Properties

Label 338.3.f.h.19.1
Level $338$
Weight $3$
Character 338.19
Analytic conductor $9.210$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(19,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,0,0,6,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 19.1
Root \(-4.71318 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.19
Dual form 338.3.f.h.89.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 + 1.36603i) q^{2} +(-2.78960 + 4.83174i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(0.323893 - 0.323893i) q^{5} +(-7.62134 - 2.04213i) q^{6} +(-2.05755 + 7.67890i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-11.0638 - 19.1630i) q^{9} +(0.560999 + 0.323893i) q^{10} +(-5.40655 + 1.44868i) q^{11} -11.1584i q^{12} -11.2427 q^{14} +(0.661433 + 2.46850i) q^{15} +(2.00000 - 3.46410i) q^{16} +(1.74285 - 1.00623i) q^{17} +(22.1276 - 22.1276i) q^{18} +(-4.47512 - 1.19911i) q^{19} +(-0.237106 + 0.884892i) q^{20} +(-31.3626 - 31.3626i) q^{21} +(-3.95787 - 6.85523i) q^{22} +(15.0976 + 8.71663i) q^{23} +(15.2427 - 4.08426i) q^{24} +24.7902i q^{25} +73.2415 q^{27} +(-4.11511 - 15.3578i) q^{28} +(8.25026 - 14.2899i) q^{29} +(-3.12993 + 1.80707i) q^{30} +(-9.27353 + 9.27353i) q^{31} +(5.46410 + 1.46410i) q^{32} +(8.08249 - 30.1643i) q^{33} +(2.01247 + 2.01247i) q^{34} +(1.82071 + 3.15357i) q^{35} +(38.3261 + 22.1276i) q^{36} +(-34.0501 + 9.12370i) q^{37} -6.55204i q^{38} -1.29557 q^{40} +(-15.7076 - 58.6217i) q^{41} +(31.3626 - 54.3217i) q^{42} +(45.2101 - 26.1020i) q^{43} +(7.91574 - 7.91574i) q^{44} +(-9.79026 - 2.62329i) q^{45} +(-6.38102 + 23.8143i) q^{46} +(8.73527 + 8.73527i) q^{47} +(11.1584 + 19.3269i) q^{48} +(-12.2967 - 7.09948i) q^{49} +(-33.8640 + 9.07384i) q^{50} +11.2280i q^{51} -23.4425 q^{53} +(26.8082 + 100.050i) q^{54} +(-1.28193 + 2.22036i) q^{55} +(19.4729 - 11.2427i) q^{56} +(18.2776 - 18.2776i) q^{57} +(22.5401 + 6.03961i) q^{58} +(-9.13343 + 34.0864i) q^{59} +(-3.61413 - 3.61413i) q^{60} +(-13.9421 - 24.1483i) q^{61} +(-16.0622 - 9.27353i) q^{62} +(169.915 - 45.5287i) q^{63} +8.00000i q^{64} +44.1635 q^{66} +(8.85955 + 33.0643i) q^{67} +(-2.01247 + 3.48570i) q^{68} +(-84.2329 + 48.6319i) q^{69} +(-3.64143 + 3.64143i) q^{70} +(-73.8778 - 19.7955i) q^{71} +(-16.1985 + 60.4537i) q^{72} +(-18.9304 - 18.9304i) q^{73} +(-24.9264 - 43.1738i) q^{74} +(-119.780 - 69.1548i) q^{75} +(8.95025 - 2.39821i) q^{76} -44.4971i q^{77} -142.837 q^{79} +(-0.474212 - 1.76978i) q^{80} +(-104.741 + 181.416i) q^{81} +(74.3293 - 42.9141i) q^{82} +(-91.7157 + 91.7157i) q^{83} +(85.6843 + 22.9590i) q^{84} +(0.238584 - 0.890409i) q^{85} +(52.2041 + 52.2041i) q^{86} +(46.0299 + 79.7262i) q^{87} +(13.7105 + 7.91574i) q^{88} +(-150.802 + 40.4072i) q^{89} -14.3339i q^{90} -34.8665 q^{92} +(-18.9378 - 70.6767i) q^{93} +(-8.73527 + 15.1299i) q^{94} +(-1.83784 + 1.06108i) q^{95} +(-22.3168 + 22.3168i) q^{96} +(-108.767 - 29.1440i) q^{97} +(5.19718 - 19.3961i) q^{98} +(87.5780 + 87.5780i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 6 q^{5} - 6 q^{6} - 8 q^{7} - 16 q^{8} - 42 q^{9} + 18 q^{10} - 24 q^{11} + 20 q^{14} - 126 q^{15} + 16 q^{16} + 42 q^{17} + 84 q^{18} - 68 q^{19} - 12 q^{20} - 102 q^{21} - 42 q^{22} + 36 q^{23}+ \cdots + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 + 1.36603i 0.183013 + 0.683013i
\(3\) −2.78960 + 4.83174i −0.929868 + 1.61058i −0.146330 + 0.989236i \(0.546746\pi\)
−0.783539 + 0.621343i \(0.786587\pi\)
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 0.323893 0.323893i 0.0647786 0.0647786i −0.673975 0.738754i \(-0.735415\pi\)
0.738754 + 0.673975i \(0.235415\pi\)
\(6\) −7.62134 2.04213i −1.27022 0.340355i
\(7\) −2.05755 + 7.67890i −0.293936 + 1.09699i 0.648122 + 0.761536i \(0.275555\pi\)
−0.942058 + 0.335449i \(0.891112\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −11.0638 19.1630i −1.22931 2.12923i
\(10\) 0.560999 + 0.323893i 0.0560999 + 0.0323893i
\(11\) −5.40655 + 1.44868i −0.491504 + 0.131698i −0.496054 0.868291i \(-0.665218\pi\)
0.00455003 + 0.999990i \(0.498552\pi\)
\(12\) 11.1584i 0.929868i
\(13\) 0 0
\(14\) −11.2427 −0.803049
\(15\) 0.661433 + 2.46850i 0.0440955 + 0.164567i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 1.74285 1.00623i 0.102520 0.0591902i −0.447863 0.894102i \(-0.647815\pi\)
0.550384 + 0.834912i \(0.314481\pi\)
\(18\) 22.1276 22.1276i 1.22931 1.22931i
\(19\) −4.47512 1.19911i −0.235533 0.0631108i 0.139122 0.990275i \(-0.455572\pi\)
−0.374655 + 0.927164i \(0.622239\pi\)
\(20\) −0.237106 + 0.884892i −0.0118553 + 0.0442446i
\(21\) −31.3626 31.3626i −1.49346 1.49346i
\(22\) −3.95787 6.85523i −0.179903 0.311601i
\(23\) 15.0976 + 8.71663i 0.656419 + 0.378984i 0.790911 0.611931i \(-0.209607\pi\)
−0.134492 + 0.990915i \(0.542940\pi\)
\(24\) 15.2427 4.08426i 0.635112 0.170178i
\(25\) 24.7902i 0.991607i
\(26\) 0 0
\(27\) 73.2415 2.71265
\(28\) −4.11511 15.3578i −0.146968 0.548493i
\(29\) 8.25026 14.2899i 0.284492 0.492754i −0.687994 0.725716i \(-0.741508\pi\)
0.972486 + 0.232962i \(0.0748418\pi\)
\(30\) −3.12993 + 1.80707i −0.104331 + 0.0602356i
\(31\) −9.27353 + 9.27353i −0.299146 + 0.299146i −0.840679 0.541533i \(-0.817844\pi\)
0.541533 + 0.840679i \(0.317844\pi\)
\(32\) 5.46410 + 1.46410i 0.170753 + 0.0457532i
\(33\) 8.08249 30.1643i 0.244924 0.914069i
\(34\) 2.01247 + 2.01247i 0.0591902 + 0.0591902i
\(35\) 1.82071 + 3.15357i 0.0520204 + 0.0901020i
\(36\) 38.3261 + 22.1276i 1.06461 + 0.614655i
\(37\) −34.0501 + 9.12370i −0.920273 + 0.246586i −0.687702 0.725993i \(-0.741380\pi\)
−0.232571 + 0.972579i \(0.574714\pi\)
\(38\) 6.55204i 0.172422i
\(39\) 0 0
\(40\) −1.29557 −0.0323893
\(41\) −15.7076 58.6217i −0.383113 1.42980i −0.841120 0.540849i \(-0.818103\pi\)
0.458007 0.888949i \(-0.348564\pi\)
\(42\) 31.3626 54.3217i 0.746730 1.29337i
\(43\) 45.2101 26.1020i 1.05140 0.607024i 0.128357 0.991728i \(-0.459030\pi\)
0.923040 + 0.384704i \(0.125696\pi\)
\(44\) 7.91574 7.91574i 0.179903 0.179903i
\(45\) −9.79026 2.62329i −0.217561 0.0582954i
\(46\) −6.38102 + 23.8143i −0.138718 + 0.517702i
\(47\) 8.73527 + 8.73527i 0.185857 + 0.185857i 0.793902 0.608045i \(-0.208046\pi\)
−0.608045 + 0.793902i \(0.708046\pi\)
\(48\) 11.1584 + 19.3269i 0.232467 + 0.402645i
\(49\) −12.2967 7.09948i −0.250952 0.144887i
\(50\) −33.8640 + 9.07384i −0.677280 + 0.181477i
\(51\) 11.2280i 0.220156i
\(52\) 0 0
\(53\) −23.4425 −0.442311 −0.221155 0.975239i \(-0.570983\pi\)
−0.221155 + 0.975239i \(0.570983\pi\)
\(54\) 26.8082 + 100.050i 0.496449 + 1.85277i
\(55\) −1.28193 + 2.22036i −0.0233077 + 0.0403702i
\(56\) 19.4729 11.2427i 0.347730 0.200762i
\(57\) 18.2776 18.2776i 0.320660 0.320660i
\(58\) 22.5401 + 6.03961i 0.388623 + 0.104131i
\(59\) −9.13343 + 34.0864i −0.154804 + 0.577736i 0.844318 + 0.535842i \(0.180006\pi\)
−0.999122 + 0.0418940i \(0.986661\pi\)
\(60\) −3.61413 3.61413i −0.0602356 0.0602356i
\(61\) −13.9421 24.1483i −0.228558 0.395875i 0.728823 0.684702i \(-0.240068\pi\)
−0.957381 + 0.288828i \(0.906734\pi\)
\(62\) −16.0622 9.27353i −0.259068 0.149573i
\(63\) 169.915 45.5287i 2.69707 0.722677i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 44.1635 0.669145
\(67\) 8.85955 + 33.0643i 0.132232 + 0.493497i 0.999994 0.00348324i \(-0.00110875\pi\)
−0.867762 + 0.496980i \(0.834442\pi\)
\(68\) −2.01247 + 3.48570i −0.0295951 + 0.0512602i
