Properties

Label 605.3.c.a.241.4
Level $605$
Weight $3$
Character 605.241
Analytic conductor $16.485$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,3,Mod(241,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 605.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.4850559938\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.4
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 605.241
Dual form 605.3.c.a.241.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.07768i q^{2} -4.00000 q^{3} -5.47214 q^{4} +2.23607 q^{5} -12.3107i q^{6} +8.05748i q^{7} -4.53077i q^{8} +7.00000 q^{9} +6.88191i q^{10} +21.8885 q^{12} +14.0413i q^{13} -24.7984 q^{14} -8.94427 q^{15} -7.94427 q^{16} +24.2784i q^{17} +21.5438i q^{18} -8.44100i q^{19} -12.2361 q^{20} -32.2299i q^{21} -25.3820 q^{23} +18.1231i q^{24} +5.00000 q^{25} -43.2148 q^{26} +8.00000 q^{27} -44.0916i q^{28} +36.5892i q^{29} -27.5276i q^{30} -10.3607 q^{31} -42.5730i q^{32} -74.7214 q^{34} +18.0171i q^{35} -38.3050 q^{36} -20.2705 q^{37} +25.9787 q^{38} -56.1653i q^{39} -10.1311i q^{40} -55.8473i q^{41} +99.1935 q^{42} -37.2752i q^{43} +15.6525 q^{45} -78.1177i q^{46} +85.5066 q^{47} +31.7771 q^{48} -15.9230 q^{49} +15.3884i q^{50} -97.1138i q^{51} -76.8361i q^{52} -54.5755 q^{53} +24.6215i q^{54} +36.5066 q^{56} +33.7640i q^{57} -112.610 q^{58} +59.2574 q^{59} +48.9443 q^{60} +36.7202i q^{61} -31.8869i q^{62} +56.4024i q^{63} +99.2492 q^{64} +31.3974i q^{65} +17.8197 q^{67} -132.855i q^{68} +101.528 q^{69} -55.4508 q^{70} +5.81966 q^{71} -31.7154i q^{72} +51.1701i q^{73} -62.3862i q^{74} -20.0000 q^{75} +46.1903i q^{76} +172.859 q^{78} -34.3190i q^{79} -17.7639 q^{80} -95.0000 q^{81} +171.880 q^{82} -145.852i q^{83} +176.367i q^{84} +54.2882i q^{85} +114.721 q^{86} -146.357i q^{87} -127.949 q^{89} +48.1734i q^{90} -113.138 q^{91} +138.894 q^{92} +41.4427 q^{93} +263.162i q^{94} -18.8746i q^{95} +170.292i q^{96} -90.3181 q^{97} -49.0059i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{3} - 4 q^{4} + 28 q^{9} + 16 q^{12} - 50 q^{14} + 4 q^{16} - 40 q^{20} - 106 q^{23} + 20 q^{25} - 70 q^{26} + 32 q^{27} + 48 q^{31} - 120 q^{34} - 28 q^{36} - 14 q^{37} + 10 q^{38} + 200 q^{42}+ \cdots - 84 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.07768i 1.53884i 0.638742 + 0.769421i \(0.279455\pi\)
−0.638742 + 0.769421i \(0.720545\pi\)
\(3\) −4.00000 −1.33333 −0.666667 0.745356i \(-0.732280\pi\)
−0.666667 + 0.745356i \(0.732280\pi\)
\(4\) −5.47214 −1.36803
\(5\) 2.23607 0.447214
\(6\) − 12.3107i − 2.05179i
\(7\) 8.05748i 1.15107i 0.817778 + 0.575534i \(0.195206\pi\)
−0.817778 + 0.575534i \(0.804794\pi\)
\(8\) − 4.53077i − 0.566346i
\(9\) 7.00000 0.777778
\(10\) 6.88191i 0.688191i
\(11\) 0 0
\(12\) 21.8885 1.82405
\(13\) 14.0413i 1.08010i 0.841632 + 0.540051i \(0.181595\pi\)
−0.841632 + 0.540051i \(0.818405\pi\)
\(14\) −24.7984 −1.77131
\(15\) −8.94427 −0.596285
\(16\) −7.94427 −0.496517
\(17\) 24.2784i 1.42814i 0.700072 + 0.714072i \(0.253151\pi\)
−0.700072 + 0.714072i \(0.746849\pi\)
\(18\) 21.5438i 1.19688i
\(19\) − 8.44100i − 0.444263i −0.975017 0.222131i \(-0.928699\pi\)
0.975017 0.222131i \(-0.0713014\pi\)
\(20\) −12.2361 −0.611803
\(21\) − 32.2299i − 1.53476i
\(22\) 0 0
\(23\) −25.3820 −1.10356 −0.551782 0.833988i \(-0.686052\pi\)
−0.551782 + 0.833988i \(0.686052\pi\)
\(24\) 18.1231i 0.755128i
\(25\) 5.00000 0.200000
\(26\) −43.2148 −1.66211
\(27\) 8.00000 0.296296
\(28\) − 44.0916i − 1.57470i
\(29\) 36.5892i 1.26170i 0.775907 + 0.630848i \(0.217293\pi\)
−0.775907 + 0.630848i \(0.782707\pi\)
\(30\) − 27.5276i − 0.917588i
\(31\) −10.3607 −0.334215 −0.167108 0.985939i \(-0.553443\pi\)
−0.167108 + 0.985939i \(0.553443\pi\)
\(32\) − 42.5730i − 1.33041i
\(33\) 0 0
\(34\) −74.7214 −2.19769
\(35\) 18.0171i 0.514774i
\(36\) −38.3050 −1.06403
\(37\) −20.2705 −0.547852 −0.273926 0.961751i \(-0.588322\pi\)
−0.273926 + 0.961751i \(0.588322\pi\)
\(38\) 25.9787 0.683650
\(39\) − 56.1653i − 1.44014i
\(40\) − 10.1311i − 0.253278i
\(41\) − 55.8473i − 1.36213i −0.732223 0.681065i \(-0.761517\pi\)
0.732223 0.681065i \(-0.238483\pi\)
\(42\) 99.1935 2.36175
\(43\) − 37.2752i − 0.866866i −0.901186 0.433433i \(-0.857302\pi\)
0.901186 0.433433i \(-0.142698\pi\)
\(44\) 0 0
\(45\) 15.6525 0.347833
\(46\) − 78.1177i − 1.69821i
\(47\) 85.5066 1.81929 0.909644 0.415388i \(-0.136354\pi\)
0.909644 + 0.415388i \(0.136354\pi\)
\(48\) 31.7771 0.662023
\(49\) −15.9230 −0.324959
\(50\) 15.3884i 0.307768i
\(51\) − 97.1138i − 1.90419i
\(52\) − 76.8361i − 1.47762i
\(53\) −54.5755 −1.02973 −0.514863 0.857273i \(-0.672157\pi\)
−0.514863 + 0.857273i \(0.672157\pi\)
\(54\) 24.6215i 0.455953i
\(55\) 0 0
\(56\) 36.5066 0.651903
\(57\) 33.7640i 0.592351i
\(58\) −112.610 −1.94155
\(59\) 59.2574 1.00436 0.502181 0.864763i \(-0.332531\pi\)
0.502181 + 0.864763i \(0.332531\pi\)
\(60\) 48.9443 0.815738
\(61\) 36.7202i 0.601970i 0.953629 + 0.300985i \(0.0973155\pi\)
−0.953629 + 0.300985i \(0.902685\pi\)
\(62\) − 31.8869i − 0.514305i
\(63\) 56.4024i 0.895276i
\(64\) 99.2492 1.55077
\(65\) 31.3974i 0.483037i
\(66\) 0 0
\(67\) 17.8197 0.265965 0.132983 0.991118i \(-0.457545\pi\)
0.132983 + 0.991118i \(0.457545\pi\)
