i
\(767\) −791.329 257.118i −1.03172 0.335226i
\(768\) −61.4853 44.6717i −0.0800590 0.0581662i
\(769\) 162.687i 0.211557i −0.994390 0.105778i \(-0.966267\pi\)
0.994390 0.105778i \(-0.0337334\pi\)
\(770\) 274.754 + 544.574i 0.356824 + 0.707239i
\(771\) 1030.83 1.33701
\(772\) 604.823 832.468i 0.783450 1.07833i
\(773\) 100.881 310.480i 0.130506 0.401656i −0.864358 0.502877i \(-0.832275\pi\)
0.994864 + 0.101221i \(0.0322750\pi\)
\(774\) 248.156 + 763.745i 0.320615 + 0.986751i
\(775\) 41.9098 30.4493i 0.0540772 0.0392894i
\(776\) 240.528 + 331.058i 0.309959 + 0.426621i
\(777\) 621.341 201.886i 0.799667 0.259828i
\(778\) −1118.44 363.404i −1.43759 0.467100i
\(779\) 381.376 + 277.086i 0.489572 + 0.355695i
\(780\) 687.243i 0.881081i
\(781\) 45.4458 45.0861i 0.0581893 0.0577287i
\(782\) 1896.58 2.42529
\(783\) −172.053 + 236.810i −0.219735 + 0.302439i
\(784\) 39.0896 120.305i 0.0498592 0.153451i
\(785\) −119.027 366.327i −0.151627 0.466659i
\(786\) −884.604 + 642.702i −1.12545 + 0.817687i
\(787\) 227.621 + 313.294i 0.289226 + 0.398086i 0.928763 0.370675i \(-0.120874\pi\)
−0.639536 + 0.768761i \(0.720874\pi\)
\(788\) −54.6906 + 17.7701i −0.0694043 + 0.0225508i
\(789\) −1104.54 358.888i −1.39993 0.454865i
\(790\) −191.074 138.823i −0.241866 0.175726i
\(791\) 577.101i 0.729585i
\(792\) 245.706 + 247.666i 0.310234 + 0.312710i
\(793\) −515.601 −0.650190
\(794\) −1208.65 + 1663.56i −1.52222 + 2.09516i
\(795\) 150.843 464.247i 0.189739 0.583958i
\(796\) −14.0488 43.2377i −0.0176492 0.0543187i
\(797\) 17.7812 12.9188i 0.0223101 0.0162092i −0.576574 0.817045i \(-0.695611\pi\)
0.598884 + 0.800835i \(0.295611\pi\)
\(798\) −492.148 677.383i −0.616727 0.848851i
\(799\) 1974.36 641.509i 2.47104 0.802890i
\(800\) 202.447 + 65.7789i 0.253058 + 0.0822237i
\(801\) 724.592 + 526.447i 0.904609 + 0.657237i
\(802\) 1108.17i 1.38176i
\(803\) −502.533 + 253.543i −0.625819 + 0.315745i
\(804\) 390.046 0.485132
\(805\) 268.799 369.971i 0.333912 0.459591i
\(806\) 138.358 425.821i 0.171660 0.528314i
\(807\) 408.879 + 1258.40i 0.506666 + 1.55936i
\(808\) 395.469 287.325i 0.489442 0.355600i
\(809\) 599.477 + 825.109i 0.741010 + 1.01991i 0.998560 + 0.0536476i \(0.0170848\pi\)
−0.257550 + 0.966265i \(0.582915\pi\)
\(810\) −621.783 + 202.030i −0.767633 + 0.249419i
\(811\) −940.701 305.652i −1.15993 0.376883i −0.335053 0.942199i \(-0.608754\pi\)
−0.824875 + 0.565316i \(0.808754\pi\)
\(812\) −1305.17 948.260i −1.60735 1.16781i
\(813\) 869.183i 1.06911i
\(814\) −677.368 110.045i −0.832147 0.135190i
\(815\) 566.122 0.694628
\(816\) −453.475 + 624.155i −0.555729 + 0.764896i
\(817\) −97.2291 + 299.240i −0.119007 + 0.366267i
