Properties

Label 338.3.d.g.99.4
Level $338$
Weight $3$
Character 338.99
Analytic conductor $9.210$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,3,Mod(99,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 338.d (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.20983293538\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.612074651904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 99.4
Root \(4.71318 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 338.99
Dual form 338.3.d.g.239.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +5.57921 q^{3} +2.00000i q^{4} +(0.323893 + 0.323893i) q^{5} +(5.57921 + 5.57921i) q^{6} +(-5.62134 + 5.62134i) q^{7} +(-2.00000 + 2.00000i) q^{8} +22.1276 q^{9} +0.647786i q^{10} +(3.95787 - 3.95787i) q^{11} +11.1584i q^{12} -11.2427 q^{14} +(1.80707 + 1.80707i) q^{15} -4.00000 q^{16} -2.01247i q^{17} +(22.1276 + 22.1276i) q^{18} +(3.27602 + 3.27602i) q^{19} +(-0.647786 + 0.647786i) q^{20} +(-31.3626 + 31.3626i) q^{21} +7.91574 q^{22} +17.4333i q^{23} +(-11.1584 + 11.1584i) q^{24} -24.7902i q^{25} +73.2415 q^{27} +(-11.2427 - 11.2427i) q^{28} -16.5005 q^{29} +3.61413i q^{30} +(-9.27353 - 9.27353i) q^{31} +(-4.00000 - 4.00000i) q^{32} +(22.0818 - 22.0818i) q^{33} +(2.01247 - 2.01247i) q^{34} -3.64143 q^{35} +44.2552i q^{36} +(24.9264 - 24.9264i) q^{37} +6.55204i q^{38} -1.29557 q^{40} +(-42.9141 - 42.9141i) q^{41} -62.7253 q^{42} -52.2041i q^{43} +(7.91574 + 7.91574i) q^{44} +(7.16697 + 7.16697i) q^{45} +(-17.4333 + 17.4333i) q^{46} +(8.73527 - 8.73527i) q^{47} -22.3168 q^{48} -14.1990i q^{49} +(24.7902 - 24.7902i) q^{50} -11.2280i q^{51} -23.4425 q^{53} +(73.2415 + 73.2415i) q^{54} +2.56385 q^{55} -22.4854i q^{56} +(18.2776 + 18.2776i) q^{57} +(-16.5005 - 16.5005i) q^{58} +(-24.9530 + 24.9530i) q^{59} +(-3.61413 + 3.61413i) q^{60} +27.8841 q^{61} -18.5471i q^{62} +(-124.387 + 124.387i) q^{63} -8.00000i q^{64} +44.1635 q^{66} +(24.2048 + 24.2048i) q^{67} +4.02494 q^{68} +97.2638i q^{69} +(-3.64143 - 3.64143i) q^{70} +(54.0823 + 54.0823i) q^{71} +(-44.2552 + 44.2552i) q^{72} +(-18.9304 + 18.9304i) q^{73} +49.8528 q^{74} -138.310i q^{75} +(-6.55204 + 6.55204i) q^{76} +44.4971i q^{77} -142.837 q^{79} +(-1.29557 - 1.29557i) q^{80} +209.481 q^{81} -85.8281i q^{82} +(-91.7157 - 91.7157i) q^{83} +(-62.7253 - 62.7253i) q^{84} +(0.651824 - 0.651824i) q^{85} +(52.2041 - 52.2041i) q^{86} -92.0599 q^{87} +15.8315i q^{88} +(110.395 - 110.395i) q^{89} +14.3339i q^{90} -34.8665 q^{92} +(-51.7389 - 51.7389i) q^{93} +17.4705 q^{94} +2.12216i q^{95} +(-22.3168 - 22.3168i) q^{96} +(79.6229 + 79.6229i) q^{97} +(14.1990 - 14.1990i) q^{98} +(87.5780 - 87.5780i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 6 q^{5} + 10 q^{7} - 16 q^{8} + 84 q^{9} + 42 q^{11} + 20 q^{14} + 60 q^{15} - 32 q^{16} + 84 q^{18} + 22 q^{19} - 12 q^{20} - 102 q^{21} + 84 q^{22} + 72 q^{27} + 20 q^{28} + 12 q^{29}+ \cdots + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) 5.57921 1.85974 0.929868 0.367893i \(-0.119921\pi\)
0.929868 + 0.367893i \(0.119921\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 0.323893 + 0.323893i 0.0647786 + 0.0647786i 0.738754 0.673975i \(-0.235415\pi\)
−0.673975 + 0.738754i \(0.735415\pi\)
\(6\) 5.57921 + 5.57921i 0.929868 + 0.929868i
\(7\) −5.62134 + 5.62134i −0.803049 + 0.803049i −0.983571 0.180522i \(-0.942221\pi\)
0.180522 + 0.983571i \(0.442221\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 22.1276 2.45862
\(10\) 0.647786i 0.0647786i