\(68\) − 132.855i − 1.95375i
\(69\) 101.528 1.47142
\(70\) −55.4508 −0.792155
\(71\) 5.81966 0.0819670 0.0409835 0.999160i \(-0.486951\pi\)
0.0409835 + 0.999160i \(0.486951\pi\)
\(72\) − 31.7154i − 0.440491i
\(73\) 51.1701i 0.700960i 0.936570 + 0.350480i \(0.113982\pi\)
−0.936570 + 0.350480i \(0.886018\pi\)
\(74\) − 62.3862i − 0.843057i
\(75\) −20.0000 −0.266667
\(76\) 46.1903i 0.607767i
\(77\) 0 0
\(78\) 172.859 2.21614
\(79\) − 34.3190i − 0.434418i −0.976125 0.217209i \(-0.930305\pi\)
0.976125 0.217209i \(-0.0696953\pi\)
\(80\) −17.7639 −0.222049
\(81\) −95.0000 −1.17284
\(82\) 171.880 2.09610
\(83\) − 145.852i − 1.75725i −0.477513 0.878625i \(-0.658462\pi\)
0.477513 0.878625i \(-0.341538\pi\)
\(84\) 176.367i 2.09960i
\(85\) 54.2882i 0.638685i
\(86\) 114.721 1.33397
\(87\) − 146.357i − 1.68226i
\(88\) 0 0
\(89\) −127.949 −1.43763 −0.718816 0.695200i \(-0.755316\pi\)
−0.718816 + 0.695200i \(0.755316\pi\)
\(90\) 48.1734i 0.535260i
\(91\) −113.138 −1.24327
\(92\) 138.894 1.50971
\(93\) 41.4427 0.445621
\(94\) 263.162i 2.79960i
\(95\) − 18.8746i − 0.198680i
\(96\) 170.292i 1.77388i
\(97\) −90.3181 −0.931115 −0.465557 0.885018i \(-0.654146\pi\)
−0.465557 + 0.885018i \(0.654146\pi\)
\(98\) − 49.0059i − 0.500060i
\(99\) 0 0
\(100\) −27.3607 −0.273607
\(101\) − 107.890i − 1.06822i −0.845414 0.534111i \(-0.820646\pi\)
0.845414 0.534111i \(-0.179354\pi\)
\(102\) 298.885 2.93025
\(103\) −19.1722 −0.186138 −0.0930690 0.995660i \(-0.529668\pi\)
−0.0930690 + 0.995660i \(0.529668\pi\)
\(104\) 63.6180 0.611712
\(105\) − 72.0683i − 0.686365i
\(106\) − 167.966i − 1.58458i
\(107\) 96.2658i 0.899680i 0.893109 + 0.449840i \(0.148519\pi\)
−0.893109 + 0.449840i \(0.851481\pi\)
\(108\) −43.7771 −0.405343
\(109\) − 21.0793i − 0.193388i −0.995314 0.0966940i \(-0.969173\pi\)
0.995314 0.0966940i \(-0.0308268\pi\)
\(110\) 0 0
\(111\) 81.0820 0.730469
\(112\) − 64.0108i − 0.571525i
\(113\) 71.6231 0.633832 0.316916 0.948454i \(-0.397353\pi\)
0.316916 + 0.948454i \(0.397353\pi\)
\(114\) −103.915 −0.911534
\(115\) −56.7558 −0.493529
\(116\) − 200.221i − 1.72604i
\(117\) 98.2893i 0.840080i
\(118\) 182.375i 1.54555i
\(119\) −195.623 −1.64389
\(120\) 40.5244i 0.337704i
\(121\) 0 0
\(122\) −113.013 −0.926337
\(123\) 223.389i 1.81617i
\(124\) 56.6950 0.457218
\(125\) 11.1803 0.0894427
\(126\) −173.589 −1.37769
\(127\) − 26.9571i − 0.212261i −0.994352 0.106130i \(-0.966154\pi\)
0.994352 0.106130i \(-0.0338461\pi\)
\(128\) 135.166i 1.05598i
\(129\) 149.101i 1.15582i
\(130\) −96.6312 −0.743317
\(131\) 88.8193i 0.678010i 0.940785 + 0.339005i \(0.110090\pi\)
−0.940785 + 0.339005i \(0.889910\pi\)
\(132\) 0 0
\(133\) 68.0132 0.511377
\(134\) 54.8433i 0.409278i
\(135\) 17.8885 0.132508
\(136\) 110.000 0.808824
\(137\) −120.069 −0.876415 −0.438208 0.898874i \(-0.644387\pi\)
−0.438208 + 0.898874i \(0.644387\pi\)
\(138\) 312.471i 2.26428i
\(139\) 3.51715i 0.0253033i 0.999920 + 0.0126516i \(0.00402725\pi\)
−0.999920 + 0.0126516i \(0.995973\pi\)
\(140\) − 98.5919i − 0.704228i
\(141\) −342.026 −2.42572
\(142\) 17.9111i 0.126134i
\(143\) 0 0
\(144\) −55.6099 −0.386180
\(145\) 81.8159i 0.564247i
\(146\) −157.485 −1.07867
\(147\) 63.6919 0.433279
\(148\) 110.923 0.749480
\(149\) 93.3095i 0.626239i 0.949714 + 0.313119i \(0.101374\pi\)
−0.949714 + 0.313119i \(0.898626\pi\)
\(150\) − 61.5537i − 0.410358i
\(151\) − 98.0118i − 0.649085i −0.945871 0.324542i \(-0.894790\pi\)
0.945871 0.324542i \(-0.105210\pi\)
\(152\) −38.2442 −0.251607
\(153\) 169.949i 1.11078i
\(154\) 0 0
\(155\) −23.1672 −0.149466
\(156\) 307.344i 1.97016i
\(157\) −172.257 −1.09718 −0.548590 0.836091i \(-0.684835\pi\)
−0.548590 + 0.836091i \(0.684835\pi\)
\(158\) 105.623 0.668500
\(159\) 218.302 1.37297
\(160\) − 95.1962i − 0.594976i
\(161\) − 204.515i − 1.27028i
\(162\) − 292.380i − 1.80481i
\(163\) 253.177 1.55323 0.776617 0.629973i \(-0.216934\pi\)
0.776617 + 0.629973i \(0.216934\pi\)
\(164\) 305.604i 1.86344i
\(165\) 0 0
\(166\) 448.885 2.70413
\(167\) − 75.3830i − 0.451395i −0.974197 0.225698i \(-0.927534\pi\)
0.974197 0.225698i \(-0.0724661\pi\)
\(168\) −146.026 −0.869204
\(169\) −28.1591 −0.166622
\(170\) −167.082 −0.982836
\(171\) − 59.0870i − 0.345538i
\(172\) 203.975i 1.18590i
\(173\) − 112.063i − 0.647761i −0.946098 0.323881i \(-0.895012\pi\)
0.946098 0.323881i \(-0.104988\pi\)
\(174\) 450.440 2.58873
\(175\) 40.2874i 0.230214i
\(176\) 0 0
\(177\) −237.029 −1.33915
\(178\) − 393.787i − 2.21229i
\(179\) −208.507 −1.16484 −0.582421 0.812888i \(-0.697894\pi\)
−0.582421 + 0.812888i \(0.697894\pi\)
\(180\) −85.6525 −0.475847
\(181\) 79.9837 0.441899 0.220950 0.975285i \(-0.429084\pi\)
0.220950 + 0.975285i \(0.429084\pi\)
\(182\) − 348.202i − 1.91320i
\(183\) − 146.881i − 0.802627i
\(184\) 115.000i 0.624999i
\(185\) −45.3262 −0.245007
\(186\) 127.548i 0.685740i
\(187\) 0 0
\(188\) −467.904 −2.48885
\(189\) 64.4598i 0.341057i
\(190\) 58.0902 0.305738
\(191\) −87.1935 −0.456510 −0.228255 0.973601i \(-0.573302\pi\)
−0.228255 + 0.973601i \(0.573302\pi\)
\(192\) −396.997 −2.06769
\(193\) 188.041i 0.974307i 0.873316 + 0.487153i \(0.161965\pi\)
−0.873316 + 0.487153i \(0.838035\pi\)
\(194\) − 277.971i − 1.43284i
