Properties

Label 26.3.f.b.7.1
Level $26$
Weight $3$
Character 26.7
Analytic conductor $0.708$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [26,3,Mod(7,26)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(26, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("26.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 26.f (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.708448687337\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.1
Root \(4.71318 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 26.7
Dual form 26.3.f.b.15.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(-2.78960 + 4.83174i) q^{3} +(1.73205 - 1.00000i) q^{4} +(0.323893 + 0.323893i) q^{5} +(2.04213 - 7.62134i) q^{6} +(7.67890 + 2.05755i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-11.0638 - 19.1630i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(-2.78960 + 4.83174i) q^{3} +(1.73205 - 1.00000i) q^{4} +(0.323893 + 0.323893i) q^{5} +(2.04213 - 7.62134i) q^{6} +(7.67890 + 2.05755i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-11.0638 - 19.1630i) q^{9} +(-0.560999 - 0.323893i) q^{10} +(1.44868 + 5.40655i) q^{11} +11.1584i q^{12} +(12.8550 + 1.93621i) q^{13} -11.2427 q^{14} +(-2.46850 + 0.661433i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-1.74285 + 1.00623i) q^{17} +(22.1276 + 22.1276i) q^{18} +(1.19911 - 4.47512i) q^{19} +(0.884892 + 0.237106i) q^{20} +(-31.3626 + 31.3626i) q^{21} +(-3.95787 - 6.85523i) q^{22} +(-15.0976 - 8.71663i) q^{23} +(-4.08426 - 15.2427i) q^{24} -24.7902i q^{25} +(-18.2690 + 2.06034i) q^{26} +73.2415 q^{27} +(15.3578 - 4.11511i) q^{28} +(8.25026 - 14.2899i) q^{29} +(3.12993 - 1.80707i) q^{30} +(-9.27353 - 9.27353i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(-30.1643 - 8.08249i) q^{33} +(2.01247 - 2.01247i) q^{34} +(1.82071 + 3.15357i) q^{35} +(-38.3261 - 22.1276i) q^{36} +(9.12370 + 34.0501i) q^{37} +6.55204i q^{38} +(-45.2156 + 56.7107i) q^{39} -1.29557 q^{40} +(58.6217 - 15.7076i) q^{41} +(31.3626 - 54.3217i) q^{42} +(-45.2101 + 26.1020i) q^{43} +(7.91574 + 7.91574i) q^{44} +(2.62329 - 9.79026i) q^{45} +(23.8143 + 6.38102i) q^{46} +(8.73527 - 8.73527i) q^{47} +(11.1584 + 19.3269i) q^{48} +(12.2967 + 7.09948i) q^{49} +(9.07384 + 33.8640i) q^{50} -11.2280i q^{51} +(24.2017 - 9.50138i) q^{52} -23.4425 q^{53} +(-100.050 + 26.8082i) q^{54} +(-1.28193 + 2.22036i) q^{55} +(-19.4729 + 11.2427i) q^{56} +(18.2776 + 18.2776i) q^{57} +(-6.03961 + 22.5401i) q^{58} +(34.0864 + 9.13343i) q^{59} +(-3.61413 + 3.61413i) q^{60} +(-13.9421 - 24.1483i) q^{61} +(16.0622 + 9.27353i) q^{62} +(-45.5287 - 169.915i) q^{63} -8.00000i q^{64} +(3.53652 + 4.79077i) q^{65} +44.1635 q^{66} +(-33.0643 + 8.85955i) q^{67} +(-2.01247 + 3.48570i) q^{68} +(84.2329 - 48.6319i) q^{69} +(-3.64143 - 3.64143i) q^{70} +(19.7955 - 73.8778i) q^{71} +(60.4537 + 16.1985i) q^{72} +(-18.9304 + 18.9304i) q^{73} +(-24.9264 - 43.1738i) q^{74} +(119.780 + 69.1548i) q^{75} +(-2.39821 - 8.95025i) q^{76} +44.4971i q^{77} +(41.0082 - 94.0184i) q^{78} -142.837 q^{79} +(1.76978 - 0.474212i) q^{80} +(-104.741 + 181.416i) q^{81} +(-74.3293 + 42.9141i) q^{82} +(-91.7157 - 91.7157i) q^{83} +(-22.9590 + 85.6843i) q^{84} +(-0.890409 - 0.238584i) q^{85} +(52.2041 - 52.2041i) q^{86} +(46.0299 + 79.7262i) q^{87} +(-13.7105 - 7.91574i) q^{88} +(40.4072 + 150.802i) q^{89} +14.3339i q^{90} +(94.7284 + 41.3178i) q^{91} -34.8665 q^{92} +(70.6767 - 18.9378i) q^{93} +(-8.73527 + 15.1299i) q^{94} +(1.83784 - 1.06108i) q^{95} +(-22.3168 - 22.3168i) q^{96} +(29.1440 - 108.767i) q^{97} +(-19.3961 - 5.19718i) q^{98} +(87.5780 - 87.5780i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 6 q^{5} + 6 q^{6} - 2 q^{7} - 16 q^{8} - 42 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{2} + 6 q^{5} + 6 q^{6} - 2 q^{7} - 16 q^{8} - 42 q^{9} - 18 q^{10} - 18 q^{11} + 36 q^{13} + 20 q^{14} + 66 q^{15} + 16 q^{16} - 42 q^{17} + 84 q^{18} + 46 q^{19} + 24 q^{20} - 102 q^{21} - 42 q^{22} - 36 q^{23} - 12 q^{24} + 40 q^{26} + 72 q^{27} - 4 q^{28} - 6 q^{29} - 192 q^{30} + 32 q^{31} + 16 q^{32} + 42 q^{33} - 60 q^{34} - 78 q^{35} - 48 q^{36} - 106 q^{37} + 12 q^{39} - 24 q^{40} + 132 q^{41} + 102 q^{42} - 108 q^{43} + 84 q^{44} + 240 q^{45} + 90 q^{46} + 60 q^{47} + 258 q^{49} + 194 q^{50} + 32 q^{52} - 132 q^{53} - 270 q^{54} - 162 q^{55} - 12 q^{56} - 294 q^{57} - 24 q^{58} + 18 q^{59} - 120 q^{60} + 36 q^{61} - 12 q^{62} - 72 q^{63} - 300 q^{65} + 108 q^{66} - 74 q^{67} + 60 q^{68} + 258 q^{69} + 156 q^{70} - 174 q^{71} + 132 q^{72} + 166 q^{73} - 32 q^{74} + 6 q^{75} - 92 q^{76} + 126 q^{78} - 96 q^{79} + 48 q^{80} - 12 q^{81} - 252 q^{82} - 240 q^{83} - 132 q^{84} - 24 q^{85} + 132 q^{86} + 360 q^{87} - 12 q^{88} + 294 q^{89} + 298 q^{91} - 216 q^{92} + 270 q^{93} - 60 q^{94} + 714 q^{95} - 58 q^{97} - 250 q^{98} + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).