\(69\) −84.2329 + 48.6319i −1.22077 + 0.704810i
\(70\) −3.64143 + 3.64143i −0.0520204 + 0.0520204i
\(71\) −73.8778 19.7955i −1.04053 0.278810i −0.302198 0.953245i \(-0.597721\pi\)
−0.738334 + 0.674435i \(0.764387\pi\)
\(72\) −16.1985 + 60.4537i −0.224979 + 0.839634i
\(73\) −18.9304 18.9304i −0.259320 0.259320i 0.565457 0.824778i \(-0.308700\pi\)
−0.824778 + 0.565457i \(0.808700\pi\)
\(74\) −24.9264 43.1738i −0.336843 0.583430i
\(75\) −119.780 69.1548i −1.59706 0.922064i
\(76\) 8.95025 2.39821i 0.117766 0.0315554i
\(77\) 44.4971i 0.577884i
\(78\) 0 0
\(79\) −142.837 −1.80806 −0.904029 0.427471i \(-0.859404\pi\)
−0.904029 + 0.427471i \(0.859404\pi\)
\(80\) −0.474212 1.76978i −0.00592766 0.0221223i
\(81\) −104.741 + 181.416i −1.29310 + 2.23971i
\(82\) 74.3293 42.9141i 0.906455 0.523342i
\(83\) −91.7157 + 91.7157i −1.10501 + 1.10501i −0.111212 + 0.993797i \(0.535473\pi\)
−0.993797 + 0.111212i \(0.964527\pi\)
\(84\) 85.6843 + 22.9590i 1.02005 + 0.273322i
\(85\) 0.238584 0.890409i 0.00280687 0.0104754i
\(86\) 52.2041 + 52.2041i 0.607024 + 0.607024i
\(87\) 46.0299 + 79.7262i 0.529080 + 0.916393i
\(88\) 13.7105 + 7.91574i 0.155801 + 0.0899515i
\(89\) −150.802 + 40.4072i −1.69440 + 0.454014i −0.971520 0.236956i \(-0.923850\pi\)
−0.722883 + 0.690970i \(0.757183\pi\)
\(90\) 14.3339i 0.159266i
\(91\) 0 0
\(92\) −34.8665 −0.378984
\(93\) −18.9378 70.6767i −0.203632 0.759965i
\(94\) −8.73527 + 15.1299i −0.0929284 + 0.160957i
\(95\) −1.83784 + 1.06108i −0.0193457 + 0.0111693i
\(96\) −22.3168 + 22.3168i −0.232467 + 0.232467i
\(97\) −108.767 29.1440i −1.12131 0.300454i −0.349896 0.936789i \(-0.613783\pi\)
−0.771413 + 0.636335i \(0.780450\pi\)
\(98\) 5.19718 19.3961i 0.0530325 0.197920i
\(99\) 87.5780 + 87.5780i 0.884626 + 0.884626i
\(100\) −24.7902 42.9379i −0.247902 0.429379i
\(101\) 84.6101 + 48.8497i 0.837724 + 0.483660i 0.856490 0.516164i \(-0.172640\pi\)
−0.0187659 + 0.999824i \(0.505974\pi\)
\(102\) −15.3377 + 4.10973i −0.150370 + 0.0402914i
\(103\) 108.442i 1.05284i −0.850226 0.526418i \(-0.823535\pi\)
0.850226 0.526418i \(-0.176465\pi\)
\(104\) 0 0
\(105\) −20.3163 −0.193488
\(106\) −8.58054 32.0230i −0.0809485 0.302104i
\(107\) 37.6493 65.2105i 0.351863 0.609444i −0.634713 0.772748i \(-0.718882\pi\)
0.986576 + 0.163304i \(0.0522151\pi\)
\(108\) −126.858 + 73.2415i −1.17461 + 0.678162i
\(109\) 5.83660 5.83660i 0.0535468 0.0535468i −0.679826 0.733373i \(-0.737945\pi\)
0.733373 + 0.679826i \(0.237945\pi\)
\(110\) −3.50229 0.938435i −0.0318390 0.00853123i
\(111\) 50.9030 189.973i 0.458586 1.71147i
\(112\) 22.4854 + 22.4854i 0.200762 + 0.200762i
\(113\) 57.2435 + 99.1486i 0.506580 + 0.877422i 0.999971 + 0.00761416i \(0.00242369\pi\)
−0.493391 + 0.869807i \(0.664243\pi\)
\(114\) 31.6577 + 18.2776i 0.277699 + 0.160330i
\(115\) 7.71328 2.06677i 0.0670720 0.0179719i
\(116\) 33.0010i 0.284492i
\(117\) 0 0
\(118\) −49.9060 −0.422932
\(119\) 4.14076 + 15.4535i 0.0347963 + 0.129862i
\(120\) 3.61413 6.25986i 0.0301178 0.0521655i
\(121\) −77.6570 + 44.8353i −0.641793 + 0.370540i
\(122\) 27.8841 27.8841i 0.228558 0.228558i
\(123\) 327.063 + 87.6362i 2.65905 + 0.712489i
\(124\) 6.78869 25.3357i 0.0547475 0.204321i
\(125\) 16.1267 + 16.1267i 0.129014 + 0.129014i
\(126\) 124.387 + 215.444i 0.987196 + 1.70987i
\(127\) −83.8081 48.3866i −0.659906 0.380997i 0.132335 0.991205i \(-0.457753\pi\)
−0.792241 + 0.610208i \(0.791086\pi\)
\(128\) −10.9282 + 2.92820i −0.0853766 + 0.0228766i
\(129\) 291.258i 2.25781i
\(130\) 0 0
\(131\) 159.613 1.21842 0.609212 0.793008i \(-0.291486\pi\)
0.609212 + 0.793008i \(0.291486\pi\)
\(132\) 16.1650 + 60.3285i 0.122462 + 0.457034i
\(133\) 18.4156 31.8968i 0.138463 0.239825i
\(134\) −41.9239 + 24.2048i −0.312865 + 0.180632i
\(135\) 23.7224 23.7224i 0.175722 0.175722i
\(136\) −5.49816 1.47323i −0.0404277 0.0108326i
\(137\) 32.7498 122.224i 0.239050 0.892146i −0.737232 0.675640i \(-0.763867\pi\)
0.976281 0.216506i \(-0.0694660\pi\)
\(138\) −97.2638 97.2638i −0.704810 0.704810i
\(139\) −30.2234 52.3485i −0.217435 0.376608i 0.736588 0.676341i \(-0.236436\pi\)
−0.954023 + 0.299733i \(0.903102\pi\)
\(140\) −6.30714 3.64143i −0.0450510 0.0260102i
\(141\) −66.5745 + 17.8386i −0.472159 + 0.126515i
\(142\) 108.165i 0.761723i
\(143\) 0 0
\(144\) −88.5103 −0.614655
\(145\) −1.95619 7.30059i −0.0134910 0.0503489i
\(146\) 18.9304 32.7884i 0.129660 0.224578i
\(147\) 68.6056 39.6095i 0.466705 0.269452i
\(148\) 49.8528 49.8528i 0.336843 0.336843i
\(149\) 210.878 + 56.5047i 1.41529 + 0.379226i 0.883811 0.467844i \(-0.154969\pi\)
0.531481 + 0.847070i \(0.321636\pi\)
\(150\) 50.6248 188.934i 0.337499 1.25956i
\(151\) 73.7140 + 73.7140i 0.488172 + 0.488172i 0.907729 0.419557i \(-0.137815\pi\)
−0.419557 + 0.907729i \(0.637815\pi\)
\(152\) 6.55204 + 11.3485i 0.0431055 + 0.0746609i
\(153\) −38.5650 22.2655i −0.252059 0.145526i
\(154\) 60.7841 16.2871i 0.394702 0.105760i
\(155\) 6.00726i 0.0387565i
\(156\) 0 0
\(157\) −127.109 −0.809611 −0.404805 0.914403i \(-0.632661\pi\)
−0.404805 + 0.914403i \(0.632661\pi\)
\(158\) −52.2818 195.118i −0.330898 1.23493i
\(159\) 65.3952 113.268i 0.411291 0.712376i
\(160\) 2.24400 1.29557i 0.0140250 0.00809733i
\(161\) −97.9983 + 97.9983i −0.608685 + 0.608685i
\(162\) −286.157 76.6755i −1.76640 0.473306i
\(163\) −43.7578 + 163.306i −0.268453 + 1.00188i 0.691650 + 0.722232i \(0.256884\pi\)
−0.960103 + 0.279646i \(0.909783\pi\)
\(164\) 85.8281 + 85.8281i 0.523342 + 0.523342i
\(165\) −7.15213 12.3879i −0.0433463 0.0750779i
\(166\) −158.856 91.7157i −0.956965 0.552504i
\(167\) −161.051 + 43.1534i −0.964375 + 0.258403i −0.706451 0.707762i \(-0.749705\pi\)
−0.257924 + 0.966165i \(0.583038\pi\)
\(168\) 125.451i 0.746730i
\(169\) 0 0
\(170\) 1.30365 0.00766852
\(171\) 26.5333 + 99.0237i 0.155166 + 0.579086i
\(172\) −52.2041 + 90.4201i −0.303512 + 0.525698i
\(173\) 121.663 70.2419i 0.703252 0.406023i −0.105305 0.994440i \(-0.533582\pi\)
0.808557 + 0.588417i \(0.200249\pi\)
\(174\) −92.0599 + 92.0599i −0.529080 + 0.529080i
\(175\) −190.361 51.0071i −1.08778 0.291469i
\(176\) −5.79472 + 21.6262i −0.0329245 + 0.122876i
\(177\) −139.218 139.218i −0.786543 0.786543i
\(178\) −110.395 191.209i −0.620195 1.07421i
\(179\) 273.667 + 158.002i 1.52886 + 0.882691i 0.999410 + 0.0343526i \(0.0109369\pi\)
0.529455 + 0.848338i \(0.322396\pi\)
\(180\) 19.5805 5.24659i 0.108781 0.0291477i
\(181\) 83.6580i 0.462199i −0.972930 0.231099i \(-0.925768\pi\)
0.972930 0.231099i \(-0.0742323\pi\)
\(182\) 0 0
\(183\) 155.571 0.850116
\(184\) −12.7620 47.6285i −0.0693589 0.258851i
\(185\) −8.07349 + 13.9837i −0.0436405 + 0.0755876i
\(186\) 89.6145 51.7389i 0.481798 0.278166i
\(187\) −7.96508 + 7.96508i −0.0425940 + 0.0425940i
\(188\) −23.8652 6.39466i −0.126943 0.0340142i
\(189\) −150.698 + 562.414i −0.797346 + 2.97573i
\(190\) −2.12216 2.12216i −0.0111693 0.0111693i
\(191\) −34.5567 59.8539i −0.180925 0.313371i 0.761271 0.648434i \(-0.224576\pi\)
−0.942196 + 0.335063i \(0.891242\pi\)
\(192\) −38.6539 22.3168i −0.201322 0.116234i
\(193\) 313.603 84.0297i 1.62489 0.435387i 0.672454 0.740139i \(-0.265240\pi\)
0.952432 + 0.304752i \(0.0985735\pi\)
\(194\) 159.246i 0.820855i
\(195\) 0 0
\(196\) 28.3979 0.144887
\(197\) 82.8586 + 309.232i 0.420602 + 1.56971i 0.773344 + 0.633987i \(0.218583\pi\)
−0.352742 + 0.935721i \(0.614751\pi\)
\(198\) −87.5780 + 151.690i −0.442313 + 0.766109i