\(195\) − 125.590i − 0.644049i
\(196\) 87.1327 0.444555
\(197\) 10.5087i 0.0533437i 0.999644 + 0.0266719i \(0.00849093\pi\)
−0.999644 + 0.0266719i \(0.991509\pi\)
\(198\) 0 0
\(199\) 8.30806 0.0417490 0.0208745 0.999782i \(-0.493355\pi\)
0.0208745 + 0.999782i \(0.493355\pi\)
\(200\) − 22.6538i − 0.113269i
\(201\) −71.2786 −0.354620
\(202\) 332.053 1.64382
\(203\) −294.817 −1.45230
\(204\) 531.420i 2.60500i
\(205\) − 124.878i − 0.609163i
\(206\) − 59.0060i − 0.286437i
\(207\) −177.674 −0.858327
\(208\) − 111.548i − 0.536289i
\(209\) 0 0
\(210\) 221.803 1.05621
\(211\) 76.6086i 0.363074i 0.983384 + 0.181537i \(0.0581072\pi\)
−0.983384 + 0.181537i \(0.941893\pi\)
\(212\) 298.644 1.40870
\(213\) −23.2786 −0.109289
\(214\) −296.276 −1.38447
\(215\) − 83.3499i − 0.387674i
\(216\) − 36.2461i − 0.167806i
\(217\) − 83.4810i − 0.384705i
\(218\) 64.8754 0.297594
\(219\) − 204.680i − 0.934613i
\(220\) 0 0
\(221\) −340.902 −1.54254
\(222\) 249.545i 1.12408i
\(223\) 116.884 0.524141 0.262071 0.965049i \(-0.415595\pi\)
0.262071 + 0.965049i \(0.415595\pi\)
\(224\) 343.031 1.53139
\(225\) 35.0000 0.155556
\(226\) 220.433i 0.975368i
\(227\) 387.738i 1.70810i 0.520193 + 0.854049i \(0.325860\pi\)
−0.520193 + 0.854049i \(0.674140\pi\)
\(228\) − 184.761i − 0.810356i
\(229\) 138.652 0.605469 0.302735 0.953075i \(-0.402100\pi\)
0.302735 + 0.953075i \(0.402100\pi\)
\(230\) − 174.676i − 0.759463i
\(231\) 0 0
\(232\) 165.777 0.714556
\(233\) 186.588i 0.800808i 0.916339 + 0.400404i \(0.131130\pi\)
−0.916339 + 0.400404i \(0.868870\pi\)
\(234\) −302.503 −1.29275
\(235\) 191.199 0.813611
\(236\) −324.264 −1.37400
\(237\) 137.276i 0.579224i
\(238\) − 602.066i − 2.52969i
\(239\) 174.439i 0.729872i 0.931033 + 0.364936i \(0.118909\pi\)
−0.931033 + 0.364936i \(0.881091\pi\)
\(240\) 71.0557 0.296066
\(241\) 229.308i 0.951484i 0.879585 + 0.475742i \(0.157820\pi\)
−0.879585 + 0.475742i \(0.842180\pi\)
\(242\) 0 0
\(243\) 308.000 1.26749
\(244\) − 200.938i − 0.823516i
\(245\) −35.6049 −0.145326
\(246\) −687.522 −2.79480
\(247\) 118.523 0.479850
\(248\) 46.9418i 0.189282i
\(249\) 583.407i 2.34300i
\(250\) 34.4095i 0.137638i
\(251\) −105.966 −0.422174 −0.211087 0.977467i \(-0.567700\pi\)
−0.211087 + 0.977467i \(0.567700\pi\)
\(252\) − 308.641i − 1.22477i
\(253\) 0 0
\(254\) 82.9656 0.326636
\(255\) − 217.153i − 0.851580i
\(256\) −19.0000 −0.0742188
\(257\) −257.708 −1.00276 −0.501378 0.865228i \(-0.667173\pi\)
−0.501378 + 0.865228i \(0.667173\pi\)
\(258\) −458.885 −1.77863
\(259\) − 163.329i − 0.630615i
\(260\) − 171.811i − 0.660810i
\(261\) 256.124i 0.981319i
\(262\) −273.358 −1.04335
\(263\) − 290.347i − 1.10398i −0.833851 0.551990i \(-0.813869\pi\)
0.833851 0.551990i \(-0.186131\pi\)
\(264\) 0 0
\(265\) −122.034 −0.460507
\(266\) 209.323i 0.786928i
\(267\) 511.797 1.91684
\(268\) −97.5116 −0.363849
\(269\) −330.790 −1.22970 −0.614852 0.788643i \(-0.710784\pi\)
−0.614852 + 0.788643i \(0.710784\pi\)
\(270\) 55.0553i 0.203908i
\(271\) 217.296i 0.801830i 0.916115 + 0.400915i \(0.131308\pi\)
−0.916115 + 0.400915i \(0.868692\pi\)
\(272\) − 192.875i − 0.709098i
\(273\) 452.551 1.65770
\(274\) − 369.534i − 1.34866i
\(275\) 0 0
\(276\) −555.574 −2.01295
\(277\) 448.631i 1.61961i 0.586702 + 0.809803i \(0.300426\pi\)
−0.586702 + 0.809803i \(0.699574\pi\)
\(278\) −10.8247 −0.0389377
\(279\) −72.5248 −0.259945
\(280\) 81.6312 0.291540
\(281\) 93.6835i 0.333393i 0.986008 + 0.166697i \(0.0533100\pi\)
−0.986008 + 0.166697i \(0.946690\pi\)
\(282\) − 1052.65i − 3.73280i
\(283\) 292.309i 1.03289i 0.856320 + 0.516446i \(0.172745\pi\)
−0.856320 + 0.516446i \(0.827255\pi\)
\(284\) −31.8460 −0.112134
\(285\) 75.4986i 0.264907i
\(286\) 0 0
\(287\) 449.989 1.56791
\(288\) − 298.011i − 1.03476i
\(289\) −300.443 −1.03959
\(290\) −251.803 −0.868288
\(291\) 361.272 1.24149
\(292\) − 280.010i − 0.958937i
\(293\) 346.079i 1.18116i 0.806981 + 0.590578i \(0.201100\pi\)
−0.806981 + 0.590578i \(0.798900\pi\)
\(294\) 196.024i 0.666747i
\(295\) 132.503 0.449164
\(296\) 91.8410i 0.310274i
\(297\) 0 0
\(298\) −287.177 −0.963682
\(299\) − 356.397i − 1.19196i
\(300\) 109.443 0.364809
\(301\) 300.344 0.997822
\(302\) 301.649 0.998839
\(303\) 431.562i 1.42430i
\(304\) 67.0576i 0.220584i
\(305\) 82.1089i 0.269209i
\(306\) −523.050 −1.70931
\(307\) 180.826i 0.589009i 0.955650 + 0.294505i \(0.0951546\pi\)
−0.955650 + 0.294505i \(0.904845\pi\)
\(308\) 0 0
\(309\) 76.6888 0.248184
\(310\) − 71.3013i − 0.230004i
\(311\) −373.161 −1.19987 −0.599937 0.800047i \(-0.704808\pi\)
−0.599937 + 0.800047i \(0.704808\pi\)
\(312\) −254.472 −0.815616
\(313\) 317.364 1.01394 0.506971 0.861963i \(-0.330765\pi\)
0.506971 + 0.861963i \(0.330765\pi\)
\(314\) − 530.154i − 1.68839i
\(315\) 126.120i 0.400379i
\(316\) 187.798i 0.594298i
\(317\) 274.795 0.866862 0.433431 0.901187i \(-0.357303\pi\)
0.433431 + 0.901187i \(0.357303\pi\)
\(318\) 671.864i 2.11278i
\(319\) 0 0
\(320\) 221.928 0.693525
\(321\) − 385.063i − 1.19957i
\(322\) 629.431 1.95476
\(323\) 204.934 0.634471
\(324\) 519.853 1.60448
\(325\) 70.2067i 0.216021i
\(326\) 779.199i 2.39018i
\(327\) 84.3172i 0.257851i
\(328\) −253.031 −0.771437
\(329\) 688.968i 2.09413i
\(330\) 0 0