\(n\) \(15\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) −2.78960 + 4.83174i −0.929868 + 1.61058i −0.146330 + 0.989236i \(0.546746\pi\)
−0.783539 + 0.621343i \(0.786587\pi\)
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 0.323893 + 0.323893i 0.0647786 + 0.0647786i 0.738754 0.673975i \(-0.235415\pi\)
−0.673975 + 0.738754i \(0.735415\pi\)
\(6\) 2.04213 7.62134i 0.340355 1.27022i
\(7\) 7.67890 + 2.05755i 1.09699 + 0.293936i 0.761536 0.648122i \(-0.224445\pi\)
0.335449 + 0.942058i \(0.391112\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −11.0638 19.1630i −1.22931 2.12923i
\(10\) −0.560999 0.323893i −0.0560999 0.0323893i
\(11\) 1.44868 + 5.40655i 0.131698 + 0.491504i 0.999990 0.00455003i \(-0.00144833\pi\)
−0.868291 + 0.496054i \(0.834782\pi\)
\(12\) 11.1584i 0.929868i
\(13\) 12.8550 + 1.93621i 0.988846 + 0.148939i
\(14\) −11.2427 −0.803049
\(15\) −2.46850 + 0.661433i −0.164567 + 0.0440955i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −1.74285 + 1.00623i −0.102520 + 0.0591902i −0.550384 0.834912i \(-0.685519\pi\)
0.447863 + 0.894102i \(0.352185\pi\)
\(18\) 22.1276 + 22.1276i 1.22931 + 1.22931i
\(19\) 1.19911 4.47512i 0.0631108 0.235533i −0.927164 0.374655i \(-0.877761\pi\)
0.990275 + 0.139122i \(0.0444279\pi\)
\(20\) 0.884892 + 0.237106i 0.0442446 + 0.0118553i
\(21\) −31.3626 + 31.3626i −1.49346 + 1.49346i
\(22\) −3.95787 6.85523i −0.179903 0.311601i
\(23\) −15.0976 8.71663i −0.656419 0.378984i 0.134492 0.990915i \(-0.457060\pi\)
−0.790911 + 0.611931i \(0.790393\pi\)
\(24\) −4.08426 15.2427i −0.170178 0.635112i
\(25\) 24.7902i 0.991607i
\(26\) −18.2690 + 2.06034i −0.702652 + 0.0792439i
\(27\) 73.2415 2.71265
\(28\) 15.3578 4.11511i 0.548493 0.146968i
\(29\) 8.25026 14.2899i 0.284492 0.492754i −0.687994 0.725716i \(-0.741508\pi\)
0.972486 + 0.232962i \(0.0748418\pi\)
\(30\) 3.12993 1.80707i 0.104331 0.0602356i
\(31\) −9.27353 9.27353i −0.299146 0.299146i 0.541533 0.840679i \(-0.317844\pi\)
−0.840679 + 0.541533i \(0.817844\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) −30.1643 8.08249i −0.914069 0.244924i
\(34\) 2.01247 2.01247i 0.0591902 0.0591902i
\(35\) 1.82071 + 3.15357i 0.0520204 + 0.0901020i
\(36\) −38.3261 22.1276i −1.06461 0.614655i
\(37\) 9.12370 + 34.0501i 0.246586 + 0.920273i 0.972579 + 0.232571i \(0.0747138\pi\)
−0.725993 + 0.687702i \(0.758620\pi\)
\(38\) 6.55204i 0.172422i
\(39\) −45.2156 + 56.7107i −1.15938 + 1.45412i
\(40\) −1.29557 −0.0323893
\(41\) 58.6217 15.7076i 1.42980 0.383113i 0.540849 0.841120i \(-0.318103\pi\)
0.888949 + 0.458007i \(0.151436\pi\)
\(42\) 31.3626 54.3217i 0.746730 1.29337i
\(43\) −45.2101 + 26.1020i −1.05140 + 0.607024i −0.923040 0.384704i \(-0.874304\pi\)
−0.128357 + 0.991728i \(0.540970\pi\)
\(44\) 7.91574 + 7.91574i 0.179903 + 0.179903i
\(45\) 2.62329 9.79026i 0.0582954 0.217561i
\(46\) 23.8143 + 6.38102i 0.517702 + 0.138718i
\(47\) 8.73527 8.73527i 0.185857 0.185857i −0.608045 0.793902i \(-0.708046\pi\)
0.793902 + 0.608045i \(0.208046\pi\)
\(48\) 11.1584 + 19.3269i 0.232467 + 0.402645i
\(49\) 12.2967 + 7.09948i 0.250952 + 0.144887i
\(50\) 9.07384 + 33.8640i 0.181477 + 0.677280i
\(51\) 11.2280i 0.220156i
\(52\) 24.2017 9.50138i 0.465418 0.182719i
\(53\) −23.4425 −0.442311 −0.221155 0.975239i \(-0.570983\pi\)
−0.221155 + 0.975239i \(0.570983\pi\)
\(54\) −100.050 + 26.8082i −1.85277 + 0.496449i
\(55\) −1.28193 + 2.22036i −0.0233077 + 0.0403702i
\(56\) −19.4729 + 11.2427i −0.347730 + 0.200762i
\(57\) 18.2776 + 18.2776i 0.320660 + 0.320660i
\(58\) −6.03961 + 22.5401i −0.104131 + 0.388623i
\(59\) 34.0864 + 9.13343i 0.577736 + 0.154804i 0.535842 0.844318i \(-0.319994\pi\)
0.0418940 + 0.999122i \(0.486661\pi\)
\(60\) −3.61413 + 3.61413i −0.0602356 + 0.0602356i
\(61\) −13.9421 24.1483i −0.228558 0.395875i 0.728823 0.684702i \(-0.240068\pi\)
−0.957381 + 0.288828i \(0.906734\pi\)
\(62\) 16.0622 + 9.27353i 0.259068 + 0.149573i
\(63\) −45.5287 169.915i −0.722677 2.69707i
\(64\) 8.00000i 0.125000i
\(65\) 3.53652 + 4.79077i 0.0544080 + 0.0737042i
\(66\) 44.1635 0.669145
\(67\) −33.0643 + 8.85955i −0.493497 + 0.132232i −0.496980 0.867762i \(-0.665558\pi\)
0.00348324 + 0.999994i \(0.498891\pi\)
\(68\) −2.01247 + 3.48570i −0.0295951 + 0.0512602i
\(69\) 84.2329 48.6319i 1.22077 0.704810i
\(70\) −3.64143 3.64143i −0.0520204 0.0520204i
\(71\) 19.7955 73.8778i 0.278810 1.04053i −0.674435 0.738334i \(-0.735613\pi\)
0.953245 0.302198i \(-0.0977205\pi\)
\(72\) 60.4537 + 16.1985i 0.839634 + 0.224979i
\(73\) −18.9304 + 18.9304i −0.259320 + 0.259320i −0.824778 0.565457i \(-0.808700\pi\)
0.565457 + 0.824778i \(0.308700\pi\)
\(74\) −24.9264 43.1738i −0.336843 0.583430i
\(75\) 119.780 + 69.1548i 1.59706 + 0.922064i
\(76\) −2.39821 8.95025i −0.0315554 0.117766i
\(77\) 44.4971i 0.577884i
\(78\) 41.0082 94.0184i 0.525746 1.20536i
\(79\) −142.837 −1.80806 −0.904029 0.427471i \(-0.859404\pi\)
−0.904029 + 0.427471i \(0.859404\pi\)
\(80\) 1.76978 0.474212i 0.0221223 0.00592766i
\(81\) −104.741 + 181.416i −1.29310 + 2.23971i
\(82\) −74.3293 + 42.9141i −0.906455 + 0.523342i
\(83\) −91.7157 91.7157i −1.10501 1.10501i −0.993797 0.111212i \(-0.964527\pi\)
−0.111212 0.993797i \(-0.535473\pi\)
\(84\) −22.9590 + 85.6843i −0.273322 + 1.02005i
\(85\) −0.890409 0.238584i −0.0104754 0.00280687i
\(86\) 52.2041 52.2041i 0.607024 0.607024i
\(87\) 46.0299 + 79.7262i 0.529080 + 0.916393i
\(88\) −13.7105 7.91574i −0.155801 0.0899515i
\(89\) 40.4072 + 150.802i 0.454014 + 1.69440i 0.690970 + 0.722883i \(0.257183\pi\)
−0.236956 + 0.971520i \(0.576150\pi\)
\(90\) 14.3339i 0.159266i
\(91\) 94.7284 + 41.3178i 1.04097 + 0.454042i
\(92\) −34.8665 −0.378984
\(93\) 70.6767 18.9378i 0.759965 0.203632i
\(94\) −8.73527 + 15.1299i −0.0929284 + 0.160957i
\(95\) 1.83784 1.06108i 0.0193457 0.0111693i
\(96\) −22.3168 22.3168i −0.232467 0.232467i
\(97\) 29.1440 108.767i 0.300454 1.12131i −0.636335 0.771413i \(-0.719550\pi\)
0.936789 0.349896i \(-0.113783\pi\)
\(98\) −19.3961 5.19718i −0.197920 0.0530325i
\(99\) 87.5780 87.5780i 0.884626 0.884626i
\(100\) −24.7902 42.9379i −0.247902 0.429379i
\(101\) −84.6101 48.8497i −0.837724 0.483660i 0.0187659 0.999824i \(-0.494026\pi\)
−0.856490 + 0.516164i \(0.827360\pi\)
\(102\) 4.10973 + 15.3377i 0.0402914 + 0.150370i
\(103\) 108.442i 1.05284i 0.850226 + 0.526418i \(0.176465\pi\)