\(818\) −34.4392 105.993i −0.0421018 0.129576i
\(819\) 640.713 465.505i 0.782311 0.568382i
\(820\) 401.664 + 552.843i 0.489834 + 0.674199i
\(821\) −729.758 + 237.113i −0.888864 + 0.288810i −0.717633 0.696421i \(-0.754775\pi\)
−0.171231 + 0.985231i \(0.554775\pi\)
\(822\) −1405.79 456.769i −1.71021 0.555680i
\(823\) −674.965 490.391i −0.820128 0.595858i 0.0966212 0.995321i \(-0.469196\pi\)
−0.916749 + 0.399463i \(0.869196\pi\)
\(824\) 86.8648i 0.105418i
\(825\) −195.623 100.656i −0.237119 0.122007i
\(826\) −1469.49 −1.77904
\(827\) −329.248 + 453.171i −0.398123 + 0.547970i −0.960272 0.279067i \(-0.909975\pi\)
0.562148 + 0.827036i \(0.309975\pi\)
\(828\) 300.443 924.669i 0.362854 1.11675i
\(829\) −371.006 1141.84i −0.447534 1.37737i −0.879681 0.475565i \(-0.842244\pi\)
0.432147 0.901803i \(-0.357756\pi\)
\(830\) −812.041 + 589.983i −0.978363 + 0.710822i
\(831\) −1054.79 1451.80i −1.26931 1.74705i
\(832\) 1325.38 430.643i 1.59301 0.517600i
\(833\) 367.664 + 119.461i 0.441374 + 0.143411i
\(834\) −35.0294 25.4504i −0.0420017 0.0305160i
\(835\) 168.562i 0.201870i
\(836\) 77.4888 + 502.149i 0.0926899 + 0.600657i
\(837\) −82.8854 −0.0990268
\(838\) 766.196 1054.58i 0.914315 1.25845i
\(839\) 162.370 499.723i 0.193528 0.595618i −0.806463 0.591285i \(-0.798621\pi\)
0.999991 0.00433286i \(-0.00137920\pi\)
\(840\) −100.902 310.543i −0.120121 0.369695i
\(841\) 402.703 292.581i 0.478838 0.347896i
\(842\) 1236.91 + 1702.45i 1.46901 + 2.02192i
\(843\) −356.393 + 115.799i −0.422768 + 0.137366i
\(844\) 398.695 + 129.544i 0.472387 + 0.153488i
\(845\) 50.9402 + 37.0102i 0.0602843 + 0.0437991i
\(846\) 1842.14i 2.17746i
\(847\) 793.284 566.779i 0.936581 0.669160i
\(848\) 433.562 0.511276
\(849\) 687.259 945.930i 0.809492 1.11417i
\(850\) −115.451 + 355.321i −0.135825 + 0.418025i
\(851\) 158.991 + 489.324i 0.186828 + 0.574998i
\(852\) −103.056 + 74.8744i −0.120957 + 0.0878807i
\(853\) 563.318 + 775.340i 0.660396 + 0.908957i 0.999494 0.0317938i \(-0.0101220\pi\)
−0.339099 + 0.940751i \(0.610122\pi\)
\(854\) −866.033 + 281.391i −1.01409 + 0.329498i
\(855\) 125.656 + 40.8281i 0.146966 + 0.0477522i
\(856\) −352.859 256.367i −0.412219 0.299494i
\(857\) 56.2536i 0.0656402i −0.999461 0.0328201i \(-0.989551\pi\)
0.999461 0.0328201i \(-0.0104488\pi\)
\(858\) −1879.21 + 289.988i −2.19022 + 0.337982i
\(859\) −1517.29 −1.76634 −0.883171 0.469051i \(-0.844596\pi\)
−0.883171 + 0.469051i \(0.844596\pi\)
\(860\) −268.090 + 368.994i −0.311733 + 0.429063i
\(861\) −556.217 + 1711.86i −0.646012 + 1.98822i
\(862\) 122.753 + 377.794i 0.142405 + 0.438276i
\(863\) 887.101 644.517i 1.02793 0.746833i 0.0600344 0.998196i \(-0.480879\pi\)
0.967893 + 0.251363i \(0.0808789\pi\)