\(331\) 411.681 1.24375 0.621874 0.783117i \(-0.286372\pi\)
0.621874 + 0.783117i \(0.286372\pi\)
\(332\) 798.120i 2.40398i
\(333\) −141.894 −0.426107
\(334\) 232.005 0.694626
\(335\) 39.8460 0.118943
\(336\) 256.043i 0.762033i
\(337\) − 463.075i − 1.37411i −0.726606 0.687054i \(-0.758903\pi\)
0.726606 0.687054i \(-0.241097\pi\)
\(338\) − 86.6647i − 0.256404i
\(339\) −286.492 −0.845110
\(340\) − 297.073i − 0.873743i
\(341\) 0 0
\(342\) 181.851 0.531728
\(343\) 266.517i 0.777019i
\(344\) −168.885 −0.490946
\(345\) 227.023 0.658038
\(346\) 344.894 0.996802
\(347\) − 170.978i − 0.492732i −0.969177 0.246366i \(-0.920763\pi\)
0.969177 0.246366i \(-0.0792366\pi\)
\(348\) 800.884i 2.30139i
\(349\) 172.743i 0.494967i 0.968892 + 0.247483i \(0.0796035\pi\)
−0.968892 + 0.247483i \(0.920396\pi\)
\(350\) −123.992 −0.354262
\(351\) 112.331i 0.320030i
\(352\) 0 0
\(353\) −494.535 −1.40095 −0.700474 0.713678i \(-0.747028\pi\)
−0.700474 + 0.713678i \(0.747028\pi\)
\(354\) − 729.502i − 2.06074i
\(355\) 13.0132 0.0366568
\(356\) 700.156 1.96673
\(357\) 782.492 2.19186
\(358\) − 641.717i − 1.79251i
\(359\) 153.953i 0.428839i 0.976742 + 0.214420i \(0.0687860\pi\)
−0.976742 + 0.214420i \(0.931214\pi\)
\(360\) − 70.9177i − 0.196994i
\(361\) 289.750 0.802630
\(362\) 246.165i 0.680013i
\(363\) 0 0
\(364\) 619.105 1.70084
\(365\) 114.420i 0.313479i
\(366\) 452.053 1.23512
\(367\) −185.692 −0.505973 −0.252986 0.967470i \(-0.581413\pi\)
−0.252986 + 0.967470i \(0.581413\pi\)
\(368\) 201.641 0.547938
\(369\) − 390.931i − 1.05943i
\(370\) − 139.500i − 0.377027i
\(371\) − 439.741i − 1.18528i
\(372\) −226.780 −0.609624
\(373\) 268.844i 0.720760i 0.932806 + 0.360380i \(0.117353\pi\)
−0.932806 + 0.360380i \(0.882647\pi\)
\(374\) 0 0
\(375\) −44.7214 −0.119257
\(376\) − 387.411i − 1.03035i
\(377\) −513.761 −1.36276
\(378\) −198.387 −0.524833
\(379\) −301.520 −0.795567 −0.397783 0.917479i \(-0.630220\pi\)
−0.397783 + 0.917479i \(0.630220\pi\)
\(380\) 103.285i 0.271802i
\(381\) 107.829i 0.283015i
\(382\) − 268.354i − 0.702497i
\(383\) −486.877 −1.27122 −0.635610 0.772010i \(-0.719251\pi\)
−0.635610 + 0.772010i \(0.719251\pi\)
\(384\) − 540.662i − 1.40797i
\(385\) 0 0
\(386\) −578.731 −1.49930
\(387\) − 260.927i − 0.674229i
\(388\) 494.233 1.27380
\(389\) 382.105 0.982276 0.491138 0.871082i \(-0.336581\pi\)
0.491138 + 0.871082i \(0.336581\pi\)
\(390\) 386.525 0.991089
\(391\) − 616.235i − 1.57605i
\(392\) 72.1434i 0.184039i
\(393\) − 355.277i − 0.904013i
\(394\) −32.3425 −0.0820876
\(395\) − 76.7396i − 0.194278i
\(396\) 0 0
\(397\) 668.123 1.68293 0.841465 0.540311i \(-0.181693\pi\)
0.841465 + 0.540311i \(0.181693\pi\)
\(398\) 25.5696i 0.0642452i
\(399\) −272.053 −0.681836
\(400\) −39.7214 −0.0993034
\(401\) 360.068 0.897924 0.448962 0.893551i \(-0.351794\pi\)
0.448962 + 0.893551i \(0.351794\pi\)
\(402\) − 219.373i − 0.545704i
\(403\) − 145.478i − 0.360987i
\(404\) 590.391i 1.46136i
\(405\) −212.426 −0.524510
\(406\) − 907.352i − 2.23486i
\(407\) 0 0
\(408\) −440.000 −1.07843
\(409\) 36.2116i 0.0885368i 0.999020 + 0.0442684i \(0.0140957\pi\)
−0.999020 + 0.0442684i \(0.985904\pi\)
\(410\) 384.336 0.937406
\(411\) 480.276 1.16855
\(412\) 104.913 0.254643
\(413\) 477.465i 1.15609i
\(414\) − 546.824i − 1.32083i
\(415\) − 326.134i − 0.785866i
\(416\) 597.782 1.43698
\(417\) − 14.0686i − 0.0337377i
\(418\) 0 0
\(419\) −423.543 −1.01084 −0.505421 0.862873i \(-0.668663\pi\)
−0.505421 + 0.862873i \(0.668663\pi\)
\(420\) 394.367i 0.938970i
\(421\) 683.745 1.62410 0.812048 0.583590i \(-0.198353\pi\)
0.812048 + 0.583590i \(0.198353\pi\)
\(422\) −235.777 −0.558713
\(423\) 598.546 1.41500
\(424\) 247.269i 0.583181i
\(425\) 121.392i 0.285629i
\(426\) − 71.6443i − 0.168179i
\(427\) −295.872 −0.692909
\(428\) − 526.779i − 1.23079i
\(429\) 0 0
\(430\) 256.525 0.596569
\(431\) − 129.070i − 0.299466i −0.988726 0.149733i \(-0.952159\pi\)
0.988726 0.149733i \(-0.0478414\pi\)
\(432\) −63.5542 −0.147116
\(433\) −551.368 −1.27337 −0.636683 0.771126i \(-0.719694\pi\)
−0.636683 + 0.771126i \(0.719694\pi\)
\(434\) 256.928 0.592000
\(435\) − 327.264i − 0.752330i
\(436\) 115.349i 0.264561i
\(437\) 214.249i 0.490272i
\(438\) 629.941 1.43822
\(439\) − 470.583i − 1.07194i −0.844236 0.535972i \(-0.819945\pi\)
0.844236 0.535972i \(-0.180055\pi\)
\(440\) 0 0
\(441\) −111.461 −0.252746
\(442\) − 1049.19i − 2.37373i
\(443\) 99.2624 0.224069 0.112034 0.993704i \(-0.464263\pi\)
0.112034 + 0.993704i \(0.464263\pi\)
\(444\) −443.692 −0.999306
\(445\) −286.103 −0.642929
\(446\) 359.730i 0.806571i
\(447\) − 373.238i − 0.834985i
\(448\) 799.699i 1.78504i
\(449\) 136.303 0.303570 0.151785 0.988414i \(-0.451498\pi\)
0.151785 + 0.988414i \(0.451498\pi\)
\(450\) 107.719i 0.239375i
\(451\) 0 0
\(452\) −391.931 −0.867104
\(453\) 392.047i 0.865447i
\(454\) −1193.34 −2.62849
\(455\) −252.984 −0.556008
\(456\) 152.977 0.335475
\(457\) − 30.7960i − 0.0673872i −0.999432 0.0336936i \(-0.989273\pi\)
0.999432 0.0336936i \(-0.0107270\pi\)
\(458\) 426.728i 0.931721i
\(459\) 194.228i 0.423154i
\(460\) 310.575 0.675164
\(461\) − 142.653i − 0.309442i −0.987958 0.154721i \(-0.950552\pi\)
0.987958 0.154721i \(-0.0494478\pi\)
\(462\) 0 0