−0.850226 + 0.526418i \(0.823535\pi\)
\(104\) −29.5824 + 21.8376i −0.284446 + 0.209977i
\(105\) −20.3163 −0.193488
\(106\) 32.0230 8.58054i 0.302104 0.0809485i
\(107\) 37.6493 65.2105i 0.351863 0.609444i −0.634713 0.772748i \(-0.718882\pi\)
0.986576 + 0.163304i \(0.0522151\pi\)
\(108\) 126.858 73.2415i 1.17461 0.678162i
\(109\) 5.83660 + 5.83660i 0.0535468 + 0.0535468i 0.733373 0.679826i \(-0.237945\pi\)
−0.679826 + 0.733373i \(0.737945\pi\)
\(110\) 0.938435 3.50229i 0.00853123 0.0318390i
\(111\) −189.973 50.9030i −1.71147 0.458586i
\(112\) 22.4854 22.4854i 0.200762 0.200762i
\(113\) 57.2435 + 99.1486i 0.506580 + 0.877422i 0.999971 + 0.00761416i \(0.00242369\pi\)
−0.493391 + 0.869807i \(0.664243\pi\)
\(114\) −31.6577 18.2776i −0.277699 0.160330i
\(115\) −2.06677 7.71328i −0.0179719 0.0670720i
\(116\) 33.0010i 0.284492i
\(117\) −105.121 267.763i −0.898473 2.28857i
\(118\) −49.9060 −0.422932
\(119\) −15.4535 + 4.14076i −0.129862 + 0.0347963i
\(120\) 3.61413 6.25986i 0.0301178 0.0521655i
\(121\) 77.6570 44.8353i 0.641793 0.370540i
\(122\) 27.8841 + 27.8841i 0.228558 + 0.228558i
\(123\) −87.6362 + 327.063i −0.712489 + 2.65905i
\(124\) −25.3357 6.78869i −0.204321 0.0547475i
\(125\) 16.1267 16.1267i 0.129014 0.129014i
\(126\) 124.387 + 215.444i 0.987196 + 1.70987i
\(127\) 83.8081 + 48.3866i 0.659906 + 0.380997i 0.792241 0.610208i \(-0.208914\pi\)
−0.132335 + 0.991205i \(0.542247\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) 291.258i 2.25781i
\(130\) −6.58452 5.24986i −0.0506502 0.0403835i
\(131\) 159.613 1.21842 0.609212 0.793008i \(-0.291486\pi\)
0.609212 + 0.793008i \(0.291486\pi\)
\(132\) −60.3285 + 16.1650i −0.457034 + 0.122462i
\(133\) 18.4156 31.8968i 0.138463 0.239825i
\(134\) 41.9239 24.2048i 0.312865 0.180632i
\(135\) 23.7224 + 23.7224i 0.175722 + 0.175722i
\(136\) 1.47323 5.49816i 0.0108326 0.0404277i
\(137\) −122.224 32.7498i −0.892146 0.239050i −0.216506 0.976281i \(-0.569466\pi\)
−0.675640 + 0.737232i \(0.736133\pi\)
\(138\) −97.2638 + 97.2638i −0.704810 + 0.704810i
\(139\) −30.2234 52.3485i −0.217435 0.376608i 0.736588 0.676341i \(-0.236436\pi\)
−0.954023 + 0.299733i \(0.903102\pi\)
\(140\) 6.30714 + 3.64143i 0.0450510 + 0.0260102i
\(141\) 17.8386 + 66.5745i 0.126515 + 0.472159i
\(142\) 108.165i 0.761723i
\(143\) 8.15456 + 72.3061i 0.0570249 + 0.505637i
\(144\) −88.5103 −0.614655
\(145\) 7.30059 1.95619i 0.0503489 0.0134910i
\(146\) 18.9304 32.7884i 0.129660 0.224578i
\(147\) −68.6056 + 39.6095i −0.466705 + 0.269452i
\(148\) 49.8528 + 49.8528i 0.336843 + 0.336843i
\(149\) −56.5047 + 210.878i −0.379226 + 1.41529i 0.467844 + 0.883811i \(0.345031\pi\)
−0.847070 + 0.531481i \(0.821636\pi\)
\(150\) −188.934 50.6248i −1.25956 0.337499i
\(151\) 73.7140 73.7140i 0.488172 0.488172i −0.419557 0.907729i \(-0.637815\pi\)
0.907729 + 0.419557i \(0.137815\pi\)
\(152\) 6.55204 + 11.3485i 0.0431055 + 0.0746609i
\(153\) 38.5650 + 22.2655i 0.252059 + 0.145526i
\(154\) −16.2871 60.7841i −0.105760 0.394702i
\(155\) 6.00726i 0.0387565i
\(156\) −21.6051 + 143.441i −0.138494 + 0.919497i
\(157\) −127.109 −0.809611 −0.404805 0.914403i \(-0.632661\pi\)
−0.404805 + 0.914403i \(0.632661\pi\)
\(158\) 195.118 52.2818i 1.23493 0.330898i
\(159\) 65.3952 113.268i 0.411291 0.712376i
\(160\) −2.24400 + 1.29557i −0.0140250 + 0.00809733i
\(161\) −97.9983 97.9983i −0.608685 0.608685i
\(162\) 76.6755 286.157i 0.473306 1.76640i
\(163\) 163.306 + 43.7578i 1.00188 + 0.268453i 0.722232 0.691650i \(-0.243116\pi\)
0.279646 + 0.960103i \(0.409783\pi\)
\(164\) 85.8281 85.8281i 0.523342 0.523342i
\(165\) −7.15213 12.3879i −0.0433463 0.0750779i
\(166\) 158.856 + 91.7157i 0.956965 + 0.552504i
\(167\) 43.1534 + 161.051i 0.258403 + 0.964375i 0.966165 + 0.257924i \(0.0830383\pi\)
−0.707762 + 0.706451i \(0.750295\pi\)
\(168\) 125.451i 0.746730i
\(169\) 161.502 + 49.7800i 0.955634 + 0.294556i
\(170\) 1.30365 0.00766852
\(171\) −99.0237 + 26.5333i −0.579086 + 0.155166i
\(172\) −52.2041 + 90.4201i −0.303512 + 0.525698i
\(173\) −121.663 + 70.2419i −0.703252 + 0.406023i −0.808557 0.588417i \(-0.799751\pi\)
0.105305 + 0.994440i \(0.466418\pi\)
\(174\) −92.0599 92.0599i −0.529080 0.529080i
\(175\) 51.0071 190.361i 0.291469 1.08778i
\(176\) 21.6262 + 5.79472i 0.122876 + 0.0329245i
\(177\) −139.218 + 139.218i −0.786543 + 0.786543i
\(178\) −110.395 191.209i −0.620195 1.07421i
\(179\) −273.667 158.002i −1.52886 0.882691i −0.999410 0.0343526i \(-0.989063\pi\)
−0.529455 0.848338i \(-0.677604\pi\)
\(180\) −5.24659 19.5805i −0.0291477 0.108781i
\(181\) 83.6580i 0.462199i 0.972930 + 0.231099i \(0.0742323\pi\)
−0.972930 + 0.231099i \(0.925768\pi\)
\(182\) −144.525 21.7682i −0.794092 0.119606i
\(183\) 155.571 0.850116
\(184\) 47.6285 12.7620i 0.258851 0.0693589i
\(185\) −8.07349 + 13.9837i −0.0436405 + 0.0755876i
\(186\) −89.6145 + 51.7389i −0.481798 + 0.278166i
\(187\) −7.96508 7.96508i −0.0425940 0.0425940i
\(188\) 6.39466 23.8652i 0.0340142 0.126943i
\(189\) 562.414 + 150.698i 2.97573 + 0.797346i
\(190\) −2.12216 + 2.12216i −0.0111693 + 0.0111693i
\(191\) −34.5567 59.8539i −0.180925 0.313371i 0.761271 0.648434i \(-0.224576\pi\)
−0.942196 + 0.335063i \(0.891242\pi\)
\(192\) 38.6539 + 22.3168i 0.201322 + 0.116234i
\(193\) −84.0297 313.603i −0.435387 1.62489i −0.740139 0.672454i \(-0.765240\pi\)
0.304752 0.952432i \(-0.401426\pi\)
\(194\) 159.246i 0.820855i
\(195\) −33.0132 + 3.72318i −0.169299 + 0.0190932i
\(196\) 28.3979 0.144887
\(197\) −309.232 + 82.8586i −1.56971 + 0.420602i −0.935721 0.352742i \(-0.885249\pi\)
−0.633987 + 0.773344i \(0.718583\pi\)
\(198\) −87.5780 + 151.690i −0.442313 + 0.766109i
\(199\) 149.667 86.4100i 0.752093 0.434221i −0.0743564 0.997232i \(-0.523690\pi\)
0.826450 + 0.563010i \(0.190357\pi\)
\(200\) 49.5804 + 49.5804i 0.247902 + 0.247902i
\(201\) 49.4293 184.473i 0.245917 0.917775i
\(202\) 133.460 + 35.7604i 0.660692 + 0.177032i
\(203\) 92.7551 92.7551i 0.456922 0.456922i
\(204\) −11.2280 19.4474i −0.0550391 0.0953305i
\(205\) 24.0748 + 13.8996i 0.117438 + 0.0678028i
\(206\) −39.6926 148.135i −0.192682 0.719101i
\(207\) 385.756i 1.86355i
\(208\) 32.4172 40.6586i 0.155852 0.195474i
\(209\) 25.9321 0.124077
\(210\) 27.7526 7.43628i 0.132155 0.0354108i