\(864\) −200.190 275.538i −0.231702 0.318910i
\(865\) −238.316 + 77.4334i −0.275509 + 0.0895184i
\(866\) 1613.88 + 524.382i 1.86360 + 0.605522i
\(867\) −972.253 706.383i −1.12140 0.814744i
\(868\) 456.819i 0.526289i
\(869\) −172.721 + 335.680i −0.198758 + 0.386283i
\(870\) 1007.21 1.15772
\(871\) −147.071 + 202.426i −0.168853 + 0.232406i
\(872\) −29.5128 + 90.8310i −0.0338449 + 0.104164i
\(873\) −195.369 601.283i −0.223790 0.688755i
\(874\) 533.458 387.580i 0.610364 0.443456i
\(875\) 52.9508 + 72.8806i 0.0605153 + 0.0832921i
\(876\) 1065.22 346.111i 1.21600 0.395104i
\(877\) −1081.62 351.441i −1.23332 0.400731i −0.381405 0.924408i \(-0.624560\pi\)
−0.851917 + 0.523677i \(0.824560\pi\)
\(878\) −1171.70 851.293i −1.33451 0.969582i
\(879\) 1384.31i 1.57487i
\(880\) 31.3344 192.875i 0.0356072 0.219176i
\(881\) 850.822 0.965746 0.482873 0.875690i \(-0.339593\pi\)
0.482873 + 0.875690i \(0.339593\pi\)
\(882\) 201.635 277.526i 0.228611 0.314656i
\(883\) 157.572 484.958i 0.178451 0.549216i −0.821323 0.570463i \(-0.806764\pi\)
0.999774 + 0.0212471i \(0.00676368\pi\)
\(884\) 576.459 + 1774.16i 0.652103 + 2.00697i
\(885\) 428.790 311.534i 0.484509 0.352016i
\(886\) 179.567 + 247.153i 0.202672 + 0.278954i
\(887\) −554.947 + 180.313i −0.625645 + 0.203284i −0.604645 0.796495i \(-0.706685\pi\)
−0.0209998 + 0.999779i \(0.506685\pi\)
\(888\) 349.384 + 113.522i 0.393450 + 0.127840i
\(889\) −175.724 127.671i −0.197665 0.143612i
\(890\) 880.535i 0.989366i
\(891\) 470.717 + 932.979i 0.528302 + 1.04711i
\(892\) −639.603 −0.717043
\(893\) 424.240 583.917i 0.475073 0.653882i
\(894\) 354.971 1092.49i 0.397059 1.22202i
\(895\) −144.075 443.416i −0.160977 0.495437i
\(896\) 881.096 640.153i 0.983366 0.714457i
\(897\) 837.939 + 1153.32i 0.934157 + 1.28576i
\(898\) 398.966 129.632i 0.444283 0.144356i
\(899\) 360.535 + 117.145i 0.401040 + 0.130306i
\(900\) 154.947 + 112.575i 0.172163 + 0.125084i
\(901\) 1325.01i 1.47060i
\(902\) 1342.22 1331.59i 1.48805 1.47627i
\(903\) −1201.38 −1.33043
\(904\) 190.741 262.532i 0.210996 0.290412i
\(905\) 55.2674 170.096i 0.0610690 0.187951i
\(906\) −372.859 1147.54i −0.411544 1.26660i
\(907\) −518.177 + 376.478i −0.571309 + 0.415080i −0.835580 0.549368i \(-0.814868\pi\)
0.264272 + 0.964448i \(0.414868\pi\)
\(908\) −1247.14 1716.54i −1.37350 1.89046i
\(909\) −718.269 + 233.380i −0.790175 + 0.256744i
\(910\) 740.496 + 240.602i 0.813732 + 0.264398i
\(911\) 885.922 + 643.660i 0.972472 + 0.706542i 0.956014 0.293322i \(-0.0947609\pi\)
0.0164582 + 0.999865i \(0.494761\pi\)
\(912\) 268.230i 0.294112i
\(913\) 1129.94 + 1138.96i 1.23762 + 1.24749i
\(914\) 94.7802 0.103698