\(463\) 490.864 1.06018 0.530091 0.847941i \(-0.322158\pi\)
0.530091 + 0.847941i \(0.322158\pi\)
\(464\) − 290.674i − 0.626453i
\(465\) 92.6687 0.199288
\(466\) −574.259 −1.23232
\(467\) −757.935 −1.62299 −0.811494 0.584361i \(-0.801345\pi\)
−0.811494 + 0.584361i \(0.801345\pi\)
\(468\) − 537.853i − 1.14926i
\(469\) 143.582i 0.306144i
\(470\) 588.449i 1.25202i
\(471\) 689.029 1.46291
\(472\) − 268.481i − 0.568816i
\(473\) 0 0
\(474\) −422.492 −0.891334
\(475\) − 42.2050i − 0.0888526i
\(476\) 1070.48 2.24890
\(477\) −382.028 −0.800898
\(478\) −536.869 −1.12316
\(479\) − 620.956i − 1.29636i −0.761488 0.648180i \(-0.775531\pi\)
0.761488 0.648180i \(-0.224469\pi\)
\(480\) 380.785i 0.793302i
\(481\) − 284.625i − 0.591736i
\(482\) −705.736 −1.46418
\(483\) 818.059i 1.69370i
\(484\) 0 0
\(485\) −201.957 −0.416407
\(486\) 947.927i 1.95047i
\(487\) −393.712 −0.808444 −0.404222 0.914661i \(-0.632458\pi\)
−0.404222 + 0.914661i \(0.632458\pi\)
\(488\) 166.371 0.340924
\(489\) −1012.71 −2.07098
\(490\) − 109.581i − 0.223634i
\(491\) − 648.692i − 1.32116i −0.750754 0.660582i \(-0.770309\pi\)
0.750754 0.660582i \(-0.229691\pi\)
\(492\) − 1222.42i − 2.48459i
\(493\) −888.328 −1.80188
\(494\) 364.776i 0.738413i
\(495\) 0 0
\(496\) 82.3081 0.165944
\(497\) 46.8918i 0.0943497i
\(498\) −1795.54 −3.60551
\(499\) −717.025 −1.43692 −0.718462 0.695566i \(-0.755154\pi\)
−0.718462 + 0.695566i \(0.755154\pi\)
\(500\) −61.1803 −0.122361
\(501\) 301.532i 0.601860i
\(502\) − 326.128i − 0.649658i
\(503\) − 627.339i − 1.24719i −0.781746 0.623597i \(-0.785671\pi\)
0.781746 0.623597i \(-0.214329\pi\)
\(504\) 255.546 0.507036
\(505\) − 241.250i − 0.477723i
\(506\) 0 0
\(507\) 112.636 0.222162
\(508\) 147.513i 0.290380i
\(509\) −258.312 −0.507489 −0.253744 0.967271i \(-0.581662\pi\)
−0.253744 + 0.967271i \(0.581662\pi\)
\(510\) 668.328 1.31045
\(511\) −412.302 −0.806853
\(512\) 482.186i 0.941770i
\(513\) − 67.5280i − 0.131633i
\(514\) − 793.144i − 1.54308i
\(515\) −42.8704 −0.0832434
\(516\) − 815.900i − 1.58120i
\(517\) 0 0
\(518\) 502.676 0.970416
\(519\) 448.251i 0.863682i
\(520\) 142.254 0.273566
\(521\) 300.500 0.576776 0.288388 0.957514i \(-0.406881\pi\)
0.288388 + 0.957514i \(0.406881\pi\)
\(522\) −788.269 −1.51009
\(523\) 421.066i 0.805098i 0.915398 + 0.402549i \(0.131876\pi\)
−0.915398 + 0.402549i \(0.868124\pi\)
\(524\) − 486.031i − 0.927540i
\(525\) − 161.150i − 0.306952i
\(526\) 893.596 1.69885
\(527\) − 251.541i − 0.477308i
\(528\) 0 0
\(529\) 115.244 0.217853
\(530\) − 375.583i − 0.708648i
\(531\) 414.801 0.781170
\(532\) −372.177 −0.699581
\(533\) 784.171 1.47124
\(534\) 1575.15i 2.94972i
\(535\) 215.257i 0.402349i
\(536\) − 80.7368i − 0.150628i
\(537\) 834.026 1.55312
\(538\) − 1018.07i − 1.89232i
\(539\) 0 0
\(540\) −97.8885 −0.181275
\(541\) − 191.845i − 0.354613i −0.984156 0.177306i \(-0.943262\pi\)
0.984156 0.177306i \(-0.0567383\pi\)
\(542\) −668.768 −1.23389
\(543\) −319.935 −0.589199
\(544\) 1033.61 1.90001
\(545\) − 47.1347i − 0.0864857i
\(546\) 1392.81i 2.55093i
\(547\) − 199.292i − 0.364336i −0.983267 0.182168i \(-0.941688\pi\)
0.983267 0.182168i \(-0.0583115\pi\)
\(548\) 657.033 1.19897
\(549\) 257.041i 0.468199i
\(550\) 0 0
\(551\) 308.849 0.560525
\(552\) − 459.999i − 0.833332i
\(553\) 276.525 0.500045
\(554\) −1380.74 −2.49232
\(555\) 181.305 0.326676
\(556\) − 19.2463i − 0.0346157i
\(557\) 757.488i 1.35994i 0.733239 + 0.679971i \(0.238008\pi\)
−0.733239 + 0.679971i \(0.761992\pi\)
\(558\) − 223.208i − 0.400015i
\(559\) 523.394 0.936304
\(560\) − 143.133i − 0.255594i
\(561\) 0 0
\(562\) −288.328 −0.513039
\(563\) − 151.564i − 0.269208i −0.990899 0.134604i \(-0.957024\pi\)
0.990899 0.134604i \(-0.0429762\pi\)
\(564\) 1871.61 3.31847
\(565\) 160.154 0.283458
\(566\) −899.633 −1.58946
\(567\) − 765.461i − 1.35002i
\(568\) − 26.3675i − 0.0464217i
\(569\) − 879.194i − 1.54516i −0.634919 0.772578i \(-0.718967\pi\)
0.634919 0.772578i \(-0.281033\pi\)
\(570\) −232.361 −0.407650
\(571\) − 324.644i − 0.568554i −0.958742 0.284277i \(-0.908246\pi\)
0.958742 0.284277i \(-0.0917536\pi\)
\(572\) 0 0
\(573\) 348.774 0.608681
\(574\) 1384.92i 2.41276i
\(575\) −126.910 −0.220713
\(576\) 694.745 1.20615
\(577\) −520.604 −0.902259 −0.451130 0.892458i \(-0.648979\pi\)
−0.451130 + 0.892458i \(0.648979\pi\)
\(578\) − 924.668i − 1.59977i
\(579\) − 752.165i − 1.29908i
\(580\) − 447.708i − 0.771910i
\(581\) 1175.20 2.02271
\(582\) 1111.88i 1.91045i
\(583\) 0 0
\(584\) 231.840 0.396986
\(585\) 219.782i 0.375695i
\(586\) −1065.12 −1.81761
\(587\) −990.105 −1.68672 −0.843361 0.537348i \(-0.819426\pi\)
−0.843361 + 0.537348i \(0.819426\pi\)
\(588\) −348.531 −0.592740
\(589\) 87.4545i 0.148480i
\(590\) 407.804i 0.691193i
\(591\) − 42.0349i − 0.0711250i
\(592\) 161.034 0.272018
\(593\) 289.152i 0.487609i 0.969824 + 0.243804i \(0.0783955\pi\)
−0.969824 + 0.243804i \(0.921604\pi\)
\(594\) 0 0
\(595\) −437.426 −0.735171
\(596\) − 510.602i − 0.856716i
\(597\) −33.2322 −0.0556654
\(598\) 1096.88 1.83424
\(599\) 833.220 1.39102 0.695509 0.718517i \(-0.255179\pi\)
0.695509 + 0.718517i \(0.255179\pi\)
\(600\) 90.6154i 0.151026i
\(601\) − 94.6043i − 0.157412i −0.996898 0.0787058i \(-0.974921\pi\)