\(199\) −149.667 + 86.4100i −0.752093 + 0.434221i −0.826450 0.563010i \(-0.809643\pi\)
0.0743564 + 0.997232i \(0.476310\pi\)
\(200\) 49.5804 49.5804i 0.247902 0.247902i
\(201\) −184.473 49.4293i −0.917775 0.245917i
\(202\) −35.7604 + 133.460i −0.177032 + 0.660692i
\(203\) 92.7551 + 92.7551i 0.456922 + 0.456922i
\(204\) −11.2280 19.4474i −0.0550391 0.0953305i
\(205\) −24.0748 13.8996i −0.117438 0.0678028i
\(206\) 148.135 39.6926i 0.719101 0.192682i
\(207\) 385.756i 1.86355i
\(208\) 0 0
\(209\) 25.9321 0.124077
\(210\) −7.43628 27.7526i −0.0354108 0.132155i
\(211\) −115.089 + 199.341i −0.545447 + 0.944743i 0.453131 + 0.891444i \(0.350307\pi\)
−0.998579 + 0.0532988i \(0.983026\pi\)
\(212\) 40.6035 23.4425i 0.191526 0.110578i
\(213\) 301.736 301.736i 1.41660 1.41660i
\(214\) 102.860 + 27.5612i 0.480653 + 0.128791i
\(215\) 6.18896 23.0975i 0.0287858 0.107430i
\(216\) −146.483 146.483i −0.678162 0.678162i
\(217\) −52.1297 90.2912i −0.240229 0.416089i
\(218\) 10.1093 + 5.83660i 0.0463728 + 0.0267734i
\(219\) 144.275 38.6584i 0.658790 0.176522i
\(220\) 5.12770i 0.0233077i
\(221\) 0 0
\(222\) 278.139 1.25288
\(223\) 68.1143 + 254.206i 0.305445 + 1.13994i 0.932561 + 0.361012i \(0.117569\pi\)
−0.627116 + 0.778926i \(0.715765\pi\)
\(224\) −22.4854 + 38.9458i −0.100381 + 0.173865i
\(225\) 475.055 274.273i 2.11136 1.21899i
\(226\) −114.487 + 114.487i −0.506580 + 0.506580i
\(227\) −115.102 30.8416i −0.507059 0.135866i −0.00378487 0.999993i \(-0.501205\pi\)
−0.503274 + 0.864127i \(0.667871\pi\)
\(228\) −13.3801 + 49.9353i −0.0586848 + 0.219015i
\(229\) −224.372 224.372i −0.979791 0.979791i 0.0200093 0.999800i \(-0.493630\pi\)
−0.999800 + 0.0200093i \(0.993630\pi\)
\(230\) 5.64651 + 9.78005i 0.0245501 + 0.0425219i
\(231\) 214.998 + 124.129i 0.930727 + 0.537356i
\(232\) −45.0803 + 12.0792i −0.194311 + 0.0520656i
\(233\) 230.683i 0.990054i 0.868878 + 0.495027i \(0.164842\pi\)
−0.868878 + 0.495027i \(0.835158\pi\)
\(234\) 0 0
\(235\) 5.65859 0.0240791
\(236\) −18.2669 68.1729i −0.0774020 0.288868i
\(237\) 398.458 690.149i 1.68126 2.91202i
\(238\) −19.5943 + 11.3128i −0.0823290 + 0.0475326i
\(239\) 184.518 184.518i 0.772041 0.772041i −0.206422 0.978463i \(-0.566182\pi\)
0.978463 + 0.206422i \(0.0661820\pi\)
\(240\) 9.87400 + 2.64573i 0.0411417 + 0.0110239i
\(241\) −57.5730 + 214.865i −0.238892 + 0.891557i 0.737464 + 0.675387i \(0.236023\pi\)
−0.976356 + 0.216170i \(0.930643\pi\)
\(242\) −89.6706 89.6706i −0.370540 0.370540i
\(243\) −254.784 441.298i −1.04849 1.81604i
\(244\) 48.2967 + 27.8841i 0.197937 + 0.114279i
\(245\) −6.28228 + 1.68333i −0.0256419 + 0.00687074i
\(246\) 478.853i 1.94656i
\(247\) 0 0
\(248\) 37.0941 0.149573
\(249\) −187.296 698.997i −0.752191 2.80722i
\(250\) −16.1267 + 27.9323i −0.0645068 + 0.111729i
\(251\) −218.211 + 125.984i −0.869366 + 0.501929i −0.867138 0.498069i \(-0.834043\pi\)
−0.00222866 + 0.999998i \(0.500709\pi\)
\(252\) −248.773 + 248.773i −0.987196 + 0.987196i
\(253\) −94.2537 25.2552i −0.372544 0.0998230i
\(254\) 35.4215 132.195i 0.139455 0.520452i
\(255\) 3.63666 + 3.63666i 0.0142614 + 0.0142614i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −251.399 145.145i −0.978204 0.564767i −0.0764769 0.997071i \(-0.524367\pi\)
−0.901728 + 0.432305i \(0.857700\pi\)
\(258\) −397.865 + 106.608i −1.54211 + 0.413208i
\(259\) 280.240i 1.08201i
\(260\) 0 0
\(261\) −365.117 −1.39891
\(262\) 58.4226 + 218.036i 0.222987 + 0.832199i
\(263\) 53.9337 93.4160i 0.205071 0.355194i −0.745084 0.666970i \(-0.767591\pi\)
0.950155 + 0.311777i \(0.100924\pi\)
\(264\) −76.4935 + 44.1635i −0.289748 + 0.167286i
\(265\) −7.59285 + 7.59285i −0.0286523 + 0.0286523i
\(266\) 50.3124 + 13.4812i 0.189144 + 0.0506811i
\(267\) 225.440 841.355i 0.844346 3.15114i
\(268\) −48.4095 48.4095i −0.180632 0.180632i
\(269\) 217.712 + 377.087i 0.809337 + 1.40181i 0.913324 + 0.407234i \(0.133507\pi\)
−0.103987 + 0.994579i \(0.533160\pi\)
\(270\) 41.0884 + 23.7224i 0.152179 + 0.0878608i
\(271\) −81.2480 + 21.7703i −0.299808 + 0.0803333i −0.405587 0.914056i \(-0.632933\pi\)
0.105779 + 0.994390i \(0.466266\pi\)
\(272\) 8.04987i 0.0295951i
\(273\) 0 0
\(274\) 178.948 0.653096
\(275\) −35.9131 134.029i −0.130593 0.487379i
\(276\) 97.2638 168.466i 0.352405 0.610383i
\(277\) 31.8797 18.4057i 0.115089 0.0664467i −0.441350 0.897335i \(-0.645500\pi\)
0.556439 + 0.830888i \(0.312167\pi\)
\(278\) 60.4469 60.4469i 0.217435 0.217435i
\(279\) 280.309 + 75.1086i 1.00469 + 0.269207i
\(280\) 2.66571 9.94856i 0.00952039 0.0355306i
\(281\) −30.1080 30.1080i −0.107146 0.107146i 0.651501 0.758647i \(-0.274139\pi\)
−0.758647 + 0.651501i \(0.774139\pi\)
\(282\) −48.7359 84.4131i −0.172822 0.299337i
\(283\) 90.8978 + 52.4799i 0.321194 + 0.185441i 0.651924 0.758284i \(-0.273962\pi\)
−0.330731 + 0.943725i \(0.607295\pi\)
\(284\) 147.756 39.5910i 0.520266 0.139405i
\(285\) 11.8400i 0.0415438i
\(286\) 0 0
\(287\) 482.469 1.68108
\(288\) −32.3970 120.907i −0.112490 0.419817i
\(289\) −142.475 + 246.774i −0.492993 + 0.853889i
\(290\) 9.25678 5.34441i 0.0319199 0.0184290i
\(291\) 444.233 444.233i 1.52657 1.52657i
\(292\) 51.7188 + 13.8580i 0.177119 + 0.0474589i
\(293\) −32.5289 + 121.399i −0.111020 + 0.414333i −0.998958 0.0456298i \(-0.985471\pi\)
0.887938 + 0.459963i \(0.152137\pi\)
\(294\) 79.2190 + 79.2190i 0.269452 + 0.269452i
\(295\) 8.08211 + 13.9986i 0.0273970 + 0.0474529i
\(296\) 86.3476 + 49.8528i 0.291715 + 0.168422i
\(297\) −395.984 + 106.103i −1.33328 + 0.357251i
\(298\) 308.748i 1.03607i
\(299\) 0 0
\(300\) 276.619 0.922064
\(301\) 107.413 + 400.870i 0.356853 + 1.33179i
\(302\) −73.7140 + 127.676i −0.244086 + 0.422769i
\(303\) −472.058 + 272.543i −1.55795 + 0.899480i
\(304\) −13.1041 + 13.1041i −0.0431055 + 0.0431055i
\(305\) −12.3372 3.30575i −0.0404499 0.0108385i
\(306\) 16.2995 60.8305i 0.0532663 0.198793i
\(307\) −159.407 159.407i −0.519242 0.519242i 0.398100 0.917342i \(-0.369670\pi\)
−0.917342 + 0.398100i \(0.869670\pi\)
\(308\) 44.4971 + 77.0712i 0.144471 + 0.250231i
\(309\) 523.964 + 302.511i 1.69568 + 0.978999i
\(310\) −8.20607 + 2.19881i −0.0264712 + 0.00709294i
\(311\) 461.756i 1.48475i 0.669986 + 0.742374i \(0.266300\pi\)
−0.669986 + 0.742374i \(0.733700\pi\)
\(312\) 0 0
\(313\) 8.16759 0.0260945 0.0130473 0.999915i \(-0.495847\pi\)
0.0130473 + 0.999915i \(0.495847\pi\)
\(314\) −46.5251 173.634i −0.148169 0.552974i
\(315\) 40.2880 69.7808i 0.127898 0.221526i
\(316\) 247.400 142.837i 0.782912 0.452014i
\(317\) −91.6127 + 91.6127i −0.288999 + 0.288999i −0.836684 0.547685i \(-0.815509\pi\)
0.547685 + 0.836684i \(0.315509\pi\)
\(318\) 178.663 + 47.8726i 0.561833 + 0.150543i
\(319\) −23.9040 + 89.2109i −0.0749341 + 0.279658i
\(320\) 2.59114 + 2.59114i 0.00809733 + 0.00809733i
\(321\) 210.053 + 363.823i 0.654372 + 1.13341i
\(322\) −169.738 97.9983i −0.527137 0.304343i
\(323\) −9.00604 + 2.41316i −0.0278825 + 0.00747109i
\(324\) 418.963i 1.29310i
\(325\) 0 0
\(326\) −239.097 −0.733426
\(327\) 11.9191 + 44.4827i 0.0364499 + 0.136033i
\(328\) −85.8281 + 148.659i −0.261671 + 0.453228i
\(329\) −85.0505 + 49.1039i −0.258512 + 0.149252i
\(330\) 14.3043 14.3043i 0.0433463 0.0433463i
\(331\) −144.443 38.7033i −0.436382 0.116928i 0.0339382 0.999424i \(-0.489195\pi\)
−0.470321 + 0.882496i \(0.655862\pi\)
\(332\) 67.1406 250.572i 0.202231 0.754735i