\(915\) 193.050 265.710i 0.210983 0.290393i
\(916\) −234.459 + 721.591i −0.255960 + 0.787763i
\(917\) −221.151 680.633i −0.241168 0.742238i
\(918\) 483.607 351.361i 0.526805 0.382746i
\(919\) −729.402 1003.94i −0.793691 1.09242i −0.993639 0.112615i \(-0.964077\pi\)
0.199948 0.979807i \(-0.435923\pi\)
\(920\) 244.562 79.4629i 0.265828 0.0863727i
\(921\) 687.902 + 223.513i 0.746908 + 0.242685i
\(922\) −355.190 258.061i −0.385239 0.279893i
\(923\) 81.7158i 0.0885328i
\(924\) −1732.07 + 873.881i −1.87453 + 0.945759i
\(925\) −101.353 −0.109570
\(926\) −887.982 + 1222.20i −0.958943 + 1.31987i
\(927\) −41.4718 + 127.637i −0.0447376 + 0.137688i
\(928\) 481.359 + 1481.47i 0.518706 + 1.59641i
\(929\) −834.947 + 606.624i −0.898758 + 0.652986i −0.938147 0.346238i \(-0.887459\pi\)
0.0393884 + 0.999224i \(0.487459\pi\)
\(930\) 167.639 + 230.736i 0.180257 + 0.248103i
\(931\) 127.828 41.5337i 0.137301 0.0446119i
\(932\) 971.063 + 315.517i 1.04191 + 0.338538i
\(933\) −1207.57 877.354i −1.29429 0.940358i
\(934\) 2332.68i 2.49752i
\(935\) 589.443 + 95.7608i 0.630420 + 0.102418i
\(936\) 445.326 0.475776
\(937\) 180.209 248.036i 0.192325 0.264713i −0.701954 0.712222i \(-0.747689\pi\)
0.894279 + 0.447509i \(0.147689\pi\)
\(938\) −136.554 + 420.271i −0.145580 + 0.448050i
\(939\) −392.283 1207.32i −0.417767 1.28575i
\(940\) 846.446 614.979i 0.900474 0.654233i
\(941\) 11.2167 + 15.4385i 0.0119200 + 0.0164064i 0.814935 0.579552i \(-0.196772\pi\)
−0.803015 + 0.595958i \(0.796772\pi\)
\(942\) 2016.82 655.306i 2.14100 0.695654i
\(943\) −1348.14 438.036i −1.42963 0.464514i
\(944\) 380.850 + 276.704i 0.403443 + 0.293118i
\(945\) 144.137i 0.152525i
\(946\) 1122.11 + 577.369i 1.18616 + 0.610327i
\(947\) −804.636 −0.849669 −0.424834 0.905271i \(-0.639668\pi\)
−0.424834 + 0.905271i \(0.639668\pi\)
\(948\) 441.540 607.728i 0.465760 0.641063i
\(949\) −222.027 + 683.330i −0.233959 + 0.720053i
\(950\) 40.1393 + 123.536i 0.0422519 + 0.130038i
\(951\) 889.256 646.082i 0.935075 0.679372i
\(952\) 520.967 + 717.050i 0.547235 + 0.753204i
\(953\) −1763.40 + 572.962i −1.85036 + 0.601220i −0.853591 + 0.520944i \(0.825580\pi\)
−0.996773 + 0.0802758i \(0.974420\pi\)
\(954\) 1118.22 + 363.330i 1.17213 + 0.380850i
\(955\) 157.735 + 114.601i 0.165167 + 0.120001i
\(956\) 954.556i 0.998489i
\(957\) −245.528 1591.09i −0.256560 1.66258i
\(958\) 1911.11 1.99489
\(959\) 568.654 782.686i 0.592966 0.816148i
\(960\) −274.318 + 844.264i −0.285748 + 0.879442i
\(961\) −263.794 811.875i −0.274500 0.844824i
\(962\) −708.687 + 514.891i −0.736681 + 0.535230i
\(963\) 396.085 + 545.164i 0.411303 + 0.566111i
\(964\) −1193.39 + 387.755i −1.23795 + 0.402236i
