Properties

Label 275.3.q.c
Level $275$
Weight $3$
Character orbit 275.q
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(24,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.q (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,18,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{20}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{20}^{7} - 2 \zeta_{20}^{5} - 2 \zeta_{20}) q^{2} + 4 \zeta_{20} q^{3} + (4 \zeta_{20}^{6} + \cdots + 4 \zeta_{20}^{2}) q^{4} + ( - 4 \zeta_{20}^{6} - 4 \zeta_{20}^{4} + \cdots - 4) q^{6}+ \cdots + (21 \zeta_{20}^{6} - 84 \zeta_{20}^{4} + \cdots - 70) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 18 q^{4} - 40 q^{6} + 14 q^{9} - 2 q^{11} + 30 q^{14} + 38 q^{16} - 100 q^{19} - 40 q^{24} - 80 q^{26} - 180 q^{29} + 76 q^{31} + 240 q^{34} - 126 q^{36} - 40 q^{39} + 170 q^{41} + 38 q^{44} + 260 q^{46}+ \cdots - 266 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-\zeta_{20}^{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
24.1
0.587785 + 0.809017i
−0.587785 0.809017i
0.951057 0.309017i
−0.951057 + 0.309017i
0.587785 0.809017i
−0.587785 + 0.809017i
0.951057 + 0.309017i
−0.951057 0.309017i
−0.224514 + 0.690983i 2.35114 + 3.23607i 2.80902 + 2.04087i 0 −2.76393 + 0.898056i 0.224514 + 0.163119i −4.39201 + 3.19098i −2.16312 + 6.65740i 0
24.2 0.224514 0.690983i −2.35114 3.23607i 2.80902 + 2.04087i 0 −2.76393 + 0.898056i −0.224514 0.163119i 4.39201 3.19098i −2.16312 + 6.65740i 0
74.1 −2.48990 + 1.80902i 3.80423 1.23607i 1.69098 5.20431i 0 −7.23607 + 9.95959i 2.48990 7.66312i 1.40008 + 4.30902i 5.66312 4.11450i 0
74.2 2.48990 1.80902i −3.80423 + 1.23607i 1.69098 5.20431i 0 −7.23607 + 9.95959i −2.48990 + 7.66312i −1.40008 4.30902i 5.66312 4.11450i 0
149.1 −0.224514 0.690983i 2.35114 3.23607i 2.80902 2.04087i 0 −2.76393 0.898056i 0.224514 0.163119i −4.39201 3.19098i −2.16312 6.65740i 0
149.2 0.224514 + 0.690983i −2.35114 + 3.23607i 2.80902 2.04087i 0 −2.76393 0.898056i −0.224514 + 0.163119i 4.39201 + 3.19098i −2.16312 6.65740i 0
249.1 −2.48990 1.80902i 3.80423 + 1.23607i 1.69098 + 5.20431i 0 −7.23607 9.95959i 2.48990 + 7.66312i 1.40008 4.30902i 5.66312 + 4.11450i 0
249.2 2.48990 + 1.80902i −3.80423 1.23607i 1.69098 + 5.20431i 0 −7.23607 9.95959i −2.48990 7.66312i −1.40008 + 4.30902i 5.66312 + 4.11450i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 24.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
11.d odd 10 1 inner
55.h odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 275.3.q.c 8
5.b even 2 1 inner 275.3.q.c 8
5.c odd 4 1 55.3.i.a 4
5.c odd 4 1 275.3.x.d 4
11.d odd 10 1 inner 275.3.q.c 8
55.h odd 10 1 inner 275.3.q.c 8
55.k odd 20 1 605.3.c.a 4
55.l even 20 1 55.3.i.a 4
55.l even 20 1 275.3.x.d 4
55.l even 20 1 605.3.c.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.3.i.a 4 5.c odd 4 1
55.3.i.a 4 55.l even 20 1
275.3.q.c 8 1.a even 1 1 trivial
275.3.q.c 8 5.b even 2 1 inner
275.3.q.c 8 11.d odd 10 1 inner
275.3.q.c 8 55.h odd 10 1 inner
275.3.x.d 4 5.c odd 4 1
275.3.x.d 4 55.l even 20 1
605.3.c.a 4 55.k odd 20 1
605.3.c.a 4 55.l even 20 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(275, [\chi])\):

\( T_{2}^{8} - 5T_{2}^{6} + 85T_{2}^{4} + 75T_{2}^{2} + 25 \) Copy content Toggle raw display
\( T_{3}^{8} - 16T_{3}^{6} + 256T_{3}^{4} - 4096T_{3}^{2} + 65536 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 5 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$3$ \( T^{8} - 16 T^{6} + \cdots + 65536 \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + 105 T^{6} + \cdots + 25 \) Copy content Toggle raw display
$11$ \( (T^{4} + T^{3} + \cdots + 14641)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + 85 T^{6} + \cdots + 635292025 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 58564000000 \) Copy content Toggle raw display
$19$ \( (T^{4} + 50 T^{3} + \cdots + 59405)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 1407 T^{2} + 491401)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 90 T^{3} + \cdots + 403280)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 38 T^{3} + \cdots + 126736)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 5236114321 \) Copy content Toggle raw display
$41$ \( (T^{4} - 85 T^{3} + \cdots + 1017005)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 2600 T^{2} + 1682000)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 271976861541841 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 26505620986321 \) Copy content Toggle raw display
$59$ \( (T^{4} - 128 T^{3} + \cdots + 36348841)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 140 T^{3} + \cdots + 3494480)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 1932 T^{2} + 512656)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 8 T^{3} + \cdots + 26896)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 680337495558400 \) Copy content Toggle raw display
$79$ \( (T^{4} - 210 T^{3} + \cdots + 20402000)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} - 39 T - 11381)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 362692827894016 \) Copy content Toggle raw display
show more
show less