0.996898 0.0787058i \(-0.0250788\pi\)
\(602\) 924.365i 1.53549i
\(603\) 124.738 0.206862
\(604\) 536.334i 0.887970i
\(605\) 0 0
\(606\) −1328.21 −2.19177
\(607\) 212.389i 0.349899i 0.984577 + 0.174950i \(0.0559763\pi\)
−0.984577 + 0.174950i \(0.944024\pi\)
\(608\) −359.359 −0.591051
\(609\) 1179.27 1.93640
\(610\) −252.705 −0.414271
\(611\) 1200.63i 1.96502i
\(612\) − 929.985i − 1.51958i
\(613\) 789.121i 1.28731i 0.765316 + 0.643655i \(0.222583\pi\)
−0.765316 + 0.643655i \(0.777417\pi\)
\(614\) −556.525 −0.906392
\(615\) 499.514i 0.812217i
\(616\) 0 0
\(617\) 181.544 0.294237 0.147118 0.989119i \(-0.453000\pi\)
0.147118 + 0.989119i \(0.453000\pi\)
\(618\) 236.024i 0.381916i
\(619\) −36.1165 −0.0583465 −0.0291732 0.999574i \(-0.509287\pi\)
−0.0291732 + 0.999574i \(0.509287\pi\)
\(620\) 126.774 0.204474
\(621\) −203.056 −0.326982
\(622\) − 1148.47i − 1.84642i
\(623\) − 1030.95i − 1.65481i
\(624\) 446.193i 0.715052i
\(625\) 25.0000 0.0400000
\(626\) 976.745i 1.56030i
\(627\) 0 0
\(628\) 942.616 1.50098
\(629\) − 492.136i − 0.782411i
\(630\) −388.156 −0.616121
\(631\) 1009.15 1.59929 0.799647 0.600470i \(-0.205020\pi\)
0.799647 + 0.600470i \(0.205020\pi\)
\(632\) −155.492 −0.246031
\(633\) − 306.434i − 0.484099i
\(634\) 845.733i 1.33396i
\(635\) − 60.2780i − 0.0949260i
\(636\) −1194.58 −1.87827
\(637\) − 223.580i − 0.350989i
\(638\) 0 0
\(639\) 40.7376 0.0637521
\(640\) 302.239i 0.472249i
\(641\) −107.572 −0.167818 −0.0839092 0.996473i \(-0.526741\pi\)
−0.0839092 + 0.996473i \(0.526741\pi\)
\(642\) 1185.10 1.84595
\(643\) −27.0356 −0.0420461 −0.0210230 0.999779i \(-0.506692\pi\)
−0.0210230 + 0.999779i \(0.506692\pi\)
\(644\) 1119.13i 1.73778i
\(645\) 333.400i 0.516899i
\(646\) 630.723i 0.976351i
\(647\) −1116.32 −1.72538 −0.862691 0.505732i \(-0.831223\pi\)
−0.862691 + 0.505732i \(0.831223\pi\)
\(648\) 430.423i 0.664233i
\(649\) 0 0
\(650\) −216.074 −0.332421
\(651\) 333.924i 0.512940i
\(652\) −1385.42 −2.12488
\(653\) −1093.80 −1.67504 −0.837518 0.546410i \(-0.815994\pi\)
−0.837518 + 0.546410i \(0.815994\pi\)
\(654\) −259.502 −0.396791
\(655\) 198.606i 0.303215i
\(656\) 443.666i 0.676321i
\(657\) 358.191i 0.545191i
\(658\) −2120.42 −3.22253
\(659\) − 587.822i − 0.891991i −0.895035 0.445996i \(-0.852850\pi\)
0.895035 0.445996i \(-0.147150\pi\)
\(660\) 0 0
\(661\) 389.155 0.588736 0.294368 0.955692i \(-0.404891\pi\)
0.294368 + 0.955692i \(0.404891\pi\)
\(662\) 1267.02i 1.91393i
\(663\) 1363.61 2.05672
\(664\) −660.820 −0.995211
\(665\) 152.082 0.228695
\(666\) − 436.704i − 0.655711i
\(667\) − 928.705i − 1.39236i
\(668\) 412.506i 0.617524i
\(669\) −467.534 −0.698855
\(670\) 122.633i 0.183035i
\(671\) 0 0
\(672\) −1372.13 −2.04185
\(673\) − 1024.28i − 1.52197i −0.648770 0.760984i \(-0.724716\pi\)
0.648770 0.760984i \(-0.275284\pi\)
\(674\) 1425.20 2.11454
\(675\) 40.0000 0.0592593
\(676\) 154.090 0.227944
\(677\) 247.363i 0.365381i 0.983170 + 0.182691i \(0.0584806\pi\)
−0.983170 + 0.182691i \(0.941519\pi\)
\(678\) − 881.732i − 1.30049i
\(679\) − 727.736i − 1.07178i
\(680\) 245.967 0.361717
\(681\) − 1550.95i − 2.27746i
\(682\) 0 0
\(683\) −979.967 −1.43480 −0.717399 0.696662i \(-0.754668\pi\)
−0.717399 + 0.696662i \(0.754668\pi\)
\(684\) 323.332i 0.472708i
\(685\) −268.482 −0.391945
\(686\) −820.256 −1.19571
\(687\) −554.610 −0.807292
\(688\) 296.125i 0.430414i
\(689\) − 766.312i − 1.11221i
\(690\) 698.706i 1.01262i
\(691\) −664.353 −0.961436 −0.480718 0.876875i \(-0.659624\pi\)
−0.480718 + 0.876875i \(0.659624\pi\)
\(692\) 613.222i 0.886160i
\(693\) 0 0
\(694\) 526.217 0.758237
\(695\) 7.86459i 0.0113160i
\(696\) −663.108 −0.952742
\(697\) 1355.89 1.94532
\(698\) −531.649 −0.761675
\(699\) − 746.353i − 1.06774i
\(700\) − 220.458i − 0.314940i
\(701\) 1035.18i 1.47672i 0.674407 + 0.738360i \(0.264399\pi\)
−0.674407 + 0.738360i \(0.735601\pi\)
\(702\) −345.718 −0.492476
\(703\) 171.103i 0.243390i
\(704\) 0 0
\(705\) −764.794 −1.08481
\(706\) − 1522.02i − 2.15584i
\(707\) 869.325 1.22960
\(708\) 1297.06 1.83200
\(709\) −1231.92 −1.73754 −0.868772 0.495212i \(-0.835090\pi\)
−0.868772 + 0.495212i \(0.835090\pi\)
\(710\) 40.0504i 0.0564090i
\(711\) − 240.233i − 0.337881i
\(712\) 579.709i 0.814198i
\(713\) 262.974 0.368828
\(714\) 2408.26i 3.37292i
\(715\) 0 0
\(716\) 1140.98 1.59354
\(717\) − 697.757i − 0.973162i
\(718\) −473.820 −0.659916
\(719\) 743.125 1.03355 0.516777 0.856120i \(-0.327132\pi\)
0.516777 + 0.856120i \(0.327132\pi\)
\(720\) −124.348 −0.172705
\(721\) − 154.480i − 0.214258i
\(722\) 891.758i 1.23512i
\(723\) − 917.231i − 1.26865i
\(724\) −437.682 −0.604533
\(725\) 182.946i 0.252339i
\(726\) 0 0
\(727\) −10.4678 −0.0143987 −0.00719934 0.999974i \(-0.502292\pi\)
−0.00719934 + 0.999974i \(0.502292\pi\)
\(728\) 512.601i 0.704122i
\(729\) −377.000 −0.517147
\(730\) −352.148 −0.482394
\(731\) 904.984 1.23801
\(732\) 803.752i 1.09802i
\(733\) 1010.61i 1.37874i 0.724411 + 0.689368i \(0.242112\pi\)
−0.724411 + 0.689368i \(0.757888\pi\)
\(734\) − 571.501i − 0.778612i
\(735\) 142.420 0.193768
\(736\) 1080.59i 1.46819i
\(737\) 0 0
\(738\) 1203.16 1.63030
\(739\) 576.872i 0.780611i 0.920685 + 0.390306i \(0.127631\pi\)
