Properties

Label 605.3.c.a
Level $605$
Weight $3$
Character orbit 605.c
Analytic conductor $16.485$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,3,Mod(241,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.241"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 605.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.4850559938\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_1) q^{2} - 4 q^{3} + (4 \beta_{2} + 1) q^{4} + ( - 2 \beta_{2} - 1) q^{5} + (4 \beta_{3} - 4 \beta_1) q^{6} + ( - 3 \beta_{3} + 2 \beta_1) q^{7} + (3 \beta_{3} + \beta_1) q^{8}+ \cdots + (27 \beta_{3} + 2 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{3} - 4 q^{4} + 28 q^{9} + 16 q^{12} - 50 q^{14} + 4 q^{16} - 40 q^{20} - 106 q^{23} + 20 q^{25} - 70 q^{26} + 32 q^{27} + 48 q^{31} - 120 q^{34} - 28 q^{36} - 14 q^{37} + 10 q^{38} + 200 q^{42}+ \cdots - 84 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{10}^{3} + \zeta_{10}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\zeta_{10}^{3} + \zeta_{10}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{10}^{3} - \zeta_{10}^{2} + 2\zeta_{10} - 1 \) Copy content Toggle raw display
\(\zeta_{10}\)\(=\) \( ( \beta_{3} + \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{10}^{2}\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{10}^{3}\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
241.1
−0.309017 + 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 0.951057i
3.07768i −4.00000 −5.47214 2.23607 12.3107i 8.05748i 4.53077i 7.00000 6.88191i
241.2 0.726543i −4.00000 3.47214 −2.23607 2.90617i 0.277515i 5.42882i 7.00000 1.62460i
241.3 0.726543i −4.00000 3.47214 −2.23607 2.90617i 0.277515i 5.42882i 7.00000 1.62460i
241.4 3.07768i −4.00000 −5.47214 2.23607 12.3107i 8.05748i 4.53077i 7.00000 6.88191i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 605.3.c.a 4
11.b odd 2 1 inner 605.3.c.a 4
11.c even 5 1 55.3.i.a 4
11.d odd 10 1 55.3.i.a 4
55.h odd 10 1 275.3.x.d 4
55.j even 10 1 275.3.x.d 4
55.k odd 20 2 275.3.q.c 8
55.l even 20 2 275.3.q.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.3.i.a 4 11.c even 5 1
55.3.i.a 4 11.d odd 10 1
275.3.q.c 8 55.k odd 20 2
275.3.q.c 8 55.l even 20 2
275.3.x.d 4 55.h odd 10 1
275.3.x.d 4 55.j even 10 1
605.3.c.a 4 1.a even 1 1 trivial
605.3.c.a 4 11.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(605, [\chi])\):

\( T_{2}^{4} + 10T_{2}^{2} + 5 \) Copy content Toggle raw display
\( T_{3} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 10T^{2} + 5 \) Copy content Toggle raw display
$3$ \( (T + 4)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 65T^{2} + 5 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 325 T^{2} + 25205 \) Copy content Toggle raw display
$17$ \( T^{4} + 1000 T^{2} + 242000 \) Copy content Toggle raw display
$19$ \( T^{4} + 905 T^{2} + 59405 \) Copy content Toggle raw display
$23$ \( (T^{2} + 53 T + 701)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 1640 T^{2} + 403280 \) Copy content Toggle raw display
$31$ \( (T^{2} - 24 T - 356)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 7 T - 269)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 3445 T^{2} + 1017005 \) Copy content Toggle raw display
$43$ \( T^{4} + 2600 T^{2} + 1682000 \) Copy content Toggle raw display
$47$ \( (T^{2} - 133 T + 4061)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 13 T - 2269)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 161 T + 6029)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 3940 T^{2} + 3494480 \) Copy content Toggle raw display
$67$ \( (T^{2} - 58 T + 716)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 34 T + 164)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 12580 T^{2} + 26083280 \) Copy content Toggle raw display
$79$ \( T^{4} + 18500 T^{2} + 20402000 \) Copy content Toggle raw display
$83$ \( T^{4} + 37000 T^{2} + 334562000 \) Copy content Toggle raw display
$89$ \( (T^{2} + 39 T - 11381)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 42 T - 4364)^{2} \) Copy content Toggle raw display
show more
show less