\(211\) −115.089 + 199.341i −0.545447 + 0.944743i 0.453131 + 0.891444i \(0.350307\pi\)
−0.998579 + 0.0532988i \(0.983026\pi\)
\(212\) −40.6035 + 23.4425i −0.191526 + 0.110578i
\(213\) 301.736 + 301.736i 1.41660 + 1.41660i
\(214\) −27.5612 + 102.860i −0.128791 + 0.480653i
\(215\) −23.0975 6.18896i −0.107430 0.0287858i
\(216\) −146.483 + 146.483i −0.678162 + 0.678162i
\(217\) −52.1297 90.2912i −0.240229 0.416089i
\(218\) −10.1093 5.83660i −0.0463728 0.0267734i
\(219\) −38.6584 144.275i −0.176522 0.658790i
\(220\) 5.12770i 0.0233077i
\(221\) −24.3526 + 9.56062i −0.110193 + 0.0432607i
\(222\) 278.139 1.25288
\(223\) −254.206 + 68.1143i −1.13994 + 0.305445i −0.778926 0.627116i \(-0.784235\pi\)
−0.361012 + 0.932561i \(0.617569\pi\)
\(224\) −22.4854 + 38.9458i −0.100381 + 0.173865i
\(225\) −475.055 + 274.273i −2.11136 + 1.21899i
\(226\) −114.487 114.487i −0.506580 0.506580i
\(227\) 30.8416 115.102i 0.135866 0.507059i −0.864127 0.503274i \(-0.832129\pi\)
0.999993 0.00378487i \(-0.00120476\pi\)
\(228\) 49.9353 + 13.3801i 0.219015 + 0.0586848i
\(229\) −224.372 + 224.372i −0.979791 + 0.979791i −0.999800 0.0200093i \(-0.993630\pi\)
0.0200093 + 0.999800i \(0.493630\pi\)
\(230\) 5.64651 + 9.78005i 0.0245501 + 0.0425219i
\(231\) −214.998 124.129i −0.930727 0.537356i
\(232\) 12.0792 + 45.0803i 0.0520656 + 0.194311i
\(233\) 230.683i 0.990054i −0.868878 0.495027i \(-0.835158\pi\)
0.868878 0.495027i \(-0.164842\pi\)
\(234\) 241.606 + 327.294i 1.03251 + 1.39869i
\(235\) 5.65859 0.0240791
\(236\) 68.1729 18.2669i 0.288868 0.0774020i
\(237\) 398.458 690.149i 1.68126 2.91202i
\(238\) 19.5943 11.3128i 0.0823290 0.0475326i
\(239\) 184.518 + 184.518i 0.772041 + 0.772041i 0.978463 0.206422i \(-0.0661820\pi\)
−0.206422 + 0.978463i \(0.566182\pi\)
\(240\) −2.64573 + 9.87400i −0.0110239 + 0.0411417i
\(241\) 214.865 + 57.5730i 0.891557 + 0.238892i 0.675387 0.737464i \(-0.263977\pi\)
0.216170 + 0.976356i \(0.430643\pi\)
\(242\) −89.6706 + 89.6706i −0.370540 + 0.370540i
\(243\) −254.784 441.298i −1.04849 1.81604i
\(244\) −48.2967 27.8841i −0.197937 0.114279i
\(245\) 1.68333 + 6.28228i 0.00687074 + 0.0256419i
\(246\) 478.853i 1.94656i
\(247\) 24.0793 55.2060i 0.0974871 0.223506i
\(248\) 37.0941 0.149573
\(249\) 698.997 187.296i 2.80722 0.752191i
\(250\) −16.1267 + 27.9323i −0.0645068 + 0.111729i
\(251\) 218.211 125.984i 0.869366 0.501929i 0.00222866 0.999998i \(-0.499291\pi\)
0.867138 + 0.498069i \(0.165957\pi\)
\(252\) −248.773 248.773i −0.987196 0.987196i
\(253\) 25.2552 94.2537i 0.0998230 0.372544i
\(254\) −132.195 35.4215i −0.520452 0.139455i
\(255\) 3.63666 3.63666i 0.0142614 0.0142614i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 251.399 + 145.145i 0.978204 + 0.564767i 0.901728 0.432305i \(-0.142300\pi\)
0.0764769 + 0.997071i \(0.475633\pi\)
\(258\) 106.608 + 397.865i 0.413208 + 1.54211i
\(259\) 280.240i 1.08201i
\(260\) 10.9162 + 4.76134i 0.0419854 + 0.0183128i
\(261\) −365.117 −1.39891
\(262\) −218.036 + 58.4226i −0.832199 + 0.222987i
\(263\) 53.9337 93.4160i 0.205071 0.355194i −0.745084 0.666970i \(-0.767591\pi\)
0.950155 + 0.311777i \(0.100924\pi\)
\(264\) 76.4935 44.1635i 0.289748 0.167286i
\(265\) −7.59285 7.59285i −0.0286523 0.0286523i
\(266\) −13.4812 + 50.3124i −0.0506811 + 0.189144i
\(267\) −841.355 225.440i −3.15114 0.844346i
\(268\) −48.4095 + 48.4095i −0.180632 + 0.180632i
\(269\) 217.712 + 377.087i 0.809337 + 1.40181i 0.913324 + 0.407234i \(0.133507\pi\)
−0.103987 + 0.994579i \(0.533160\pi\)
\(270\) −41.0884 23.7224i −0.152179 0.0878608i
\(271\) 21.7703 + 81.2480i 0.0803333 + 0.299808i 0.994390 0.105779i \(-0.0337337\pi\)
−0.914056 + 0.405587i \(0.867067\pi\)
\(272\) 8.04987i 0.0295951i
\(273\) −463.892 + 342.442i −1.69924 + 1.25437i
\(274\) 178.948 0.653096
\(275\) 134.029 35.9131i 0.487379 0.130593i
\(276\) 97.2638 168.466i 0.352405 0.610383i
\(277\) −31.8797 + 18.4057i −0.115089 + 0.0664467i −0.556439 0.830888i \(-0.687833\pi\)
0.441350 + 0.897335i \(0.354500\pi\)
\(278\) 60.4469 + 60.4469i 0.217435 + 0.217435i
\(279\) −75.1086 + 280.309i −0.269207 + 1.00469i
\(280\) −9.94856 2.66571i −0.0355306 0.00952039i
\(281\) −30.1080 + 30.1080i −0.107146 + 0.107146i −0.758647 0.651501i \(-0.774139\pi\)
0.651501 + 0.758647i \(0.274139\pi\)
\(282\) −48.7359 84.4131i −0.172822 0.299337i
\(283\) −90.8978 52.4799i −0.321194 0.185441i 0.330731 0.943725i \(-0.392705\pi\)
−0.651924 + 0.758284i \(0.726038\pi\)
\(284\) −39.5910 147.756i −0.139405 0.520266i
\(285\) 11.8400i 0.0415438i
\(286\) −37.6052 95.7872i −0.131487 0.334920i
\(287\) 482.469 1.68108
\(288\) 120.907 32.3970i 0.419817 0.112490i
\(289\) −142.475 + 246.774i −0.492993 + 0.853889i
\(290\) −9.25678 + 5.34441i −0.0319199 + 0.0184290i
\(291\) 444.233 + 444.233i 1.52657 + 1.52657i
\(292\) −13.8580 + 51.7188i −0.0474589 + 0.177119i
\(293\) 121.399 + 32.5289i 0.414333 + 0.111020i 0.459963 0.887938i \(-0.347863\pi\)
−0.0456298 + 0.998958i \(0.514529\pi\)
\(294\) 79.2190 79.2190i 0.269452 0.269452i
\(295\) 8.08211 + 13.9986i 0.0273970 + 0.0474529i
\(296\) −86.3476 49.8528i −0.291715 0.168422i
\(297\) 106.103 + 395.984i 0.357251 + 1.33328i
\(298\) 308.748i 1.03607i
\(299\) −177.203 141.285i −0.592652 0.472524i
\(300\) 276.619 0.922064
\(301\) −400.870 + 107.413i −1.33179 + 0.356853i
\(302\) −73.7140 + 127.676i −0.244086 + 0.422769i
\(303\) 472.058 272.543i 1.55795 0.899480i
\(304\) −13.1041 13.1041i −0.0431055 0.0431055i
\(305\) 3.30575 12.3372i 0.0108385 0.0404499i
\(306\) −60.8305 16.2995i −0.198793 0.0532663i
\(307\) −159.407 + 159.407i −0.519242 + 0.519242i −0.917342 0.398100i \(-0.869670\pi\)
0.398100 + 0.917342i \(0.369670\pi\)
\(308\) 44.4971 + 77.0712i 0.144471 + 0.250231i
\(309\) −523.964 302.511i −1.69568 0.978999i
\(310\) 2.19881 + 8.20607i 0.00709294 + 0.0264712i
\(311\) 461.756i 1.48475i −0.669986 0.742374i \(-0.733700\pi\)
0.669986 0.742374i \(-0.266300\pi\)
\(312\) −22.9902 203.853i −0.0736864 0.653374i
\(313\) 8.16759 0.0260945 0.0130473 0.999915i \(-0.495847\pi\)
0.0130473 + 0.999915i \(0.495847\pi\)
\(314\) 173.634 46.5251i 0.552974 0.148169i
\(315\) 40.2880 69.7808i 0.127898 0.221526i
\(316\) −247.400 + 142.837i −0.782912 + 0.452014i
\(317\) −91.6127 91.6127i −0.288999 0.288999i 0.547685 0.836684i \(-0.315509\pi\)
−0.836684 + 0.547685i \(0.815509\pi\)
\(318\) −47.8726 + 178.663i −0.150543 + 0.561833i