−0.920685 + 0.390306i \(0.872369\pi\)
\(740\) 248.031 0.335177
\(741\) −474.091 −0.639799
\(742\) 1353.38 1.82397
\(743\) 1153.39i 1.55234i 0.630521 + 0.776172i \(0.282841\pi\)
−0.630521 + 0.776172i \(0.717159\pi\)
\(744\) − 187.767i − 0.252375i
\(745\) 208.646i 0.280062i
\(746\) −827.415 −1.10914
\(747\) − 1020.96i − 1.36675i
\(748\) 0 0
\(749\) −775.659 −1.03559
\(750\) − 137.638i − 0.183518i
\(751\) 1447.83 1.92787 0.963933 0.266145i \(-0.0857500\pi\)
0.963933 + 0.266145i \(0.0857500\pi\)
\(752\) −679.288 −0.903308
\(753\) 423.862 0.562898
\(754\) − 1581.19i − 2.09707i
\(755\) − 219.161i − 0.290280i
\(756\) − 352.733i − 0.466578i
\(757\) 528.438 0.698069 0.349035 0.937110i \(-0.386510\pi\)
0.349035 + 0.937110i \(0.386510\pi\)
\(758\) − 927.982i − 1.22425i
\(759\) 0 0
\(760\) −85.5166 −0.112522
\(761\) − 218.749i − 0.287449i −0.989618 0.143725i \(-0.954092\pi\)
0.989618 0.143725i \(-0.0459080\pi\)
\(762\) −331.862 −0.435515
\(763\) 169.846 0.222603
\(764\) 477.135 0.624522
\(765\) 380.018i 0.496755i
\(766\) − 1498.45i − 1.95621i
\(767\) 832.052i 1.08481i
\(768\) 76.0000 0.0989583
\(769\) 162.687i 0.211557i 0.994390 + 0.105778i \(0.0337334\pi\)
−0.994390 + 0.105778i \(0.966267\pi\)
\(770\) 0 0
\(771\) 1030.83 1.33701
\(772\) − 1028.99i − 1.33288i
\(773\) 326.458 0.422326 0.211163 0.977451i \(-0.432275\pi\)
0.211163 + 0.977451i \(0.432275\pi\)
\(774\) 803.050 1.03753
\(775\) −51.8034 −0.0668431
\(776\) 409.210i 0.527333i
\(777\) 653.317i 0.840820i
\(778\) 1176.00i 1.51157i
\(779\) −471.407 −0.605144
\(780\) 687.243i 0.881081i
\(781\) 0 0
\(782\) 1896.58 2.42529
\(783\) 292.713i 0.373836i
\(784\) 126.497 0.161348
\(785\) −385.179 −0.490674
\(786\) 1093.43 1.39113
\(787\) 387.252i 0.492061i 0.969262 + 0.246031i \(0.0791264\pi\)
−0.969262 + 0.246031i \(0.920874\pi\)
\(788\) − 57.5051i − 0.0729760i
\(789\) 1161.39i 1.47197i
\(790\) 236.180 0.298962
\(791\) 577.101i 0.729585i
\(792\) 0 0
\(793\) −515.601 −0.650190
\(794\) 2056.27i 2.58976i
\(795\) 488.138 0.614010
\(796\) −45.4628 −0.0571141
\(797\) −21.9787 −0.0275768 −0.0137884 0.999905i \(-0.504389\pi\)
−0.0137884 + 0.999905i \(0.504389\pi\)
\(798\) − 837.292i − 1.04924i
\(799\) 2075.97i 2.59821i
\(800\) − 212.865i − 0.266081i
\(801\) −895.645 −1.11816
\(802\) 1108.17i 1.38176i
\(803\) 0 0
\(804\) 390.046 0.485132
\(805\) − 457.309i − 0.568085i
\(806\) 447.735 0.555502
\(807\) 1323.16 1.63960
\(808\) −488.827 −0.604983
\(809\) 1019.89i 1.26068i 0.776319 + 0.630341i \(0.217085\pi\)
−0.776319 + 0.630341i \(0.782915\pi\)
\(810\) − 653.781i − 0.807138i
\(811\) 989.112i 1.21962i 0.792548 + 0.609810i \(0.208754\pi\)
−0.792548 + 0.609810i \(0.791246\pi\)
\(812\) 1613.28 1.98679
\(813\) − 869.183i − 1.06911i
\(814\) 0 0
\(815\) 566.122 0.694628
\(816\) 771.498i 0.945463i
\(817\) −314.640 −0.385116
\(818\) −111.448 −0.136244
\(819\) −791.964 −0.966989
\(820\) 683.352i 0.833356i
\(821\) − 767.313i − 0.934607i −0.884097 0.467304i \(-0.845225\pi\)
0.884097 0.467304i \(-0.154775\pi\)
\(822\) 1478.14i 1.79822i
\(823\) 834.303 1.01373 0.506867 0.862024i \(-0.330804\pi\)
0.506867 + 0.862024i \(0.330804\pi\)
\(824\) 86.8648i 0.105418i
\(825\) 0 0
\(826\) −1469.49 −1.77904
\(827\) 560.150i 0.677328i 0.940907 + 0.338664i \(0.109975\pi\)
−0.940907 + 0.338664i \(0.890025\pi\)
\(828\) 972.255 1.17422
\(829\) −1200.60 −1.44825 −0.724125 0.689668i \(-0.757756\pi\)
−0.724125 + 0.689668i \(0.757756\pi\)
\(830\) 1003.74 1.20932
\(831\) − 1794.52i − 2.15947i
\(832\) 1393.59i 1.67499i
\(833\) − 386.585i − 0.464088i
\(834\) 43.2987 0.0519170
\(835\) − 168.562i − 0.201870i
\(836\) 0 0
\(837\) −82.8854 −0.0990268
\(838\) − 1303.53i − 1.55553i
\(839\) 525.440 0.626270 0.313135 0.949709i \(-0.398621\pi\)
0.313135 + 0.949709i \(0.398621\pi\)
\(840\) −326.525 −0.388720
\(841\) −497.768 −0.591876
\(842\) 2104.35i 2.49923i
\(843\) − 374.734i − 0.444524i
\(844\) − 419.213i − 0.496698i
\(845\) −62.9656 −0.0745155
\(846\) 1842.14i 2.17746i
\(847\) 0 0
\(848\) 433.562 0.511276
\(849\) − 1169.23i − 1.37719i
\(850\) −373.607 −0.439537
\(851\) 514.505 0.604589
\(852\) 127.384 0.149512
\(853\) 958.373i 1.12353i 0.827296 + 0.561766i \(0.189878\pi\)
−0.827296 + 0.561766i \(0.810122\pi\)
\(854\) − 910.601i − 1.06628i
\(855\) − 132.122i − 0.154529i
\(856\) 436.158 0.509530
\(857\) 56.2536i 0.0656402i 0.999461 + 0.0328201i \(0.0104488\pi\)
−0.999461 + 0.0328201i \(0.989551\pi\)
\(858\) 0 0
\(859\) −1517.29 −1.76634 −0.883171 0.469051i \(-0.844596\pi\)
−0.883171 + 0.469051i \(0.844596\pi\)
\(860\) 456.102i 0.530351i
\(861\) −1799.96 −2.09054
\(862\) 397.236 0.460831
\(863\) −1096.52 −1.27059 −0.635294 0.772270i \(-0.719121\pi\)
−0.635294 + 0.772270i \(0.719121\pi\)
\(864\) − 340.584i − 0.394195i
\(865\) − 250.580i − 0.289688i
\(866\) − 1696.94i − 1.95951i
\(867\) 1201.77 1.38613
\(868\) 456.819i 0.526289i
\(869\) 0 0
\(870\) 1007.21 1.15772
\(871\) 250.212i 0.287270i
\(872\) −95.5054 −0.109525
\(873\) −632.227 −0.724200
\(874\) −659.391 −0.754452
\(875\) 90.0854i 0.102955i
\(876\) 1120.04i 1.27858i
\(877\) 1137.29i 1.29679i 0.761303 + 0.648396i \(0.224560\pi\)
−0.761303 + 0.648396i \(0.775440\pi\)
\(878\) 1448.31 1.64955
\(879\) − 1384.31i − 1.57487i