\(333\) 551.561 + 551.561i 1.65634 + 1.65634i
\(334\) −117.897 204.204i −0.352986 0.611389i
\(335\) 13.5789 + 7.83975i 0.0405339 + 0.0234022i
\(336\) −171.369 + 45.9181i −0.510026 + 0.136661i
\(337\) 61.7332i 0.183185i −0.995797 0.0915923i \(-0.970804\pi\)
0.995797 0.0915923i \(-0.0291956\pi\)
\(338\) 0 0
\(339\) −638.747 −1.88421
\(340\) 0.477169 + 1.78082i 0.00140344 + 0.00523770i
\(341\) 36.7034 63.5721i 0.107635 0.186429i
\(342\) −125.557 + 72.4904i −0.367126 + 0.211960i
\(343\) −195.629 + 195.629i −0.570346 + 0.570346i
\(344\) −142.624 38.2160i −0.414605 0.111093i
\(345\) −11.5309 + 43.0340i −0.0334230 + 0.124736i
\(346\) 140.484 + 140.484i 0.406023 + 0.406023i
\(347\) −110.431 191.272i −0.318245 0.551216i 0.661877 0.749612i \(-0.269760\pi\)
−0.980122 + 0.198396i \(0.936427\pi\)
\(348\) −159.452 92.0599i −0.458196 0.264540i
\(349\) 281.109 75.3230i 0.805470 0.215825i 0.167486 0.985874i \(-0.446435\pi\)
0.637984 + 0.770049i \(0.279768\pi\)
\(350\) 278.708i 0.796309i
\(351\) 0 0
\(352\) −31.6629 −0.0899515
\(353\) −5.10208 19.0412i −0.0144535 0.0539412i 0.958322 0.285689i \(-0.0922223\pi\)
−0.972776 + 0.231748i \(0.925556\pi\)
\(354\) 139.218 241.133i 0.393271 0.681166i
\(355\) −30.3401 + 17.5169i −0.0854652 + 0.0493433i
\(356\) 220.789 220.789i 0.620195 0.620195i
\(357\) −86.2185 23.1022i −0.241508 0.0647120i
\(358\) −115.665 + 431.668i −0.323087 + 1.20578i
\(359\) −275.618 275.618i −0.767738 0.767738i 0.209970 0.977708i \(-0.432663\pi\)
−0.977708 + 0.209970i \(0.932663\pi\)
\(360\) 14.3339 + 24.8271i 0.0398165 + 0.0689642i
\(361\) −294.046 169.768i −0.814533 0.470271i
\(362\) 114.279 30.6210i 0.315688 0.0845883i
\(363\) 500.291i 1.37821i
\(364\) 0 0
\(365\) −12.2628 −0.0335968
\(366\) 56.9430 + 212.514i 0.155582 + 0.580640i
\(367\) −234.367 + 405.936i −0.638603 + 1.10609i 0.347136 + 0.937815i \(0.387154\pi\)
−0.985739 + 0.168278i \(0.946179\pi\)
\(368\) 60.3906 34.8665i 0.164105 0.0947460i
\(369\) −949.584 + 949.584i −2.57340 + 2.57340i
\(370\) −22.0572 5.91021i −0.0596140 0.0159735i
\(371\) 48.2341 180.012i 0.130011 0.485208i
\(372\) 103.478 + 103.478i 0.278166 + 0.278166i
\(373\) −130.407 225.872i −0.349617 0.605555i 0.636564 0.771224i \(-0.280355\pi\)
−0.986181 + 0.165669i \(0.947022\pi\)
\(374\) −13.7959 7.96508i −0.0368875 0.0212970i
\(375\) −122.907 + 32.9329i −0.327752 + 0.0878209i
\(376\) 34.9411i 0.0929284i
\(377\) 0 0
\(378\) −823.431 −2.17839
\(379\) −55.4370 206.894i −0.146272 0.545893i −0.999696 0.0246758i \(-0.992145\pi\)
0.853424 0.521218i \(-0.174522\pi\)
\(380\) 2.12216 3.67569i 0.00558463 0.00967286i
\(381\) 467.583 269.959i 1.22725 0.708554i
\(382\) 69.1133 69.1133i 0.180925 0.180925i
\(383\) 662.570 + 177.535i 1.72995 + 0.463538i 0.980171 0.198151i \(-0.0634938\pi\)
0.749778 + 0.661690i \(0.230160\pi\)
\(384\) 16.3371 60.9707i 0.0425444 0.158778i
\(385\) −14.4123 14.4123i −0.0374345 0.0374345i
\(386\) 229.573 + 397.633i 0.594750 + 1.03014i
\(387\) −1000.39 577.575i −2.58498 1.49244i
\(388\) 217.534 58.2880i 0.560654 0.150227i
\(389\) 374.691i 0.963216i 0.876387 + 0.481608i \(0.159947\pi\)
−0.876387 + 0.481608i \(0.840053\pi\)
\(390\) 0 0
\(391\) 35.0839 0.0897286
\(392\) 10.3944 + 38.7923i 0.0265162 + 0.0989599i
\(393\) −445.258 + 771.210i −1.13297 + 1.96237i
\(394\) −392.091 + 226.374i −0.995155 + 0.574553i
\(395\) −46.2638 + 46.2638i −0.117123 + 0.117123i
\(396\) −239.268 64.1116i −0.604211 0.161898i
\(397\) −168.880 + 630.268i −0.425390 + 1.58758i 0.337680 + 0.941261i \(0.390358\pi\)
−0.763070 + 0.646316i \(0.776309\pi\)
\(398\) −172.820 172.820i −0.434221 0.434221i
\(399\) 102.745 + 177.959i 0.257505 + 0.446012i
\(400\) 85.8757 + 49.5804i 0.214689 + 0.123951i
\(401\) 417.539 111.879i 1.04125 0.279001i 0.302616 0.953113i \(-0.402140\pi\)
0.738629 + 0.674112i \(0.235473\pi\)
\(402\) 270.087i 0.671858i
\(403\) 0 0
\(404\) −195.399 −0.483660
\(405\) 24.8347 + 92.6843i 0.0613202 + 0.228850i
\(406\) −92.7551 + 160.656i −0.228461 + 0.395706i
\(407\) 170.876 98.6554i 0.419843 0.242397i
\(408\) 22.4560 22.4560i 0.0550391 0.0550391i
\(409\) −269.624 72.2456i −0.659228 0.176640i −0.0863302 0.996267i \(-0.527514\pi\)
−0.572897 + 0.819627i \(0.694181\pi\)
\(410\) 10.1752 37.9743i 0.0248175 0.0926203i
\(411\) 499.195 + 499.195i 1.21459 + 1.21459i
\(412\) 108.442 + 187.827i 0.263209 + 0.455892i
\(413\) −242.954 140.269i −0.588265 0.339635i
\(414\) 526.952 141.196i 1.27283 0.341054i
\(415\) 59.4122i 0.143162i
\(416\) 0 0
\(417\) 337.246 0.808743
\(418\) 9.49181 + 35.4239i 0.0227077 + 0.0847462i
\(419\) −93.7951 + 162.458i −0.223855 + 0.387728i −0.955975 0.293447i \(-0.905197\pi\)
0.732121 + 0.681175i \(0.238531\pi\)
\(420\) 35.1888 20.3163i 0.0837829 0.0483721i
\(421\) 410.480 410.480i 0.975013 0.975013i −0.0246826 0.999695i \(-0.507858\pi\)
0.999695 + 0.0246826i \(0.00785752\pi\)
\(422\) −314.430 84.2513i −0.745095 0.199648i
\(423\) 70.7492 264.040i 0.167256 0.624207i
\(424\) 46.8849 + 46.8849i 0.110578 + 0.110578i
\(425\) 24.9447 + 43.2055i 0.0586935 + 0.101660i
\(426\) 522.623 + 301.736i 1.22681 + 0.708302i
\(427\) 214.119 57.3731i 0.501450 0.134363i
\(428\) 150.597i 0.351863i
\(429\) 0 0
\(430\) 33.8171 0.0786444
\(431\) 138.478 + 516.808i 0.321295 + 1.19909i 0.917984 + 0.396617i \(0.129816\pi\)
−0.596689 + 0.802473i \(0.703517\pi\)
\(432\) 146.483 253.716i 0.339081 0.587305i
\(433\) −140.192 + 80.9400i −0.323769 + 0.186928i −0.653071 0.757296i \(-0.726520\pi\)
0.329302 + 0.944225i \(0.393187\pi\)
\(434\) 104.259 104.259i 0.240229 0.240229i
\(435\) 40.7315 + 10.9140i 0.0936357 + 0.0250896i
\(436\) −4.27268 + 15.9459i −0.00979974 + 0.0365731i
\(437\) −57.1117 57.1117i −0.130690 0.130690i
\(438\) 105.617 + 182.933i 0.241134 + 0.417656i
\(439\) 142.255 + 82.1308i 0.324043 + 0.187086i 0.653193 0.757191i \(-0.273429\pi\)
−0.329150 + 0.944277i \(0.606762\pi\)
\(440\) 7.00457 1.87687i 0.0159195 0.00426561i
\(441\) 314.189i 0.712446i
\(442\) 0 0
\(443\) 309.912 0.699575 0.349788 0.936829i \(-0.386254\pi\)
0.349788 + 0.936829i \(0.386254\pi\)
\(444\) 101.806 + 379.945i 0.229293 + 0.855733i
\(445\) −35.7561 + 61.9313i −0.0803507 + 0.139172i
\(446\) −322.321 + 186.092i −0.722692 + 0.417246i
\(447\) −861.284 + 861.284i −1.92681 + 1.92681i
\(448\) −61.4312 16.4604i −0.137123 0.0367420i
\(449\) 35.2192 131.440i 0.0784392 0.292739i −0.915552 0.402200i \(-0.868246\pi\)
0.993991 + 0.109461i \(0.0349124\pi\)
\(450\) 548.547 + 548.547i 1.21899 + 1.21899i
\(451\) 169.848 + 294.186i 0.376603 + 0.652296i
\(452\) −198.297 114.487i −0.438711 0.253290i
\(453\) −561.799 + 150.534i −1.24018 + 0.332304i
\(454\) 168.522i 0.371193i
\(455\) 0 0
\(456\) −73.1104 −0.160330
\(457\) −58.7751 219.352i −0.128611 0.479981i 0.871332 0.490694i \(-0.163257\pi\)
−0.999943 + 0.0107126i \(0.996590\pi\)
\(458\) 224.372 388.624i 0.489895 0.848523i
\(459\) 127.649 73.6981i 0.278102 0.160562i
\(460\) −11.2930 + 11.2930i −0.0245501 + 0.0245501i
\(461\) 660.658 + 177.023i 1.43310 + 0.383998i 0.890111 0.455743i \(-0.150627\pi\)
0.542987 + 0.839741i \(0.317293\pi\)
\(462\) −90.8689 + 339.127i −0.196686 + 0.734042i
\(463\) 557.281 + 557.281i 1.20363 + 1.20363i 0.973055 + 0.230575i \(0.0740607\pi\)
0.230575 + 0.973055i \(0.425939\pi\)
\(464\) −33.0010 57.1595i −0.0711229 0.123189i
\(465\) −29.0255 16.7579i −0.0624205 0.0360385i