\(319\) 89.2109 + 23.9040i 0.279658 + 0.0749341i
\(320\) 2.59114 2.59114i 0.00809733 0.00809733i
\(321\) 210.053 + 363.823i 0.654372 + 1.13341i
\(322\) 169.738 + 97.9983i 0.527137 + 0.304343i
\(323\) 2.41316 + 9.00604i 0.00747109 + 0.0278825i
\(324\) 418.963i 1.29310i
\(325\) 47.9991 318.678i 0.147689 0.980547i
\(326\) −239.097 −0.733426
\(327\) −44.4827 + 11.9191i −0.136033 + 0.0364499i
\(328\) −85.8281 + 148.659i −0.261671 + 0.453228i
\(329\) 85.0505 49.1039i 0.258512 0.149252i
\(330\) 14.3043 + 14.3043i 0.0433463 + 0.0433463i
\(331\) 38.7033 144.443i 0.116928 0.436382i −0.882496 0.470321i \(-0.844138\pi\)
0.999424 + 0.0339382i \(0.0108049\pi\)
\(332\) −250.572 67.1406i −0.754735 0.202231i
\(333\) 551.561 551.561i 1.65634 1.65634i
\(334\) −117.897 204.204i −0.352986 0.611389i
\(335\) −13.5789 7.83975i −0.0405339 0.0234022i
\(336\) 45.9181 + 171.369i 0.136661 + 0.510026i
\(337\) 61.7332i 0.183185i 0.995797 + 0.0915923i \(0.0291956\pi\)
−0.995797 + 0.0915923i \(0.970804\pi\)
\(338\) −238.837 8.88689i −0.706618 0.0262926i
\(339\) −638.747 −1.88421
\(340\) −1.78082 + 0.477169i −0.00523770 + 0.00140344i
\(341\) 36.7034 63.5721i 0.107635 0.186429i
\(342\) 125.557 72.4904i 0.367126 0.211960i
\(343\) −195.629 195.629i −0.570346 0.570346i
\(344\) 38.2160 142.624i 0.111093 0.414605i
\(345\) 43.0340 + 11.5309i 0.124736 + 0.0334230i
\(346\) 140.484 140.484i 0.406023 0.406023i
\(347\) −110.431 191.272i −0.318245 0.551216i 0.661877 0.749612i \(-0.269760\pi\)
−0.980122 + 0.198396i \(0.936427\pi\)
\(348\) 159.452 + 92.0599i 0.458196 + 0.264540i
\(349\) −75.3230 281.109i −0.215825 0.805470i −0.985874 0.167486i \(-0.946435\pi\)
0.770049 0.637984i \(-0.220232\pi\)
\(350\) 278.708i 0.796309i
\(351\) 941.520 + 141.811i 2.68239 + 0.404020i
\(352\) −31.6629 −0.0899515
\(353\) 19.0412 5.10208i 0.0539412 0.0144535i −0.231748 0.972776i \(-0.574444\pi\)
0.285689 + 0.958322i \(0.407778\pi\)
\(354\) 139.218 241.133i 0.393271 0.681166i
\(355\) 30.3401 17.5169i 0.0854652 0.0493433i
\(356\) 220.789 + 220.789i 0.620195 + 0.620195i
\(357\) 23.1022 86.2185i 0.0647120 0.241508i
\(358\) 431.668 + 115.665i 1.20578 + 0.323087i
\(359\) −275.618 + 275.618i −0.767738 + 0.767738i −0.977708 0.209970i \(-0.932663\pi\)
0.209970 + 0.977708i \(0.432663\pi\)
\(360\) 14.3339 + 24.8271i 0.0398165 + 0.0689642i
\(361\) 294.046 + 169.768i 0.814533 + 0.470271i
\(362\) −30.6210 114.279i −0.0845883 0.315688i
\(363\) 500.291i 1.37821i
\(364\) 205.392 23.1638i 0.564264 0.0636367i
\(365\) −12.2628 −0.0335968
\(366\) −212.514 + 56.9430i −0.580640 + 0.155582i
\(367\) −234.367 + 405.936i −0.638603 + 1.10609i 0.347136 + 0.937815i \(0.387154\pi\)
−0.985739 + 0.168278i \(0.946179\pi\)
\(368\) −60.3906 + 34.8665i −0.164105 + 0.0947460i
\(369\) −949.584 949.584i −2.57340 2.57340i
\(370\) 5.91021 22.0572i 0.0159735 0.0596140i
\(371\) −180.012 48.2341i −0.485208 0.130011i
\(372\) 103.478 103.478i 0.278166 0.278166i
\(373\) −130.407 225.872i −0.349617 0.605555i 0.636564 0.771224i \(-0.280355\pi\)
−0.986181 + 0.165669i \(0.947022\pi\)
\(374\) 13.7959 + 7.96508i 0.0368875 + 0.0212970i
\(375\) 32.9329 + 122.907i 0.0878209 + 0.327752i
\(376\) 34.9411i 0.0929284i
\(377\) 133.725 167.722i 0.354709 0.444886i
\(378\) −823.431 −2.17839
\(379\) 206.894 55.4370i 0.545893 0.146272i 0.0246758 0.999696i \(-0.492145\pi\)
0.521218 + 0.853424i \(0.325478\pi\)
\(380\) 2.12216 3.67569i 0.00558463 0.00967286i
\(381\) −467.583 + 269.959i −1.22725 + 0.708554i
\(382\) 69.1133 + 69.1133i 0.180925 + 0.180925i
\(383\) −177.535 + 662.570i −0.463538 + 1.72995i 0.198151 + 0.980171i \(0.436506\pi\)
−0.661690 + 0.749778i \(0.730160\pi\)
\(384\) −60.9707 16.3371i −0.158778 0.0425444i
\(385\) −14.4123 + 14.4123i −0.0374345 + 0.0374345i
\(386\) 229.573 + 397.633i 0.594750 + 1.03014i
\(387\) 1000.39 + 577.575i 2.58498 + 1.49244i
\(388\) −58.2880 217.534i −0.150227 0.560654i
\(389\) 374.691i 0.963216i −0.876387 0.481608i \(-0.840053\pi\)
0.876387 0.481608i \(-0.159947\pi\)
\(390\) 43.7342 17.1696i 0.112139 0.0440247i
\(391\) 35.0839 0.0897286
\(392\) −38.7923 + 10.3944i −0.0989599 + 0.0265162i
\(393\) −445.258 + 771.210i −1.13297 + 1.96237i
\(394\) 392.091 226.374i 0.995155 0.574553i
\(395\) −46.2638 46.2638i −0.117123 0.117123i
\(396\) 64.1116 239.268i 0.161898 0.604211i
\(397\) 630.268 + 168.880i 1.58758 + 0.425390i 0.941261 0.337680i \(-0.109642\pi\)
0.646316 + 0.763070i \(0.276309\pi\)
\(398\) −172.820 + 172.820i −0.434221 + 0.434221i
\(399\) 102.745 + 177.959i 0.257505 + 0.446012i
\(400\) −85.8757 49.5804i −0.214689 0.123951i
\(401\) −111.879 417.539i −0.279001 1.04125i −0.953113 0.302616i \(-0.902140\pi\)
0.674112 0.738629i \(-0.264527\pi\)
\(402\) 270.087i 0.671858i
\(403\) −101.256 137.167i −0.251255 0.340364i
\(404\) −195.399 −0.483660
\(405\) −92.6843 + 24.8347i −0.228850 + 0.0613202i
\(406\) −92.7551 + 160.656i −0.228461 + 0.395706i
\(407\) −170.876 + 98.6554i −0.419843 + 0.242397i
\(408\) 22.4560 + 22.4560i 0.0550391 + 0.0550391i
\(409\) 72.2456 269.624i 0.176640 0.659228i −0.819627 0.572897i \(-0.805819\pi\)
0.996267 0.0863302i \(-0.0275140\pi\)
\(410\) −37.9743 10.1752i −0.0926203 0.0248175i
\(411\) 499.195 499.195i 1.21459 1.21459i
\(412\) 108.442 + 187.827i 0.263209 + 0.455892i
\(413\) 242.954 + 140.269i 0.588265 + 0.339635i
\(414\) −141.196 526.952i −0.341054 1.27283i
\(415\) 59.4122i 0.143162i
\(416\) −29.4007 + 67.4062i −0.0706747 + 0.162034i
\(417\) 337.246 0.808743
\(418\) −35.4239 + 9.49181i −0.0847462 + 0.0227077i
\(419\) −93.7951 + 162.458i −0.223855 + 0.387728i −0.955975 0.293447i \(-0.905197\pi\)
0.732121 + 0.681175i \(0.238531\pi\)
\(420\) −35.1888 + 20.3163i −0.0837829 + 0.0483721i
\(421\) 410.480 + 410.480i 0.975013 + 0.975013i 0.999695 0.0246826i \(-0.00785752\pi\)
−0.0246826 + 0.999695i \(0.507858\pi\)
\(422\) 84.2513 314.430i 0.199648 0.745095i
\(423\) −264.040 70.7492i −0.624207 0.167256i
\(424\) 46.8849 46.8849i 0.110578 0.110578i
\(425\) 24.9447 + 43.2055i 0.0586935 + 0.101660i
\(426\) −522.623 301.736i −1.22681 0.708302i
\(427\) −57.3731 214.119i −0.134363 0.501450i
\(428\) 150.597i 0.351863i
\(429\) −372.112 162.305i −0.867394 0.378333i
\(430\) 33.8171 0.0786444
\(431\) −516.808 + 138.478i −1.19909 + 0.321295i −0.802473 0.596689i \(-0.796483\pi\)