\(880\) 0 0
\(881\) 850.822 0.965746 0.482873 0.875690i \(-0.339593\pi\)
0.482873 + 0.875690i \(0.339593\pi\)
\(882\) − 343.041i − 0.388936i
\(883\) 509.915 0.577480 0.288740 0.957408i \(-0.406764\pi\)
0.288740 + 0.957408i \(0.406764\pi\)
\(884\) 1865.46 2.11025
\(885\) −530.014 −0.598886
\(886\) 305.498i 0.344806i
\(887\) − 583.506i − 0.657842i −0.944357 0.328921i \(-0.893315\pi\)
0.944357 0.328921i \(-0.106685\pi\)
\(888\) − 367.364i − 0.413698i
\(889\) 217.207 0.244327
\(890\) − 880.535i − 0.989366i
\(891\) 0 0
\(892\) −639.603 −0.717043
\(893\) − 721.761i − 0.808243i
\(894\) 1148.71 1.28491
\(895\) −466.235 −0.520933
\(896\) −1089.09 −1.21551
\(897\) 1425.59i 1.58928i
\(898\) 419.498i 0.467147i
\(899\) − 379.089i − 0.421678i
\(900\) −191.525 −0.212805
\(901\) − 1325.01i − 1.47060i
\(902\) 0 0
\(903\) −1201.38 −1.33043
\(904\) − 324.508i − 0.358968i
\(905\) 178.849 0.197623
\(906\) −1206.60 −1.33179
\(907\) 640.502 0.706177 0.353088 0.935590i \(-0.385132\pi\)
0.353088 + 0.935590i \(0.385132\pi\)
\(908\) − 2121.76i − 2.33674i
\(909\) − 755.233i − 0.830839i
\(910\) − 778.604i − 0.855609i
\(911\) −1095.06 −1.20204 −0.601021 0.799234i \(-0.705239\pi\)
−0.601021 + 0.799234i \(0.705239\pi\)
\(912\) − 268.230i − 0.294112i
\(913\) 0 0
\(914\) 94.7802 0.103698
\(915\) − 328.435i − 0.358946i
\(916\) −758.725 −0.828303
\(917\) −715.659 −0.780436
\(918\) −597.771 −0.651167
\(919\) − 1240.93i − 1.35031i −0.737677 0.675154i \(-0.764077\pi\)
0.737677 0.675154i \(-0.235923\pi\)
\(920\) 257.147i 0.279508i
\(921\) − 723.303i − 0.785346i
\(922\) 439.039 0.476182
\(923\) 81.7158i 0.0885328i
\(924\) 0 0
\(925\) −101.353 −0.109570
\(926\) 1510.72i 1.63145i
\(927\) −134.205 −0.144774
\(928\) 1557.71 1.67857
\(929\) 1032.05 1.11093 0.555463 0.831541i \(-0.312541\pi\)
0.555463 + 0.831541i \(0.312541\pi\)
\(930\) 285.205i 0.306672i
\(931\) 134.406i 0.144367i
\(932\) − 1021.04i − 1.09553i
\(933\) 1492.64 1.59983
\(934\) − 2332.68i − 2.49752i
\(935\) 0 0
\(936\) 445.326 0.475776
\(937\) − 306.589i − 0.327203i −0.986527 0.163601i \(-0.947689\pi\)
0.986527 0.163601i \(-0.0523111\pi\)
\(938\) −441.899 −0.471107
\(939\) −1269.46 −1.35192
\(940\) −1046.26 −1.11305
\(941\) 19.0830i 0.0202795i 0.999949 + 0.0101397i \(0.00322763\pi\)
−0.999949 + 0.0101397i \(0.996772\pi\)
\(942\) 2120.61i 2.25118i
\(943\) 1417.52i 1.50320i
\(944\) −470.757 −0.498683
\(945\) 144.137i 0.152525i
\(946\) 0 0
\(947\) −804.636 −0.849669 −0.424834 0.905271i \(-0.639668\pi\)
−0.424834 + 0.905271i \(0.639668\pi\)
\(948\) − 751.193i − 0.792398i
\(949\) −718.496 −0.757109
\(950\) 129.894 0.136730
\(951\) −1099.18 −1.15582
\(952\) 886.323i 0.931011i
\(953\) − 1854.14i − 1.94559i −0.231673 0.972794i \(-0.574420\pi\)
0.231673 0.972794i \(-0.425580\pi\)
\(954\) − 1175.76i − 1.23245i
\(955\) −194.971 −0.204158
\(956\) − 954.556i − 0.998489i
\(957\) 0 0
\(958\) 1911.11 1.99489
\(959\) − 967.453i − 1.00881i
\(960\) −887.712 −0.924700
\(961\) −853.656 −0.888300
\(962\) 875.986 0.910588
\(963\) 673.860i 0.699751i
\(964\) − 1254.80i − 1.30166i
\(965\) 420.473i 0.435723i
\(966\) −2517.73 −2.60634
\(967\) 660.803i 0.683353i 0.939818 + 0.341677i \(0.110995\pi\)
−0.939818 + 0.341677i \(0.889005\pi\)
\(968\) 0 0
\(969\) −819.737 −0.845962
\(970\) − 621.561i − 0.640785i
\(971\) −538.861 −0.554955 −0.277477 0.960732i \(-0.589498\pi\)
−0.277477 + 0.960732i \(0.589498\pi\)
\(972\) −1685.42 −1.73397
\(973\) −28.3394 −0.0291258
\(974\) − 1211.72i − 1.24407i
\(975\) − 280.827i − 0.288027i
\(976\) − 291.715i − 0.298889i
\(977\) −301.388 −0.308483 −0.154241 0.988033i \(-0.549293\pi\)
−0.154241 + 0.988033i \(0.549293\pi\)
\(978\) − 3116.80i − 3.18691i
\(979\) 0 0
\(980\) 194.835 0.198811
\(981\) − 147.555i − 0.150413i
\(982\) 1996.47 2.03306
\(983\) −771.218 −0.784555 −0.392278 0.919847i \(-0.628313\pi\)
−0.392278 + 0.919847i \(0.628313\pi\)
\(984\) 1012.13 1.02858
\(985\) 23.4982i 0.0238560i
\(986\) − 2733.99i − 2.77281i
\(987\) − 2755.87i − 2.79217i
\(988\) −648.573 −0.656450
\(989\) 946.119i 0.956642i
\(990\) 0 0
\(991\) 118.312 0.119386 0.0596932 0.998217i \(-0.480988\pi\)
0.0596932 + 0.998217i \(0.480988\pi\)
\(992\) 441.086i 0.444643i
\(993\) −1646.72 −1.65833
\(994\) −144.318 −0.145189
\(995\) 18.5774 0.0186707
\(996\) − 3192.48i − 3.20530i
\(997\) 37.8803i 0.0379943i 0.999820 + 0.0189971i \(0.00604734\pi\)
−0.999820 + 0.0189971i \(0.993953\pi\)
\(998\) − 2206.78i − 2.21120i
\(999\) −162.164 −0.162326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.3.c.a.241.4 4
11.2 odd 10 55.3.i.a.51.1 yes 4
11.5 even 5 55.3.i.a.41.1 4
11.10 odd 2 inner 605.3.c.a.241.1 4
55.2 even 20 275.3.q.c.249.1 8
55.13 even 20 275.3.q.c.249.2 8
55.24 odd 10 275.3.x.d.51.1 4
55.27 odd 20 275.3.q.c.74.2 8
55.38 odd 20 275.3.q.c.74.1 8
55.49 even 10 275.3.x.d.151.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.a.41.1 4 11.5 even 5
55.3.i.a.51.1 yes 4 11.2 odd 10
275.3.q.c.74.1 8 55.38 odd 20
275.3.q.c.74.2 8 55.27 odd 20
275.3.q.c.249.1 8 55.2 even 20
275.3.q.c.249.2 8 55.13 even 20
275.3.x.d.51.1 4 55.24 odd 10
275.3.x.d.151.1 4 55.49 even 10
605.3.c.a.241.1 4 11.10 odd 2 inner
605.3.c.a.241.4 4 1.1 even 1 trivial