\(466\) −315.118 + 84.4357i −0.676219 + 0.181192i
\(467\) 91.0355i 0.194937i 0.995239 + 0.0974684i \(0.0310745\pi\)
−0.995239 + 0.0974684i \(0.968926\pi\)
\(468\) 0 0
\(469\) −272.126 −0.580227
\(470\) 2.07119 + 7.72977i 0.00440678 + 0.0164463i
\(471\) 354.583 614.157i 0.752831 1.30394i
\(472\) 86.4397 49.9060i 0.183135 0.105733i
\(473\) −206.617 + 206.617i −0.436822 + 0.436822i
\(474\) 1088.61 + 291.691i 2.29664 + 0.615382i
\(475\) 29.7261 110.939i 0.0625812 0.233556i
\(476\) −22.6255 22.6255i −0.0475326 0.0475326i
\(477\) 259.362 + 449.229i 0.543737 + 0.941780i
\(478\) 319.594 + 184.518i 0.668607 + 0.386021i
\(479\) −713.865 + 191.280i −1.49032 + 0.399331i −0.909846 0.414945i \(-0.863801\pi\)
−0.580477 + 0.814276i \(0.697134\pi\)
\(480\) 14.4565i 0.0301178i
\(481\) 0 0
\(482\) −314.584 −0.652665
\(483\) −200.125 746.879i −0.414338 1.54633i
\(484\) 89.6706 155.314i 0.185270 0.320897i
\(485\) −44.6684 + 25.7893i −0.0920998 + 0.0531738i
\(486\) 509.567 509.567i 1.04849 1.04849i
\(487\) −580.273 155.484i −1.19153 0.319268i −0.392037 0.919949i \(-0.628230\pi\)
−0.799489 + 0.600681i \(0.794896\pi\)
\(488\) −20.4126 + 76.1808i −0.0418291 + 0.156108i
\(489\) −666.986 666.986i −1.36398 1.36398i
\(490\) −4.59895 7.96561i −0.00938560 0.0162563i
\(491\) 482.376 + 278.500i 0.982436 + 0.567210i 0.903005 0.429631i \(-0.141356\pi\)
0.0794313 + 0.996840i \(0.474690\pi\)
\(492\) −654.125 + 175.272i −1.32952 + 0.356245i
\(493\) 33.2068i 0.0673565i
\(494\) 0 0
\(495\) 56.7318 0.114610
\(496\) 13.5774 + 50.6715i 0.0273738 + 0.102160i
\(497\) 304.015 526.570i 0.611700 1.05950i
\(498\) 886.292 511.701i 1.77970 1.02751i
\(499\) 92.7376 92.7376i 0.185847 0.185847i −0.608051 0.793898i \(-0.708048\pi\)
0.793898 + 0.608051i \(0.208048\pi\)
\(500\) −44.0590 11.8056i −0.0881179 0.0236111i
\(501\) 240.762 898.535i 0.480562 1.79348i
\(502\) −251.968 251.968i −0.501929 0.501929i
\(503\) 68.4278 + 118.520i 0.136039 + 0.235627i 0.925994 0.377538i \(-0.123229\pi\)
−0.789955 + 0.613165i \(0.789896\pi\)
\(504\) −430.888 248.773i −0.854937 0.493598i
\(505\) 43.2267 11.5826i 0.0855974 0.0229358i
\(506\) 137.997i 0.272721i
\(507\) 0 0
\(508\) 193.547 0.380997
\(509\) −43.8773 163.752i −0.0862029 0.321713i 0.909336 0.416062i \(-0.136590\pi\)
−0.995539 + 0.0943482i \(0.969923\pi\)
\(510\) −3.63666 + 6.29889i −0.00713072 + 0.0123508i
\(511\) 184.315 106.414i 0.360694 0.208247i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −327.765 87.8243i −0.638918 0.171197i
\(514\) 106.254 396.544i 0.206719 0.771486i
\(515\) −35.1237 35.1237i −0.0682013 0.0682013i
\(516\) −291.258 504.473i −0.564453 0.977661i
\(517\) −59.8823 34.5730i −0.115826 0.0668724i
\(518\) 382.815 102.575i 0.739024 0.198021i
\(519\) 783.789i 1.51019i
\(520\) 0 0
\(521\) 161.073 0.309161 0.154580 0.987980i \(-0.450597\pi\)
0.154580 + 0.987980i \(0.450597\pi\)
\(522\) −133.642 498.758i −0.256019 0.955476i
\(523\) −67.7062 + 117.271i −0.129457 + 0.224227i −0.923466 0.383679i \(-0.874657\pi\)
0.794009 + 0.607906i \(0.207990\pi\)
\(524\) −276.459 + 159.613i −0.527593 + 0.304606i
\(525\) 777.486 777.486i 1.48093 1.48093i
\(526\) 147.350 + 39.4822i 0.280133 + 0.0750613i
\(527\) −6.83101 + 25.4937i −0.0129621 + 0.0483751i
\(528\) −88.3271 88.3271i −0.167286 0.167286i
\(529\) −112.541 194.926i −0.212742 0.368481i
\(530\) −13.1512 7.59285i −0.0248136 0.0143261i
\(531\) 754.250 202.101i 1.42043 0.380604i
\(532\) 73.6625i 0.138463i
\(533\) 0 0
\(534\) 1231.83 2.30680
\(535\) −8.92689 33.3156i −0.0166858 0.0622721i
\(536\) 48.4095 83.8477i 0.0903162 0.156432i
\(537\) −1526.84 + 881.524i −2.84329 + 1.64157i
\(538\) −435.423 + 435.423i −0.809337 + 0.809337i
\(539\) 76.7674 + 20.5698i 0.142426 + 0.0381628i
\(540\) −17.3660 + 64.8108i −0.0321593 + 0.120020i
\(541\) −127.802 127.802i −0.236233 0.236233i 0.579055 0.815288i \(-0.303422\pi\)
−0.815288 + 0.579055i \(0.803422\pi\)
\(542\) −59.4776 103.018i −0.109737 0.190071i
\(543\) 404.213 + 233.373i 0.744408 + 0.429784i
\(544\) 10.9963 2.94646i 0.0202138 0.00541628i
\(545\) 3.78087i 0.00693737i
\(546\) 0 0
\(547\) −161.504 −0.295254 −0.147627 0.989043i \(-0.547163\pi\)
−0.147627 + 0.989043i \(0.547163\pi\)
\(548\) 65.4996 + 244.448i 0.119525 + 0.446073i
\(549\) −308.504 + 534.344i −0.561938 + 0.973305i
\(550\) 169.942 98.1163i 0.308986 0.178393i
\(551\) −54.0560 + 54.0560i −0.0981053 + 0.0981053i
\(552\) 265.730 + 71.2020i 0.481394 + 0.128989i
\(553\) 293.894 1096.83i 0.531454 1.98341i
\(554\) 36.8115 + 36.8115i 0.0664467 + 0.0664467i
\(555\) −45.0437 78.0180i −0.0811598 0.140573i
\(556\) 104.697 + 60.4469i 0.188304 + 0.108717i
\(557\) 574.784 154.013i 1.03193 0.276504i 0.297163 0.954827i \(-0.403959\pi\)
0.734764 + 0.678323i \(0.237293\pi\)
\(558\) 410.401i 0.735486i
\(559\) 0 0
\(560\) 14.5657 0.0260102
\(561\) −16.2658 60.7046i −0.0289942 0.108208i
\(562\) 30.1080 52.1486i 0.0535730 0.0927912i
\(563\) 538.929 311.151i 0.957244 0.552665i 0.0619205 0.998081i \(-0.480277\pi\)
0.895324 + 0.445416i \(0.146944\pi\)
\(564\) 97.4718 97.4718i 0.172822 0.172822i
\(565\) 50.6543 + 13.5728i 0.0896537 + 0.0240226i
\(566\) −38.4179 + 143.378i −0.0678762 + 0.253317i
\(567\) −1177.57 1177.57i −2.07684 2.07684i
\(568\) 108.165 + 187.347i 0.190431 + 0.329836i
\(569\) −675.493 389.996i −1.18716 0.685406i −0.229499 0.973309i \(-0.573709\pi\)
−0.957660 + 0.287903i \(0.907042\pi\)
\(570\) 16.1737 4.33373i 0.0283749 0.00760304i
\(571\) 556.142i 0.973980i −0.873408 0.486990i \(-0.838095\pi\)
0.873408 0.486990i \(-0.161905\pi\)
\(572\) 0 0
\(573\) 385.598 0.672945
\(574\) 176.596 + 659.065i 0.307659 + 1.14820i
\(575\) −216.087 + 374.273i −0.375803 + 0.650910i
\(576\) 153.304 88.5103i 0.266153 0.153664i
\(577\) 401.975 401.975i 0.696663 0.696663i −0.267026 0.963689i \(-0.586041\pi\)
0.963689 + 0.267026i \(0.0860409\pi\)
\(578\) −389.249 104.299i −0.673441 0.180448i
\(579\) −468.819 + 1749.66i −0.809705 + 3.02186i
\(580\) 10.6888 + 10.6888i 0.0184290 + 0.0184290i
\(581\) −515.565 892.985i −0.887376 1.53698i
\(582\) 769.434 + 444.233i 1.32205 + 0.763287i
\(583\) 126.743 33.9606i 0.217398 0.0582515i
\(584\) 75.7216i 0.129660i
\(585\) 0 0
\(586\) −177.741 −0.303313
\(587\) −173.571 647.776i −0.295692 1.10354i −0.940666 0.339333i \(-0.889799\pi\)
0.644974 0.764204i \(-0.276868\pi\)
\(588\) −79.2190 + 137.211i −0.134726 + 0.233353i
\(589\) 52.6201 30.3802i 0.0893381 0.0515794i
\(590\) −16.1642 + 16.1642i −0.0273970 + 0.0273970i
\(591\) −1725.27 462.285i −2.91924 0.782209i
\(592\) −36.4948 + 136.200i −0.0616466 + 0.230068i
\(593\) −185.442 185.442i −0.312719 0.312719i 0.533243 0.845962i \(-0.320973\pi\)
−0.845962 + 0.533243i \(0.820973\pi\)
\(594\) −289.880 502.087i −0.488014 0.845264i
\(595\) 6.34646 + 3.66413i 0.0106663 + 0.00615820i
\(596\) −421.757 + 113.009i −0.707646 + 0.189613i
\(597\) 964.199i 1.61507i
\(598\) 0 0
\(599\) −171.466 −0.286254 −0.143127 0.989704i \(-0.545716\pi\)
−0.143127 + 0.989704i \(0.545716\pi\)
\(600\) 101.250 + 377.869i 0.168749 + 0.629782i
\(601\) −53.8259 + 93.2293i −0.0895606 + 0.155124i −0.907325 0.420429i \(-0.861880\pi\)
0.817765 + 0.575552i \(0.195213\pi\)
\(602\) −508.282 + 293.457i −0.844323 + 0.487470i
\(603\) 535.593 535.593i 0.888213 0.888213i
\(604\) −201.390 53.9624i −0.333428 0.0893417i
\(605\) −10.6307 + 39.6744i −0.0175714 + 0.0655775i