−0.396617 + 0.917984i \(0.629816\pi\)
\(432\) 146.483 253.716i 0.339081 0.587305i
\(433\) 140.192 80.9400i 0.323769 0.186928i −0.329302 0.944225i \(-0.606813\pi\)
0.653071 + 0.757296i \(0.273480\pi\)
\(434\) 104.259 + 104.259i 0.240229 + 0.240229i
\(435\) −10.9140 + 40.7315i −0.0250896 + 0.0936357i
\(436\) 15.9459 + 4.27268i 0.0365731 + 0.00979974i
\(437\) −57.1117 + 57.1117i −0.130690 + 0.130690i
\(438\) 105.617 + 182.933i 0.241134 + 0.417656i
\(439\) −142.255 82.1308i −0.324043 0.187086i 0.329150 0.944277i \(-0.393238\pi\)
−0.653193 + 0.757191i \(0.726571\pi\)
\(440\) −1.87687 7.00457i −0.00426561 0.0159195i
\(441\) 314.189i 0.712446i
\(442\) 29.7668 21.9737i 0.0673458 0.0497143i
\(443\) 309.912 0.699575 0.349788 0.936829i \(-0.386254\pi\)
0.349788 + 0.936829i \(0.386254\pi\)
\(444\) −379.945 + 101.806i −0.855733 + 0.229293i
\(445\) −35.7561 + 61.9313i −0.0803507 + 0.139172i
\(446\) 322.321 186.092i 0.722692 0.417246i
\(447\) −861.284 861.284i −1.92681 1.92681i
\(448\) 16.4604 61.4312i 0.0367420 0.137123i
\(449\) −131.440 35.2192i −0.292739 0.0784392i 0.109461 0.993991i \(-0.465088\pi\)
−0.402200 + 0.915552i \(0.631754\pi\)
\(450\) 548.547 548.547i 1.21899 1.21899i
\(451\) 169.848 + 294.186i 0.376603 + 0.652296i
\(452\) 198.297 + 114.487i 0.438711 + 0.253290i
\(453\) 150.534 + 561.799i 0.332304 + 1.24018i
\(454\) 168.522i 0.371193i
\(455\) 17.2993 + 44.0644i 0.0380204 + 0.0968449i
\(456\) −73.1104 −0.160330
\(457\) 219.352 58.7751i 0.479981 0.128611i −0.0107126 0.999943i \(-0.503410\pi\)
0.490694 + 0.871332i \(0.336743\pi\)
\(458\) 224.372 388.624i 0.489895 0.848523i
\(459\) −127.649 + 73.6981i −0.278102 + 0.160562i
\(460\) −11.2930 11.2930i −0.0245501 0.0245501i
\(461\) −177.023 + 660.658i −0.383998 + 1.43310i 0.455743 + 0.890111i \(0.349373\pi\)
−0.839741 + 0.542987i \(0.817293\pi\)
\(462\) 339.127 + 90.8689i 0.734042 + 0.196686i
\(463\) 557.281 557.281i 1.20363 1.20363i 0.230575 0.973055i \(-0.425939\pi\)
0.973055 0.230575i \(-0.0740607\pi\)
\(464\) −33.0010 57.1595i −0.0711229 0.123189i
\(465\) 29.0255 + 16.7579i 0.0624205 + 0.0360385i
\(466\) 84.4357 + 315.118i 0.181192 + 0.676219i
\(467\) 91.0355i 0.194937i −0.995239 0.0974684i \(-0.968926\pi\)
0.995239 0.0974684i \(-0.0310745\pi\)
\(468\) −449.838 358.657i −0.961193 0.766362i
\(469\) −272.126 −0.580227
\(470\) −7.72977 + 2.07119i −0.0164463 + 0.00440678i
\(471\) 354.583 614.157i 0.752831 1.30394i
\(472\) −86.4397 + 49.9060i −0.183135 + 0.105733i
\(473\) −206.617 206.617i −0.436822 0.436822i
\(474\) −291.691 + 1088.61i −0.615382 + 2.29664i
\(475\) −110.939 29.7261i −0.233556 0.0625812i
\(476\) −22.6255 + 22.6255i −0.0475326 + 0.0475326i
\(477\) 259.362 + 449.229i 0.543737 + 0.941780i
\(478\) −319.594 184.518i −0.668607 0.386021i
\(479\) 191.280 + 713.865i 0.399331 + 1.49032i 0.814276 + 0.580477i \(0.197134\pi\)
−0.414945 + 0.909846i \(0.636199\pi\)
\(480\) 14.4565i 0.0301178i
\(481\) 51.3569 + 455.380i 0.106771 + 0.946735i
\(482\) −314.584 −0.652665
\(483\) 746.879 200.125i 1.54633 0.414338i
\(484\) 89.6706 155.314i 0.185270 0.320897i
\(485\) 44.6684 25.7893i 0.0920998 0.0531738i
\(486\) 509.567 + 509.567i 1.04849 + 1.04849i
\(487\) 155.484 580.273i 0.319268 1.19153i −0.600681 0.799489i \(-0.705104\pi\)
0.919949 0.392037i \(-0.128230\pi\)
\(488\) 76.1808 + 20.4126i 0.156108 + 0.0418291i
\(489\) −666.986 + 666.986i −1.36398 + 1.36398i
\(490\) −4.59895 7.96561i −0.00938560 0.0162563i
\(491\) −482.376 278.500i −0.982436 0.567210i −0.0794313 0.996840i \(-0.525310\pi\)
−0.903005 + 0.429631i \(0.858644\pi\)
\(492\) 175.272 + 654.125i 0.356245 + 1.32952i
\(493\) 33.2068i 0.0673565i
\(494\) −12.6861 + 84.2265i −0.0256804 + 0.170499i
\(495\) 56.7318 0.114610
\(496\) −50.6715 + 13.5774i −0.102160 + 0.0273738i
\(497\) 304.015 526.570i 0.611700 1.05950i
\(498\) −886.292 + 511.701i −1.77970 + 1.02751i
\(499\) 92.7376 + 92.7376i 0.185847 + 0.185847i 0.793898 0.608051i \(-0.208048\pi\)
−0.608051 + 0.793898i \(0.708048\pi\)
\(500\) 11.8056 44.0590i 0.0236111 0.0881179i
\(501\) −898.535 240.762i −1.79348 0.480562i
\(502\) −251.968 + 251.968i −0.501929 + 0.501929i
\(503\) 68.4278 + 118.520i 0.136039 + 0.235627i 0.925994 0.377538i \(-0.123229\pi\)
−0.789955 + 0.613165i \(0.789896\pi\)
\(504\) 430.888 + 248.773i 0.854937 + 0.493598i
\(505\) −11.5826 43.2267i −0.0229358 0.0855974i
\(506\) 137.997i 0.272721i
\(507\) −691.051 + 641.469i −1.36302 + 1.26523i
\(508\) 193.547 0.380997
\(509\) 163.752 43.8773i 0.321713 0.0862029i −0.0943482 0.995539i \(-0.530077\pi\)
0.416062 + 0.909336i \(0.363410\pi\)
\(510\) −3.63666 + 6.29889i −0.00713072 + 0.0123508i
\(511\) −184.315 + 106.414i −0.360694 + 0.208247i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 87.8243 327.765i 0.171197 0.638918i
\(514\) −396.544 106.254i −0.771486 0.206719i
\(515\) −35.1237 + 35.1237i −0.0682013 + 0.0682013i
\(516\) −291.258 504.473i −0.564453 0.977661i
\(517\) 59.8823 + 34.5730i 0.115826 + 0.0668724i
\(518\) −102.575 382.815i −0.198021 0.739024i
\(519\) 783.789i 1.51019i
\(520\) −16.6546 2.50850i −0.0320281 0.00482404i
\(521\) 161.073 0.309161 0.154580 0.987980i \(-0.450597\pi\)
0.154580 + 0.987980i \(0.450597\pi\)
\(522\) 498.758 133.642i 0.955476 0.256019i
\(523\) −67.7062 + 117.271i −0.129457 + 0.224227i −0.923466 0.383679i \(-0.874657\pi\)
0.794009 + 0.607906i \(0.207990\pi\)
\(524\) 276.459 159.613i 0.527593 0.304606i
\(525\) 777.486 + 777.486i 1.48093 + 1.48093i
\(526\) −39.4822 + 147.350i −0.0750613 + 0.280133i
\(527\) 25.4937 + 6.83101i 0.0483751 + 0.0129621i
\(528\) −88.3271 + 88.3271i −0.167286 + 0.167286i
\(529\) −112.541 194.926i −0.212742 0.368481i
\(530\) 13.1512 + 7.59285i 0.0248136 + 0.0143261i
\(531\) −202.101 754.250i −0.380604 1.42043i
\(532\) 73.6625i 0.138463i
\(533\) 783.995 88.4177i 1.47091 0.165887i
\(534\) 1231.83 2.30680
\(535\) 33.3156 8.92689i 0.0622721 0.0166858i
\(536\) 48.4095 83.8477i 0.0903162 0.156432i
\(537\) 1526.84 881.524i 2.84329 1.64157i
\(538\) −435.423 435.423i −0.809337 0.809337i
\(539\) −20.5698 + 76.7674i −0.0381628 + 0.142426i
\(540\) 64.8108 + 17.3660i 0.120020 + 0.0321593i
\(541\) −127.802 + 127.802i −0.236233 + 0.236233i −0.815288 0.579055i \(-0.803422\pi\)
0.579055 + 0.815288i \(0.303422\pi\)
\(542\) −59.4776 103.018i −0.109737 0.190071i