\(965\) −399.894 129.933i −0.414397 0.134646i
\(966\) 2036.88 + 1479.88i 2.10857 + 1.53197i
\(967\) 660.803i 0.683353i −0.939818 0.341677i \(-0.889005\pi\)
0.939818 0.341677i \(-0.110995\pi\)
\(968\) 548.206 + 4.35630i 0.566328 + 0.00450031i
\(969\) −819.737 −0.845962
\(970\) 365.344 502.853i 0.376644 0.518406i
\(971\) −166.517 + 512.487i −0.171490 + 0.527793i −0.999456 0.0329859i \(-0.989498\pi\)
0.827965 + 0.560779i \(0.189498\pi\)
\(972\) −520.823 1602.93i −0.535826 1.64910i
\(973\) 22.9271 16.6575i 0.0235633 0.0171197i
\(974\) −712.232 980.303i −0.731244 1.00647i
\(975\) −267.082 + 86.7802i −0.273930 + 0.0890053i
\(976\) 277.438 + 90.1450i 0.284260 + 0.0923617i
\(977\) 243.828 + 177.151i 0.249568 + 0.181322i 0.705535 0.708675i \(-0.250707\pi\)
−0.455967 + 0.889996i \(0.650707\pi\)
\(978\) 3116.80i 3.18691i
\(979\) 1390.98 214.648i 1.42082 0.219252i
\(980\) 194.835 0.198811
\(981\) 86.7307 119.375i 0.0884105 0.121687i
\(982\) 616.943 1898.75i 0.628251 1.93356i
\(983\) −238.319 733.472i −0.242441 0.746156i −0.996047 0.0888299i \(-0.971687\pi\)
0.753606 0.657327i \(-0.228313\pi\)
\(984\) −818.827 + 594.912i −0.832141 + 0.604586i
\(985\) 13.8119 + 19.0104i 0.0140222 + 0.0192999i
\(986\) −2600.18 + 844.850i −2.63710 + 0.856846i
\(987\) 2620.99 + 851.611i 2.65551 + 0.862827i
\(988\) 524.707 + 381.222i 0.531080 + 0.385852i
\(989\) 946.119i 0.956642i
\(990\) 242.447 471.191i 0.244896 0.475951i
\(991\) 118.312 0.119386 0.0596932 0.998217i \(-0.480988\pi\)
0.0596932 + 0.998217i \(0.480988\pi\)
\(992\) −259.264 + 356.846i −0.261354 + 0.359723i
\(993\) −508.865 + 1566.13i −0.512453 + 1.57717i
\(994\) −44.5967 137.255i −0.0448659 0.138083i
\(995\) −15.0294 + 10.9195i −0.0151049 + 0.0109744i
\(996\) −1876.49 2582.77i −1.88403 2.59314i
\(997\) 36.0263 11.7057i 0.0361347 0.0117409i −0.290894 0.956755i \(-0.593953\pi\)
0.327029 + 0.945014i \(0.393953\pi\)
\(998\) 2098.77 + 681.931i 2.10298 + 0.683298i
\(999\) 131.193 + 95.3177i 0.131325 + 0.0954131i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.i.a.51.1 yes 4
5.2 odd 4 275.3.q.c.249.1 8
5.3 odd 4 275.3.q.c.249.2 8
5.4 even 2 275.3.x.d.51.1 4
11.5 even 5 605.3.c.a.241.1 4
11.6 odd 10 605.3.c.a.241.4 4
11.8 odd 10 inner 55.3.i.a.41.1 4
55.8 even 20 275.3.q.c.74.1 8
55.19 odd 10 275.3.x.d.151.1 4
55.52 even 20 275.3.q.c.74.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.a.41.1 4 11.8 odd 10 inner
55.3.i.a.51.1 yes 4 1.1 even 1 trivial
275.3.q.c.74.1 8 55.8 even 20
275.3.q.c.74.2 8 55.52 even 20
275.3.q.c.249.1 8 5.2 odd 4
275.3.q.c.249.2 8 5.3 odd 4
275.3.x.d.51.1 4 5.4 even 2
275.3.x.d.151.1 4 55.19 odd 10
605.3.c.a.241.1 4 11.5 even 5
605.3.c.a.241.4 4 11.6 odd 10