\(606\) −545.085 545.085i −0.899480 0.899480i
\(607\) −216.797 375.504i −0.357162 0.618623i 0.630323 0.776333i \(-0.282922\pi\)
−0.987486 + 0.157710i \(0.949589\pi\)
\(608\) −22.6969 13.1041i −0.0373305 0.0215528i
\(609\) −706.918 + 189.418i −1.16078 + 0.311031i
\(610\) 18.0629i 0.0296114i
\(611\) 0 0
\(612\) 89.0621 0.145526
\(613\) −166.249 620.451i −0.271206 1.01216i −0.958341 0.285626i \(-0.907799\pi\)
0.687135 0.726530i \(-0.258868\pi\)
\(614\) 159.407 276.102i 0.259621 0.449677i
\(615\) 134.318 77.5486i 0.218403 0.126095i
\(616\) −88.9941 + 88.9941i −0.144471 + 0.144471i
\(617\) 400.004 + 107.181i 0.648304 + 0.173713i 0.567962 0.823055i \(-0.307732\pi\)
0.0803421 + 0.996767i \(0.474399\pi\)
\(618\) −221.453 + 826.475i −0.358339 + 1.33734i
\(619\) 693.205 + 693.205i 1.11988 + 1.11988i 0.991759 + 0.128120i \(0.0408943\pi\)
0.128120 + 0.991759i \(0.459106\pi\)
\(620\) −6.00726 10.4049i −0.00968913 0.0167821i
\(621\) 1105.77 + 638.419i 1.78063 + 1.02805i
\(622\) −630.771 + 169.015i −1.01410 + 0.271728i
\(623\) 1241.13i 1.99219i
\(624\) 0 0
\(625\) −609.308 −0.974893
\(626\) 2.98955 + 11.1571i 0.00477563 + 0.0178229i
\(627\) −72.3403 + 125.297i −0.115375 + 0.199836i
\(628\) 220.159 127.109i 0.350572 0.202403i
\(629\) −50.1636 + 50.1636i −0.0797513 + 0.0797513i
\(630\) 110.069 + 29.4928i 0.174712 + 0.0468140i
\(631\) −136.067 + 507.808i −0.215637 + 0.804767i 0.770305 + 0.637676i \(0.220104\pi\)
−0.985941 + 0.167091i \(0.946563\pi\)
\(632\) 285.673 + 285.673i 0.452014 + 0.452014i
\(633\) −642.108 1112.16i −1.01439 1.75697i
\(634\) −158.678 91.6127i −0.250281 0.144500i
\(635\) −42.8170 + 11.4728i −0.0674283 + 0.0180674i
\(636\) 261.581i 0.411291i
\(637\) 0 0
\(638\) −130.614 −0.204724
\(639\) 438.026 + 1634.74i 0.685487 + 2.55827i
\(640\) −2.59114 + 4.48799i −0.00404866 + 0.00701249i
\(641\) 936.399 540.630i 1.46084 0.843416i 0.461790 0.886989i \(-0.347207\pi\)
0.999050 + 0.0435728i \(0.0138741\pi\)
\(642\) −420.107 + 420.107i −0.654372 + 0.654372i
\(643\) 381.388 + 102.193i 0.593138 + 0.158931i 0.542887 0.839806i \(-0.317331\pi\)
0.0502511 + 0.998737i \(0.483998\pi\)
\(644\) 71.7397 267.736i 0.111397 0.415740i
\(645\) 94.3363 + 94.3363i 0.146258 + 0.146258i
\(646\) −6.59288 11.4192i −0.0102057 0.0176768i
\(647\) −275.454 159.033i −0.425740 0.245801i 0.271790 0.962357i \(-0.412384\pi\)
−0.697530 + 0.716555i \(0.745718\pi\)
\(648\) 572.314 153.351i 0.883200 0.236653i
\(649\) 197.521i 0.304347i
\(650\) 0 0
\(651\) 581.685 0.893525
\(652\) −87.5156 326.613i −0.134226 0.500939i
\(653\) 201.115 348.341i 0.307986 0.533447i −0.669936 0.742419i \(-0.733678\pi\)
0.977922 + 0.208972i \(0.0670117\pi\)
\(654\) −56.4018 + 32.5636i −0.0862413 + 0.0497914i
\(655\) 51.6977 51.6977i 0.0789278 0.0789278i
\(656\) −234.487 62.8305i −0.357449 0.0957783i
\(657\) −153.322 + 572.206i −0.233367 + 0.870937i
\(658\) −98.2079 98.2079i −0.149252 0.149252i
\(659\) −292.874 507.272i −0.444421 0.769760i 0.553591 0.832789i \(-0.313257\pi\)
−0.998012 + 0.0630290i \(0.979924\pi\)
\(660\) 24.7757 + 14.3043i 0.0375390 + 0.0216731i
\(661\) −781.140 + 209.306i −1.18176 + 0.316650i −0.795623 0.605793i \(-0.792856\pi\)
−0.386133 + 0.922443i \(0.626189\pi\)
\(662\) 211.479i 0.319454i
\(663\) 0 0
\(664\) 366.863 0.552504
\(665\) −4.36646 16.2958i −0.00656610 0.0245050i
\(666\) −551.561 + 955.332i −0.828170 + 1.43443i
\(667\) 249.119 143.829i 0.373492 0.215636i
\(668\) 235.794 235.794i 0.352986 0.352986i
\(669\) −1418.27 380.024i −2.11998 0.568048i
\(670\) −5.73910 + 21.4186i −0.00856582 + 0.0319681i
\(671\) 110.362 + 110.362i 0.164473 + 0.164473i
\(672\) −125.451 217.287i −0.186682 0.323343i
\(673\) 373.474 + 215.625i 0.554939 + 0.320394i 0.751112 0.660175i \(-0.229518\pi\)
−0.196173 + 0.980569i \(0.562851\pi\)
\(674\) 84.3291 22.5959i 0.125117 0.0335251i
\(675\) 1815.67i 2.68988i
\(676\) 0 0
\(677\) 6.72056 0.00992697 0.00496348 0.999988i \(-0.498420\pi\)
0.00496348 + 0.999988i \(0.498420\pi\)
\(678\) −233.798 872.544i −0.344834 1.28694i
\(679\) 447.588 775.244i 0.659186 1.14174i
\(680\) −2.25799 + 1.30365i −0.00332057 + 0.00191713i
\(681\) 470.109 470.109i 0.690321 0.690321i
\(682\) 100.276 + 26.8687i 0.147032 + 0.0393970i
\(683\) −31.7287 + 118.413i −0.0464549 + 0.173372i −0.985256 0.171089i \(-0.945272\pi\)
0.938801 + 0.344461i \(0.111938\pi\)
\(684\) −144.981 144.981i −0.211960 0.211960i
\(685\) −28.9801 50.1949i −0.0423067 0.0732773i
\(686\) −338.839 195.629i −0.493934 0.285173i
\(687\) 1710.02 458.197i 2.48911 0.666954i
\(688\) 208.816i 0.303512i
\(689\) 0 0
\(690\) −63.0061 −0.0913133
\(691\) −24.3539 90.8900i −0.0352444 0.131534i 0.946062 0.323985i \(-0.105023\pi\)
−0.981307 + 0.192451i \(0.938356\pi\)
\(692\) −140.484 + 243.325i −0.203011 + 0.351626i
\(693\) −852.699 + 492.306i −1.23045 + 0.710398i
\(694\) 220.862 220.862i 0.318245 0.318245i
\(695\) −26.7445 7.16616i −0.0384813 0.0103110i
\(696\) 67.3925 251.512i 0.0968283 0.361368i
\(697\) −86.3632 86.3632i −0.123907 0.123907i
\(698\) 205.786 + 356.432i 0.294823 + 0.510648i
\(699\) −1114.60 643.513i −1.59456 0.920620i
\(700\) 380.722 102.014i 0.543889 0.145735i
\(701\) 716.506i 1.02212i 0.859545 + 0.511060i \(0.170747\pi\)
−0.859545 + 0.511060i \(0.829253\pi\)
\(702\) 0 0
\(703\) 163.319 0.232317
\(704\) −11.5894 43.2524i −0.0164623 0.0614380i
\(705\) −15.7852 + 27.3408i −0.0223904 + 0.0387813i
\(706\) 24.1433 13.9392i 0.0341973 0.0197438i
\(707\) −549.201 + 549.201i −0.776805 + 0.776805i
\(708\) 380.351 + 101.915i 0.537219 + 0.143947i
\(709\) 256.439 957.045i 0.361692 1.34985i −0.510159 0.860080i \(-0.670413\pi\)
0.871851 0.489772i \(-0.162920\pi\)
\(710\) −35.0338 35.0338i −0.0493433 0.0493433i
\(711\) 1580.31 + 2737.18i 2.22266 + 3.84977i
\(712\) 382.418 + 220.789i 0.537104 + 0.310097i
\(713\) −220.842 + 59.1745i −0.309737 + 0.0829937i
\(714\) 126.233i 0.176796i
\(715\) 0 0
\(716\) −632.006 −0.882691
\(717\) 376.810 + 1406.27i 0.525537 + 1.96133i
\(718\) 275.618 477.384i 0.383869 0.664881i
\(719\) −150.591 + 86.9435i −0.209445 + 0.120923i −0.601053 0.799209i \(-0.705252\pi\)
0.391609 + 0.920132i \(0.371919\pi\)
\(720\) −28.6679 + 28.6679i −0.0398165 + 0.0398165i
\(721\) 832.716 + 223.126i 1.15495 + 0.309467i
\(722\) 124.279 463.814i 0.172131 0.642402i
\(723\) −877.566 877.566i −1.21378 1.21378i
\(724\) 83.6580 + 144.900i 0.115550 + 0.200138i
\(725\) 354.249 + 204.526i 0.488619 + 0.282104i
\(726\) 683.410 183.119i 0.941336 0.252230i
\(727\) 729.011i 1.00277i 0.865225 + 0.501383i \(0.167175\pi\)
−0.865225 + 0.501383i \(0.832825\pi\)
\(728\) 0 0
\(729\) 957.649 1.31365
\(730\) −4.48851 16.7514i −0.00614865 0.0229471i
\(731\) 52.5295 90.9838i 0.0718598 0.124465i
\(732\) −269.457 + 155.571i −0.368111 + 0.212529i
\(733\) −762.465 + 762.465i −1.04020 + 1.04020i −0.0410404 + 0.999157i \(0.513067\pi\)
−0.999157 + 0.0410404i \(0.986933\pi\)
\(734\) −640.304 171.569i −0.872348 0.233745i
\(735\) 9.39166 35.0501i 0.0127778 0.0476873i
\(736\) 69.7330 + 69.7330i 0.0947460 + 0.0947460i
\(737\) −95.7992 165.929i −0.129985 0.225141i
\(738\) −1644.73 949.584i −2.22863 1.28670i
\(739\) −592.703 + 158.814i −0.802033 + 0.214904i −0.636476 0.771296i \(-0.719609\pi\)
−0.165557 + 0.986200i \(0.552942\pi\)
\(740\) 32.2940i 0.0436405i
\(741\) 0 0
\(742\) 263.556 0.355197
\(743\) −43.1002 160.852i −0.0580084 0.216490i 0.930837 0.365434i \(-0.119079\pi\)