\(543\) −404.213 233.373i −0.744408 0.429784i
\(544\) −2.94646 10.9963i −0.00541628 0.0202138i
\(545\) 3.78087i 0.00693737i
\(546\) 508.345 637.581i 0.931035 1.16773i
\(547\) −161.504 −0.295254 −0.147627 0.989043i \(-0.547163\pi\)
−0.147627 + 0.989043i \(0.547163\pi\)
\(548\) −244.448 + 65.4996i −0.446073 + 0.119525i
\(549\) −308.504 + 534.344i −0.561938 + 0.973305i
\(550\) −169.942 + 98.1163i −0.308986 + 0.178393i
\(551\) −54.0560 54.0560i −0.0981053 0.0981053i
\(552\) −71.2020 + 265.730i −0.128989 + 0.481394i
\(553\) −1096.83 293.894i −1.98341 0.531454i
\(554\) 36.8115 36.8115i 0.0664467 0.0664467i
\(555\) −45.0437 78.0180i −0.0811598 0.140573i
\(556\) −104.697 60.4469i −0.188304 0.108717i
\(557\) −154.013 574.784i −0.276504 1.03193i −0.954827 0.297163i \(-0.903959\pi\)
0.678323 0.734764i \(-0.262707\pi\)
\(558\) 410.401i 0.735486i
\(559\) −631.715 + 248.006i −1.13008 + 0.443659i
\(560\) 14.5657 0.0260102
\(561\) 60.7046 16.2658i 0.108208 0.0289942i
\(562\) 30.1080 52.1486i 0.0535730 0.0927912i
\(563\) −538.929 + 311.151i −0.957244 + 0.552665i −0.895324 0.445416i \(-0.853056\pi\)
−0.0619205 + 0.998081i \(0.519723\pi\)
\(564\) 97.4718 + 97.4718i 0.172822 + 0.172822i
\(565\) −13.5728 + 50.6543i −0.0240226 + 0.0896537i
\(566\) 143.378 + 38.4179i 0.253317 + 0.0678762i
\(567\) −1177.57 + 1177.57i −2.07684 + 2.07684i
\(568\) 108.165 + 187.347i 0.190431 + 0.329836i
\(569\) 675.493 + 389.996i 1.18716 + 0.685406i 0.957660 0.287903i \(-0.0929580\pi\)
0.229499 + 0.973309i \(0.426291\pi\)
\(570\) −4.33373 16.1737i −0.00760304 0.0283749i
\(571\) 556.142i 0.973980i 0.873408 + 0.486990i \(0.161905\pi\)
−0.873408 + 0.486990i \(0.838095\pi\)
\(572\) 86.4303 + 117.083i 0.151102 + 0.204691i
\(573\) 385.598 0.672945
\(574\) −659.065 + 176.596i −1.14820 + 0.307659i
\(575\) −216.087 + 374.273i −0.375803 + 0.650910i
\(576\) −153.304 + 88.5103i −0.266153 + 0.153664i
\(577\) 401.975 + 401.975i 0.696663 + 0.696663i 0.963689 0.267026i \(-0.0860409\pi\)
−0.267026 + 0.963689i \(0.586041\pi\)
\(578\) 104.299 389.249i 0.180448 0.673441i
\(579\) 1749.66 + 468.819i 3.02186 + 0.809705i
\(580\) 10.6888 10.6888i 0.0184290 0.0184290i
\(581\) −515.565 892.985i −0.887376 1.53698i
\(582\) −769.434 444.233i −1.32205 0.763287i
\(583\) −33.9606 126.743i −0.0582515 0.217398i
\(584\) 75.7216i 0.129660i
\(585\) 52.6785 120.775i 0.0900486 0.206452i
\(586\) −177.741 −0.303313
\(587\) 647.776 173.571i 1.10354 0.295692i 0.339333 0.940666i \(-0.389799\pi\)
0.764204 + 0.644974i \(0.223132\pi\)
\(588\) −79.2190 + 137.211i −0.134726 + 0.233353i
\(589\) −52.6201 + 30.3802i −0.0893381 + 0.0515794i
\(590\) −16.1642 16.1642i −0.0273970 0.0273970i
\(591\) 462.285 1725.27i 0.782209 2.91924i
\(592\) 136.200 + 36.4948i 0.230068 + 0.0616466i
\(593\) −185.442 + 185.442i −0.312719 + 0.312719i −0.845962 0.533243i \(-0.820973\pi\)
0.533243 + 0.845962i \(0.320973\pi\)
\(594\) −289.880 502.087i −0.488014 0.845264i
\(595\) −6.34646 3.66413i −0.0106663 0.00615820i
\(596\) 113.009 + 421.757i 0.189613 + 0.707646i
\(597\) 964.199i 1.61507i
\(598\) 293.778 + 128.137i 0.491267 + 0.214277i
\(599\) −171.466 −0.286254 −0.143127 0.989704i \(-0.545716\pi\)
−0.143127 + 0.989704i \(0.545716\pi\)
\(600\) −377.869 + 101.250i −0.629782 + 0.168749i
\(601\) −53.8259 + 93.2293i −0.0895606 + 0.155124i −0.907325 0.420429i \(-0.861880\pi\)
0.817765 + 0.575552i \(0.195213\pi\)
\(602\) 508.282 293.457i 0.844323 0.487470i
\(603\) 535.593 + 535.593i 0.888213 + 0.888213i
\(604\) 53.9624 201.390i 0.0893417 0.333428i
\(605\) 39.6744 + 10.6307i 0.0655775 + 0.0175714i
\(606\) −545.085 + 545.085i −0.899480 + 0.899480i
\(607\) −216.797 375.504i −0.357162 0.618623i 0.630323 0.776333i \(-0.282922\pi\)
−0.987486 + 0.157710i \(0.949589\pi\)
\(608\) 22.6969 + 13.1041i 0.0373305 + 0.0215528i
\(609\) 189.418 + 706.918i 0.311031 + 1.16078i
\(610\) 18.0629i 0.0296114i
\(611\) 129.205 95.3786i 0.211465 0.156102i
\(612\) 89.0621 0.145526
\(613\) 620.451 166.249i 1.01216 0.271206i 0.285626 0.958341i \(-0.407799\pi\)
0.726530 + 0.687135i \(0.241132\pi\)
\(614\) 159.407 276.102i 0.259621 0.449677i
\(615\) −134.318 + 77.5486i −0.218403 + 0.126095i
\(616\) −88.9941 88.9941i −0.144471 0.144471i
\(617\) −107.181 + 400.004i −0.173713 + 0.648304i 0.823055 + 0.567962i \(0.192268\pi\)
−0.996767 + 0.0803421i \(0.974399\pi\)
\(618\) 826.475 + 221.453i 1.33734 + 0.358339i
\(619\) 693.205 693.205i 1.11988 1.11988i 0.128120 0.991759i \(-0.459106\pi\)
0.991759 0.128120i \(-0.0408943\pi\)
\(620\) −6.00726 10.4049i −0.00968913 0.0167821i
\(621\) −1105.77 638.419i −1.78063 1.02805i
\(622\) 169.015 + 630.771i 0.271728 + 1.01410i
\(623\) 1241.13i 1.99219i
\(624\) 106.020 + 270.053i 0.169905 + 0.432777i
\(625\) −609.308 −0.974893
\(626\) −11.1571 + 2.98955i −0.0178229 + 0.00477563i
\(627\) −72.3403 + 125.297i −0.115375 + 0.199836i
\(628\) −220.159 + 127.109i −0.350572 + 0.202403i
\(629\) −50.1636 50.1636i −0.0797513 0.0797513i
\(630\) −29.4928 + 110.069i −0.0468140 + 0.174712i
\(631\) 507.808 + 136.067i 0.804767 + 0.215637i 0.637676 0.770305i \(-0.279896\pi\)
0.167091 + 0.985941i \(0.446563\pi\)
\(632\) 285.673 285.673i 0.452014 0.452014i
\(633\) −642.108 1112.16i −1.01439 1.75697i
\(634\) 158.678 + 91.6127i 0.250281 + 0.144500i
\(635\) 11.4728 + 42.8170i 0.0180674 + 0.0674283i
\(636\) 261.581i 0.411291i
\(637\) 144.328 + 115.073i 0.226574 + 0.180648i
\(638\) −130.614 −0.204724
\(639\) −1634.74 + 438.026i −2.55827 + 0.685487i
\(640\) −2.59114 + 4.48799i −0.00404866 + 0.00701249i
\(641\) −936.399 + 540.630i −1.46084 + 0.843416i −0.999050 0.0435728i \(-0.986126\pi\)
−0.461790 + 0.886989i \(0.652793\pi\)
\(642\) −420.107 420.107i −0.654372 0.654372i
\(643\) −102.193 + 381.388i −0.158931 + 0.593138i 0.839806 + 0.542887i \(0.182669\pi\)
−0.998737 + 0.0502511i \(0.983998\pi\)
\(644\) −267.736 71.7397i −0.415740 0.111397i
\(645\) 94.3363 94.3363i 0.146258 0.146258i
\(646\) −6.59288 11.4192i −0.0102057 0.0176768i
\(647\) 275.454 + 159.033i 0.425740 + 0.245801i 0.697530 0.716555i \(-0.254282\pi\)
−0.271790 + 0.962357i \(0.587616\pi\)
\(648\) −153.351 572.314i −0.236653 0.883200i
\(649\) 197.521i 0.304347i
\(650\) 51.0763 + 452.891i 0.0785789 + 0.696755i
\(651\) 581.685 0.893525
\(652\) 326.613 87.5156i 0.500939 0.134226i
