Defining parameters
Level: | \( N \) | = | \( 26 = 2 \cdot 13 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(126\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(26))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 54 | 14 | 40 |
Cusp forms | 30 | 14 | 16 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(26))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
26.3.d | \(\chi_{26}(5, \cdot)\) | 26.3.d.a | 2 | 2 |
26.3.f | \(\chi_{26}(7, \cdot)\) | 26.3.f.a | 4 | 4 |
26.3.f.b | 8 |
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(26))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(26)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 2}\)