−0.988846 + 0.148944i \(0.952413\pi\)
\(744\) −103.478 + 179.229i −0.139083 + 0.240899i
\(745\) 86.6036 50.0006i 0.116246 0.0671149i
\(746\) 260.814 260.814i 0.349617 0.349617i
\(747\) 2772.27 + 742.829i 3.71121 + 0.994416i
\(748\) 5.83084 21.7610i 0.00779525 0.0290923i
\(749\) 423.279 + 423.279i 0.565126 + 0.565126i
\(750\) −89.9742 155.840i −0.119966 0.207787i
\(751\) 116.272 + 67.1297i 0.154823 + 0.0893871i 0.575410 0.817865i \(-0.304842\pi\)
−0.420587 + 0.907252i \(0.638176\pi\)
\(752\) 47.7304 12.7893i 0.0634713 0.0170071i
\(753\) 1405.78i 1.86691i
\(754\) 0 0
\(755\) 47.7509 0.0632462
\(756\) −301.397 1124.83i −0.398673 1.48787i
\(757\) 598.217 1036.14i 0.790247 1.36875i −0.135567 0.990768i \(-0.543285\pi\)
0.925814 0.377980i \(-0.123381\pi\)
\(758\) 262.331 151.457i 0.346083 0.199811i
\(759\) 384.957 384.957i 0.507190 0.507190i
\(760\) 5.79785 + 1.55353i 0.00762875 + 0.00204412i
\(761\) 9.05420 33.7907i 0.0118978 0.0444031i −0.959722 0.280952i \(-0.909350\pi\)
0.971620 + 0.236549i \(0.0760164\pi\)
\(762\) 539.918 + 539.918i 0.708554 + 0.708554i
\(763\) 32.8095 + 56.8277i 0.0430007 + 0.0744793i
\(764\) 119.708 + 69.1133i 0.156686 + 0.0904625i
\(765\) −19.7026 + 5.27929i −0.0257550 + 0.00690104i
\(766\) 970.071i 1.26641i
\(767\) 0 0
\(768\) 89.2673 0.116234
\(769\) −64.5729 240.989i −0.0839700 0.313380i 0.911147 0.412081i \(-0.135198\pi\)
−0.995117 + 0.0987009i \(0.968531\pi\)
\(770\) 14.4123 24.9628i 0.0187173 0.0324192i
\(771\) 1402.61 809.794i 1.81920 1.05032i
\(772\) −459.147 + 459.147i −0.594750 + 0.594750i
\(773\) 533.020 + 142.822i 0.689547 + 0.184764i 0.586544 0.809917i \(-0.300488\pi\)
0.103003 + 0.994681i \(0.467155\pi\)
\(774\) 422.814 1577.96i 0.546272 2.03871i
\(775\) −229.892 229.892i −0.296635 0.296635i
\(776\) 159.246 + 275.822i 0.205214 + 0.355441i
\(777\) 1354.04 + 781.758i 1.74266 + 1.00612i
\(778\) −511.838 + 137.146i −0.657889 + 0.176281i
\(779\) 281.175i 0.360943i
\(780\) 0 0
\(781\) 428.101 0.548145
\(782\) 12.8416 + 47.9255i 0.0164215 + 0.0612858i
\(783\) 604.261 1046.61i 0.771726 1.33667i
\(784\) −49.1866 + 28.3979i −0.0627381 + 0.0362218i
\(785\) −41.1697 + 41.1697i −0.0524455 + 0.0524455i
\(786\) −1216.47 325.952i −1.54767 0.414697i
\(787\) −182.321 + 680.430i −0.231665 + 0.864587i 0.747958 + 0.663746i \(0.231034\pi\)
−0.979624 + 0.200841i \(0.935632\pi\)
\(788\) −452.748 452.748i −0.574553 0.574553i
\(789\) 300.908 + 521.187i 0.381379 + 0.660567i
\(790\) −80.1312 46.2638i −0.101432 0.0585617i
\(791\) −879.134 + 235.563i −1.11142 + 0.297804i
\(792\) 350.312i 0.442313i
\(793\) 0 0
\(794\) −922.776 −1.16219
\(795\) −15.5056 57.8677i −0.0195039 0.0727896i
\(796\) 172.820 299.333i 0.217111 0.376047i
\(797\) −118.158 + 68.2188i −0.148254 + 0.0855945i −0.572292 0.820050i \(-0.693946\pi\)
0.424038 + 0.905644i \(0.360612\pi\)
\(798\) −205.489 + 205.489i −0.257505 + 0.257505i
\(799\) 24.0140 + 6.43453i 0.0300550 + 0.00805322i
\(800\) −36.2954 + 135.456i −0.0453692 + 0.169320i
\(801\) 2442.77 + 2442.77i 3.04965 + 3.04965i
\(802\) 305.660 + 529.419i 0.381122 + 0.660123i
\(803\) 129.772 + 74.9240i 0.161609 + 0.0933051i
\(804\) 368.945 98.8586i 0.458887 0.122958i
\(805\) 63.4819i 0.0788596i
\(806\) 0 0
\(807\) −2429.32 −3.01031
\(808\) −71.5209 266.920i −0.0885160 0.330346i
\(809\) 50.0507 86.6904i 0.0618674 0.107157i −0.833433 0.552621i \(-0.813628\pi\)
0.895300 + 0.445463i \(0.146961\pi\)
\(810\) −117.519 + 67.8496i −0.145085 + 0.0837649i
\(811\) −143.367 + 143.367i −0.176778 + 0.176778i −0.789950 0.613172i \(-0.789893\pi\)
0.613172 + 0.789950i \(0.289893\pi\)
\(812\) −253.412 67.9014i −0.312083 0.0836224i
\(813\) 121.461 453.299i 0.149399 0.557564i
\(814\) 197.311 + 197.311i 0.242397 + 0.242397i
\(815\) 38.7209 + 67.0666i 0.0475103 + 0.0822903i
\(816\) 38.8949 + 22.4560i 0.0476653 + 0.0275196i
\(817\) −233.620 + 62.5982i −0.285948 + 0.0766196i
\(818\) 394.757i 0.482588i
\(819\) 0 0
\(820\) 55.5983 0.0678028
\(821\) −76.5922 285.846i −0.0932914 0.348168i 0.903463 0.428665i \(-0.141016\pi\)
−0.996755 + 0.0804969i \(0.974349\pi\)
\(822\) −499.195 + 864.631i −0.607293 + 1.05186i
\(823\) −213.860 + 123.472i −0.259854 + 0.150027i −0.624268 0.781210i \(-0.714603\pi\)
0.364414 + 0.931237i \(0.381269\pi\)
\(824\) −216.884 + 216.884i −0.263209 + 0.263209i
\(825\) 747.778 + 200.366i 0.906397 + 0.242868i
\(826\) 102.684 383.223i 0.124315 0.463950i
\(827\) 450.766 + 450.766i 0.545062 + 0.545062i 0.925008 0.379947i \(-0.124058\pi\)
−0.379947 + 0.925008i \(0.624058\pi\)
\(828\) 385.756 + 668.149i 0.465889 + 0.806943i
\(829\) −782.813 451.957i −0.944286 0.545184i −0.0529848 0.998595i \(-0.516873\pi\)
−0.891301 + 0.453411i \(0.850207\pi\)
\(830\) −81.1585 + 21.7464i −0.0977814 + 0.0262004i
\(831\) 205.379i 0.247147i
\(832\) 0 0
\(833\) −28.5750 −0.0343037
\(834\) 123.441 + 460.686i 0.148010 + 0.552382i
\(835\) −38.1861 + 66.1403i −0.0457319 + 0.0792099i
\(836\) −44.9157 + 25.9321i −0.0537269 + 0.0310193i
\(837\) −679.207 + 679.207i −0.811478 + 0.811478i
\(838\) −256.253 68.6628i −0.305791 0.0819365i
\(839\) −249.753 + 932.092i −0.297680 + 1.11096i 0.641386 + 0.767218i \(0.278360\pi\)
−0.939066 + 0.343737i \(0.888307\pi\)
\(840\) 40.6326 + 40.6326i 0.0483721 + 0.0483721i
\(841\) 284.366 + 492.537i 0.338129 + 0.585656i
\(842\) 710.973 + 410.480i 0.844386 + 0.487506i
\(843\) 229.464 61.4846i 0.272199 0.0729355i
\(844\) 460.358i 0.545447i
\(845\) 0 0
\(846\) 386.581 0.456951
\(847\) −184.502 688.571i −0.217830 0.812953i
\(848\) −46.8849 + 81.2071i −0.0552888 + 0.0957631i
\(849\) −507.138 + 292.796i −0.597335 + 0.344872i
\(850\) −49.8895 + 49.8895i −0.0586935 + 0.0586935i
\(851\) −593.604 159.056i −0.697537 0.186905i
\(852\) −220.886 + 824.359i −0.259256 + 0.967558i
\(853\) −103.615 103.615i −0.121471 0.121471i 0.643758 0.765229i \(-0.277374\pi\)
−0.765229 + 0.643758i \(0.777374\pi\)
\(854\) 156.746 + 271.492i 0.183543 + 0.317907i
\(855\) 40.6670 + 23.4791i 0.0475638 + 0.0274610i
\(856\) −205.720 + 55.1224i −0.240327 + 0.0643953i
\(857\) 497.605i 0.580636i −0.956930 0.290318i \(-0.906239\pi\)
0.956930 0.290318i \(-0.0937612\pi\)
\(858\) 0 0
\(859\) 763.167 0.888437 0.444218 0.895918i \(-0.353481\pi\)
0.444218 + 0.895918i \(0.353481\pi\)
\(860\) 12.3779 + 46.1950i 0.0143929 + 0.0537151i
\(861\) −1345.90 + 2331.16i −1.56318 + 2.70751i
\(862\) −655.286 + 378.330i −0.760193 + 0.438897i
\(863\) 299.561 299.561i 0.347115 0.347115i −0.511919 0.859034i \(-0.671065\pi\)
0.859034 + 0.511919i \(0.171065\pi\)
\(864\) 400.199 + 107.233i 0.463193 + 0.124112i
\(865\) 16.6548 62.1566i 0.0192541 0.0718573i
\(866\) −161.880 161.880i −0.186928 0.186928i
\(867\) −794.898 1376.80i −0.916837 1.58801i
\(868\) 180.582 + 104.259i 0.208044 + 0.120114i
\(869\) 772.253 206.924i 0.888668 0.238118i
\(870\) 59.6351i 0.0685461i
\(871\) 0 0
\(872\) −23.3464 −0.0267734
\(873\) 644.886 + 2406.75i 0.738701 + 2.75687i
\(874\) 57.1117 98.9203i 0.0653452 0.113181i
\(875\) −157.017 + 90.6537i −0.179448 + 0.103604i
\(876\) −211.233 + 211.233i −0.241134 + 0.241134i
\(877\) 1212.64 + 324.925i 1.38271 + 0.370496i 0.872104 0.489320i \(-0.162755\pi\)
0.510605 + 0.859816i \(0.329422\pi\)
\(878\) −60.1239 + 224.385i −0.0684783 + 0.255564i
\(879\) −495.828 495.828i −0.564082 0.564082i
\(880\) 5.12770 + 8.88144i 0.00582694 + 0.0100926i