\(653\) 201.115 348.341i 0.307986 0.533447i −0.669936 0.742419i \(-0.733678\pi\)
0.977922 + 0.208972i \(0.0670117\pi\)
\(654\) 56.4018 32.5636i 0.0862413 0.0497914i
\(655\) 51.6977 + 51.6977i 0.0789278 + 0.0789278i
\(656\) 62.8305 234.487i 0.0957783 0.357449i
\(657\) 572.206 + 153.322i 0.870937 + 0.233367i
\(658\) −98.2079 + 98.2079i −0.149252 + 0.149252i
\(659\) −292.874 507.272i −0.444421 0.769760i 0.553591 0.832789i \(-0.313257\pi\)
−0.998012 + 0.0630290i \(0.979924\pi\)
\(660\) −24.7757 14.3043i −0.0375390 0.0216731i
\(661\) 209.306 + 781.140i 0.316650 + 1.18176i 0.922443 + 0.386133i \(0.126189\pi\)
−0.605793 + 0.795623i \(0.707144\pi\)
\(662\) 211.479i 0.319454i
\(663\) 21.7398 144.336i 0.0327900 0.217701i
\(664\) 366.863 0.552504
\(665\) 16.2958 4.36646i 0.0245050 0.00656610i
\(666\) −551.561 + 955.332i −0.828170 + 1.43443i
\(667\) −249.119 + 143.829i −0.373492 + 0.215636i
\(668\) 235.794 + 235.794i 0.352986 + 0.352986i
\(669\) 380.024 1418.27i 0.568048 2.11998i
\(670\) 21.4186 + 5.73910i 0.0319681 + 0.00856582i
\(671\) 110.362 110.362i 0.164473 0.164473i
\(672\) −125.451 217.287i −0.186682 0.323343i
\(673\) −373.474 215.625i −0.554939 0.320394i 0.196173 0.980569i \(-0.437149\pi\)
−0.751112 + 0.660175i \(0.770482\pi\)
\(674\) −22.5959 84.3291i −0.0335251 0.125117i
\(675\) 1815.67i 2.68988i
\(676\) 329.510 75.2806i 0.487441 0.111362i
\(677\) 6.72056 0.00992697 0.00496348 0.999988i \(-0.498420\pi\)
0.00496348 + 0.999988i \(0.498420\pi\)
\(678\) 872.544 233.798i 1.28694 0.344834i
\(679\) 447.588 775.244i 0.659186 1.14174i
\(680\) 2.25799 1.30365i 0.00332057 0.00191713i
\(681\) 470.109 + 470.109i 0.690321 + 0.690321i
\(682\) −26.8687 + 100.276i −0.0393970 + 0.147032i
\(683\) 118.413 + 31.7287i 0.173372 + 0.0464549i 0.344461 0.938801i \(-0.388062\pi\)
−0.171089 + 0.985256i \(0.554728\pi\)
\(684\) −144.981 + 144.981i −0.211960 + 0.211960i
\(685\) −28.9801 50.1949i −0.0423067 0.0732773i
\(686\) 338.839 + 195.629i 0.493934 + 0.285173i
\(687\) −458.197 1710.02i −0.666954 2.48911i
\(688\) 208.816i 0.303512i
\(689\) −301.353 45.3896i −0.437377 0.0658775i
\(690\) −63.0061 −0.0913133
\(691\) 90.8900 24.3539i 0.131534 0.0352444i −0.192451 0.981307i \(-0.561644\pi\)
0.323985 + 0.946062i \(0.394977\pi\)
\(692\) −140.484 + 243.325i −0.203011 + 0.351626i
\(693\) 852.699 492.306i 1.23045 0.710398i
\(694\) 220.862 + 220.862i 0.318245 + 0.318245i
\(695\) 7.16616 26.7445i 0.0103110 0.0384813i
\(696\) −251.512 67.3925i −0.361368 0.0968283i
\(697\) −86.3632 + 86.3632i −0.123907 + 0.123907i
\(698\) 205.786 + 356.432i 0.294823 + 0.510648i
\(699\) 1114.60 + 643.513i 1.59456 + 0.920620i
\(700\) −102.014 380.722i −0.145735 0.543889i
\(701\) 716.506i 1.02212i −0.859545 0.511060i \(-0.829253\pi\)
0.859545 0.511060i \(-0.170747\pi\)
\(702\) −1338.05 + 150.903i −1.90605 + 0.214961i
\(703\) 163.319 0.232317
\(704\) 43.2524 11.5894i 0.0614380 0.0164623i
\(705\) −15.7852 + 27.3408i −0.0223904 + 0.0387813i
\(706\) −24.1433 + 13.9392i −0.0341973 + 0.0197438i
\(707\) −549.201 549.201i −0.776805 0.776805i
\(708\) −101.915 + 380.351i −0.143947 + 0.537219i
\(709\) −957.045 256.439i −1.34985 0.361692i −0.489772 0.871851i \(-0.662920\pi\)
−0.860080 + 0.510159i \(0.829587\pi\)
\(710\) −35.0338 + 35.0338i −0.0493433 + 0.0493433i
\(711\) 1580.31 + 2737.18i 2.22266 + 3.84977i
\(712\) −382.418 220.789i −0.537104 0.310097i
\(713\) 59.1745 + 220.842i 0.0829937 + 0.309737i
\(714\) 126.233i 0.176796i
\(715\) −20.7783 + 26.0607i −0.0290605 + 0.0364485i
\(716\) −632.006 −0.882691
\(717\) −1406.27 + 376.810i −1.96133 + 0.525537i
\(718\) 275.618 477.384i 0.383869 0.664881i
\(719\) 150.591 86.9435i 0.209445 0.120923i −0.391609 0.920132i \(-0.628081\pi\)
0.601053 + 0.799209i \(0.294748\pi\)
\(720\) −28.6679 28.6679i −0.0398165 0.0398165i
\(721\) −223.126 + 832.716i −0.309467 + 1.15495i
\(722\) −463.814 124.279i −0.642402 0.172131i
\(723\) −877.566 + 877.566i −1.21378 + 1.21378i
\(724\) 83.6580 + 144.900i 0.115550 + 0.200138i
\(725\) −354.249 204.526i −0.488619 0.282104i
\(726\) −183.119 683.410i −0.252230 0.941336i
\(727\) 729.011i 1.00277i −0.865225 0.501383i \(-0.832825\pi\)
0.865225 0.501383i \(-0.167175\pi\)
\(728\) −272.092 + 106.821i −0.373753 + 0.146732i
\(729\) 957.649 1.31365
\(730\) 16.7514 4.48851i 0.0229471 0.00614865i
\(731\) 52.5295 90.9838i 0.0718598 0.124465i
\(732\) 269.457 155.571i 0.368111 0.212529i
\(733\) −762.465 762.465i −1.04020 1.04020i −0.999157 0.0410404i \(-0.986933\pi\)
−0.0410404 0.999157i \(-0.513067\pi\)
\(734\) 171.569 640.304i 0.233745 0.872348i
\(735\) −35.0501 9.39166i −0.0476873 0.0127778i
\(736\) 69.7330 69.7330i 0.0947460 0.0947460i
\(737\) −95.7992 165.929i −0.129985 0.225141i
\(738\) 1644.73 + 949.584i 2.22863 + 1.28670i
\(739\) 158.814 + 592.703i 0.214904 + 0.802033i 0.986200 + 0.165557i \(0.0529421\pi\)
−0.771296 + 0.636476i \(0.780391\pi\)
\(740\) 32.2940i 0.0436405i
\(741\) 199.569 + 270.348i 0.269324 + 0.364842i
\(742\) 263.556 0.355197
\(743\) 160.852 43.1002i 0.216490 0.0580084i −0.148944 0.988846i \(-0.547587\pi\)
0.365434 + 0.930837i \(0.380921\pi\)
\(744\) −103.478 + 179.229i −0.139083 + 0.240899i
\(745\) −86.6036 + 50.0006i −0.116246 + 0.0671149i
\(746\) 260.814 + 260.814i 0.349617 + 0.349617i
\(747\) −742.829 + 2772.27i −0.994416 + 3.71121i
\(748\) −21.7610 5.83084i −0.0290923 0.00779525i
\(749\) 423.279 423.279i 0.565126 0.565126i
\(750\) −89.9742 155.840i −0.119966 0.207787i
\(751\) −116.272 67.1297i −0.154823 0.0893871i 0.420587 0.907252i \(-0.361824\pi\)
−0.575410 + 0.817865i \(0.695158\pi\)
\(752\) −12.7893 47.7304i −0.0170071 0.0634713i
\(753\) 1405.78i 1.86691i
\(754\) −121.282 + 278.059i −0.160851 + 0.368779i
\(755\) 47.7509 0.0632462
\(756\) 1124.83 301.397i 1.48787 0.398673i
\(757\) 598.217 1036.14i 0.790247 1.36875i −0.135567 0.990768i \(-0.543285\pi\)
0.925814 0.377980i \(-0.123381\pi\)
\(758\) −262.331 + 151.457i −0.346083 + 0.199811i
\(759\) 384.957 + 384.957i 0.507190 + 0.507190i
\(760\) −1.55353 + 5.79785i −0.00204412 + 0.00762875i
\(761\) −33.7907 9.05420i −0.0444031 0.0118978i 0.236549 0.971620i \(-0.423984\pi\)
−0.280952 + 0.959722i \(0.590650\pi\)
\(762\) 539.918 539.918i 0.708554 0.708554i
\(763\) 32.8095 + 56.8277i 0.0430007 + 0.0744793i
\(764\) −119.708 69.1133i −0.156686