\(881\) −487.059 281.204i −0.552848 0.319187i 0.197422 0.980319i \(-0.436743\pi\)
−0.750270 + 0.661132i \(0.770077\pi\)
\(882\) −429.190 + 115.001i −0.486610 + 0.130387i
\(883\) 325.309i 0.368413i 0.982888 + 0.184207i \(0.0589715\pi\)
−0.982888 + 0.184207i \(0.941028\pi\)
\(884\) 0 0
\(885\) −90.1835 −0.101902
\(886\) 113.436 + 423.347i 0.128031 + 0.477819i
\(887\) −744.398 + 1289.33i −0.839231 + 1.45359i 0.0513079 + 0.998683i \(0.483661\pi\)
−0.890539 + 0.454907i \(0.849672\pi\)
\(888\) −481.751 + 278.139i −0.542513 + 0.313220i
\(889\) 543.996 543.996i 0.611919 0.611919i
\(890\) −97.6874 26.1753i −0.109761 0.0294104i
\(891\) 303.472 1132.57i 0.340597 1.27112i
\(892\) −372.184 372.184i −0.417246 0.417246i
\(893\) −28.6169 49.5659i −0.0320458 0.0555050i
\(894\) −1491.79 861.284i −1.66867 0.963404i
\(895\) 139.814 37.4632i 0.156217 0.0418583i
\(896\) 89.9415i 0.100381i
\(897\) 0 0
\(898\) 192.441 0.214300
\(899\) 56.0085 + 209.026i 0.0623009 + 0.232510i
\(900\) −548.547 + 950.111i −0.609496 + 1.05568i
\(901\) −40.8567 + 23.5886i −0.0453459 + 0.0261805i
\(902\) −339.696 + 339.696i −0.376603 + 0.376603i
\(903\) −2236.54 599.278i −2.47678 0.663652i
\(904\) 83.8103 312.784i 0.0927105 0.346000i
\(905\) −27.0962 27.0962i −0.0299406 0.0299406i
\(906\) −411.266 712.333i −0.453936 0.786240i
\(907\) 227.634 + 131.425i 0.250975 + 0.144900i 0.620210 0.784435i \(-0.287047\pi\)
−0.369236 + 0.929336i \(0.620381\pi\)
\(908\) 230.205 61.6832i 0.253530 0.0679330i
\(909\) 2161.85i 2.37827i
\(910\) 0 0
\(911\) −1043.25 −1.14517 −0.572584 0.819846i \(-0.694059\pi\)
−0.572584 + 0.819846i \(0.694059\pi\)
\(912\) −26.7603 99.8706i −0.0293424 0.109507i
\(913\) 362.999 628.732i 0.397589 0.688644i
\(914\) 278.127 160.576i 0.304296 0.175685i
\(915\) 50.3885 50.3885i 0.0550694 0.0550694i
\(916\) 612.996 + 164.252i 0.669209 + 0.179314i
\(917\) −328.413 + 1225.66i −0.358139 + 1.33659i
\(918\) 147.396 + 147.396i 0.160562 + 0.160562i
\(919\) 408.478 + 707.504i 0.444481 + 0.769863i 0.998016 0.0629627i \(-0.0200549\pi\)
−0.553535 + 0.832826i \(0.686722\pi\)
\(920\) −19.5601 11.2930i −0.0212610 0.0122750i
\(921\) 1214.90 325.531i 1.31911 0.353454i
\(922\) 967.271i 1.04910i
\(923\) 0 0
\(924\) −496.517 −0.537356
\(925\) −226.178 844.108i −0.244517 0.912550i
\(926\) −557.281 + 965.238i −0.601815 + 1.04237i
\(927\) −2078.08 + 1199.78i −2.24173 + 1.29426i
\(928\) 66.0021 66.0021i 0.0711229 0.0711229i
\(929\) −1445.30 387.266i −1.55575 0.416863i −0.624438 0.781074i \(-0.714672\pi\)
−0.931317 + 0.364211i \(0.881339\pi\)
\(930\) 12.2676 45.7834i 0.0131910 0.0492295i
\(931\) 46.5161 + 46.5161i 0.0499635 + 0.0499635i
\(932\) −230.683 399.554i −0.247513 0.428706i
\(933\) −2231.09 1288.12i −2.39130 1.38062i
\(934\) −124.357 + 33.3213i −0.133144 + 0.0356759i
\(935\) 5.15967i 0.00551836i
\(936\) 0 0
\(937\) −1671.65 −1.78404 −0.892020 0.451996i \(-0.850712\pi\)
−0.892020 + 0.451996i \(0.850712\pi\)
\(938\) −99.6052 371.732i −0.106189 0.396302i
\(939\) −22.7843 + 39.4636i −0.0242645 + 0.0420273i
\(940\) −9.80096 + 5.65859i −0.0104266 + 0.00601977i
\(941\) 87.2271 87.2271i 0.0926962 0.0926962i −0.659238 0.751934i \(-0.729121\pi\)
0.751934 + 0.659238i \(0.229121\pi\)
\(942\) 968.740 + 259.573i 1.02839 + 0.275555i
\(943\) 273.835 1021.97i 0.290387 1.08374i
\(944\) 99.8120 + 99.8120i 0.105733 + 0.105733i
\(945\) 133.352 + 230.972i 0.141113 + 0.244415i
\(946\) −357.871 206.617i −0.378299 0.218411i
\(947\) −1430.15 + 383.208i −1.51019 + 0.404654i −0.916498 0.400038i \(-0.868997\pi\)
−0.593692 + 0.804693i \(0.702330\pi\)
\(948\) 1593.83i 1.68126i
\(949\) 0 0
\(950\) 162.426 0.170975
\(951\) −187.085 698.212i −0.196725 0.734187i
\(952\) 22.6255 39.1886i 0.0237663 0.0411645i
\(953\) 736.584 425.267i 0.772911 0.446240i −0.0610010 0.998138i \(-0.519429\pi\)
0.833912 + 0.551897i \(0.186096\pi\)
\(954\) −518.725 + 518.725i −0.543737 + 0.543737i
\(955\) −30.5789 8.19360i −0.0320198 0.00857968i
\(956\) −135.076 + 504.112i −0.141293 + 0.527314i
\(957\) −364.361 364.361i −0.380732 0.380732i
\(958\) −522.586 905.145i −0.545496 0.944827i
\(959\) 871.161 + 502.965i 0.908405 + 0.524468i
\(960\) −19.7480 + 5.29146i −0.0205708 + 0.00551194i
\(961\) 789.003i 0.821023i
\(962\) 0 0
\(963\) −1666.18 −1.73019
\(964\) −115.146 429.730i −0.119446 0.445778i
\(965\) 74.3572 128.790i 0.0770541 0.133462i
\(966\) 947.004 546.753i 0.980335 0.565997i
\(967\) 133.506 133.506i 0.138062 0.138062i −0.634698 0.772760i \(-0.718875\pi\)
0.772760 + 0.634698i \(0.218875\pi\)
\(968\) 244.985 + 65.6434i 0.253083 + 0.0678134i
\(969\) 13.4635 50.2466i 0.0138943 0.0518541i
\(970\) −51.5786 51.5786i −0.0531738 0.0531738i
\(971\) −693.721 1201.56i −0.714439 1.23745i −0.963175 0.268874i \(-0.913349\pi\)
0.248736 0.968571i \(-0.419985\pi\)
\(972\) 882.596 + 509.567i 0.908021 + 0.524246i
\(973\) 464.165 124.373i 0.477045 0.127824i
\(974\) 849.579i 0.872257i
\(975\) 0 0
\(976\) −111.536 −0.114279
\(977\) 362.725 + 1353.71i 0.371264 + 1.38558i 0.858728 + 0.512432i \(0.171255\pi\)
−0.487464 + 0.873143i \(0.662078\pi\)
\(978\) 666.986 1155.25i 0.681990 1.18124i
\(979\) 756.780 436.927i 0.773014 0.446300i
\(980\) 9.19789 9.19789i 0.00938560 0.00938560i
\(981\) −176.422 47.2721i −0.179839 0.0481876i
\(982\) −203.876 + 760.876i −0.207613 + 0.774823i
\(983\) 457.371 + 457.371i 0.465280 + 0.465280i 0.900382 0.435101i \(-0.143287\pi\)
−0.435101 + 0.900382i \(0.643287\pi\)
\(984\) −478.853 829.398i −0.486639 0.842884i
\(985\) 126.996 + 73.3209i 0.128930 + 0.0744375i
\(986\) 45.3613 12.1545i 0.0460054 0.0123271i
\(987\) 547.922i 0.555139i
\(988\) 0 0
\(989\) 910.087 0.920210
\(990\) 20.7653 + 77.4971i 0.0209750 + 0.0782799i
\(991\) 75.8147 131.315i 0.0765033 0.132508i −0.825236 0.564788i \(-0.808958\pi\)
0.901739 + 0.432281i \(0.142291\pi\)
\(992\) −64.2489 + 37.0941i −0.0647670 + 0.0373933i
\(993\) 589.942 589.942i 0.594100 0.594100i
\(994\) 830.585 + 222.555i 0.835598 + 0.223898i
\(995\) −20.4884 + 76.4636i −0.0205913 + 0.0768478i
\(996\) 1023.40 + 1023.40i 1.02751 + 1.02751i
\(997\) 239.901 + 415.520i 0.240623 + 0.416771i 0.960892 0.276924i \(-0.0893150\pi\)
−0.720269 + 0.693695i \(0.755982\pi\)
\(998\) 160.626 + 92.7376i 0.160948 + 0.0929234i
\(999\) −2493.88 + 668.233i −2.49638 + 0.668902i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.3.f.h.19.1 8
13.2 odd 12 338.3.f.j.89.1 8
13.3 even 3 26.3.f.b.15.1 yes 8
13.4 even 6 338.3.d.f.239.4 8
13.5 odd 4 338.3.f.i.319.1 8
13.6 odd 12 338.3.d.f.99.4 8
13.7 odd 12 338.3.d.g.99.4 8
13.8 odd 4 26.3.f.b.7.1 8
13.9 even 3 338.3.d.g.239.4 8
13.10 even 6 338.3.f.i.249.1 8
13.11 odd 12 inner 338.3.f.h.89.1 8
13.12 even 2 338.3.f.j.19.1 8
39.8 even 4 234.3.bb.f.163.2 8
39.29 odd 6 234.3.bb.f.145.2 8
52.3 odd 6 208.3.bd.f.145.2 8
52.47 even 4 208.3.bd.f.33.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.7.1 8 13.8 odd 4
26.3.f.b.15.1 yes 8 13.3 even 3
208.3.bd.f.33.2 8 52.47 even 4
208.3.bd.f.145.2 8 52.3 odd 6
234.3.bb.f.145.2 8 39.29 odd 6
234.3.bb.f.163.2 8 39.8 even 4
338.3.d.f.99.4 8 13.6 odd 12
338.3.d.f.239.4 8 13.4 even 6
338.3.d.g.99.4 8 13.7 odd 12
338.3.d.g.239.4 8 13.9 even 3
338.3.f.h.19.1 8 1.1 even 1 trivial
338.3.f.h.89.1 8 13.11 odd 12 inner
338.3.f.i.249.1 8 13.10 even 6
338.3.f.i.319.1 8 13.5 odd 4
338.3.f.j.19.1 8 13.12 even 2
338.3.f.j.89.1 8 13.2 odd 12