\(11\) 3.95787 3.95787i 0.359806 0.359806i −0.503935 0.863741i \(-0.668115\pi\)
0.863741 + 0.503935i \(0.168115\pi\)
\(12\) 11.1584i 0.929868i
\(13\) 0 0
\(14\) −11.2427 −0.803049
\(15\) 1.80707 + 1.80707i 0.120471 + 0.120471i
\(16\) −4.00000 −0.250000
\(17\) 2.01247i 0.118380i −0.998247 0.0591902i \(-0.981148\pi\)
0.998247 0.0591902i \(-0.0188519\pi\)
\(18\) 22.1276 + 22.1276i 1.22931 + 1.22931i
\(19\) 3.27602 + 3.27602i 0.172422 + 0.172422i 0.788043 0.615621i \(-0.211095\pi\)
−0.615621 + 0.788043i \(0.711095\pi\)
\(20\) −0.647786 + 0.647786i −0.0323893 + 0.0323893i
\(21\) −31.3626 + 31.3626i −1.49346 + 1.49346i
\(22\) 7.91574 0.359806
\(23\) 17.4333i 0.757968i 0.925403 + 0.378984i \(0.123726\pi\)
−0.925403 + 0.378984i \(0.876274\pi\)
\(24\) −11.1584 + 11.1584i −0.464934 + 0.464934i
\(25\) 24.7902i 0.991607i
\(26\) 0 0
\(27\) 73.2415 2.71265
\(28\) −11.2427 11.2427i −0.401524 0.401524i
\(29\) −16.5005 −0.568983 −0.284492 0.958678i \(-0.591825\pi\)
−0.284492 + 0.958678i \(0.591825\pi\)
\(30\) 3.61413i 0.120471i
\(31\) −9.27353 9.27353i −0.299146 0.299146i 0.541533 0.840679i \(-0.317844\pi\)
−0.840679 + 0.541533i \(0.817844\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) 22.0818 22.0818i 0.669145 0.669145i
\(34\) 2.01247 2.01247i 0.0591902 0.0591902i
\(35\) −3.64143 −0.104041
\(36\) 44.2552i 1.22931i
\(37\) 24.9264 24.9264i 0.673687 0.673687i −0.284877 0.958564i \(-0.591953\pi\)
0.958564 + 0.284877i \(0.0919529\pi\)
\(38\) 6.55204i 0.172422i
\(39\) 0 0
\(40\) −1.29557 −0.0323893
\(41\) −42.9141 42.9141i −1.04668 1.04668i −0.998856 0.0478289i \(-0.984770\pi\)
−0.0478289 0.998856i \(-0.515230\pi\)
\(42\) −62.7253 −1.49346
\(43\) 52.2041i 1.21405i −0.794683 0.607024i \(-0.792363\pi\)
0.794683 0.607024i \(-0.207637\pi\)
\(44\) 7.91574 + 7.91574i 0.179903 + 0.179903i
\(45\) 7.16697 + 7.16697i 0.159266 + 0.159266i
\(46\) −17.4333 + 17.4333i −0.378984 + 0.378984i
\(47\) 8.73527 8.73527i 0.185857 0.185857i −0.608045 0.793902i \(-0.708046\pi\)
0.793902 + 0.608045i \(0.208046\pi\)
\(48\) −22.3168 −0.464934
\(49\) 14.1990i 0.289775i
\(50\) 24.7902 24.7902i 0.495804 0.495804i
\(51\) 11.2280i 0.220156i
\(52\) 0 0
\(53\) −23.4425 −0.442311 −0.221155 0.975239i \(-0.570983\pi\)
−0.221155 + 0.975239i \(0.570983\pi\)
\(54\) 73.2415 + 73.2415i 1.35632 + 1.35632i
\(55\) 2.56385 0.0466155
\(56\) 22.4854i 0.401524i
\(57\) 18.2776 + 18.2776i 0.320660 + 0.320660i
\(58\) −16.5005 16.5005i −0.284492 0.284492i
\(59\) −24.9530 + 24.9530i −0.422932 + 0.422932i −0.886212 0.463280i \(-0.846672\pi\)
0.463280 + 0.886212i \(0.346672\pi\)
\(60\) −3.61413 + 3.61413i −0.0602356 + 0.0602356i
\(61\) 27.8841 0.457117 0.228558 0.973530i \(-0.426599\pi\)
0.228558 + 0.973530i \(0.426599\pi\)
\(62\) 18.5471i 0.299146i
\(63\) −124.387 + 124.387i −1.97439 + 1.97439i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 44.1635 0.669145
\(67\) 24.2048 + 24.2048i 0.361265 + 0.361265i 0.864279 0.503014i \(-0.167775\pi\)
−0.503014 + 0.864279i \(0.667775\pi\)
\(68\) 4.02494 0.0591902
\(69\) 97.2638i 1.40962i
\(70\) −3.64143 3.64143i −0.0520204 0.0520204i
\(71\) 54.0823 + 54.0823i 0.761723 + 0.761723i 0.976634 0.214911i \(-0.0689462\pi\)
−0.214911 + 0.976634i \(0.568946\pi\)
\(72\) −44.2552 + 44.2552i −0.614655 + 0.614655i
\(73\) −18.9304 + 18.9304i −0.259320 + 0.259320i −0.824778 0.565457i \(-0.808700\pi\)
0.565457 + 0.824778i \(0.308700\pi\)
\(74\) 49.8528 0.673687
\(75\) 138.310i 1.84413i
\(76\) −6.55204 + 6.55204i −0.0862110 + 0.0862110i
\(77\) 44.4971i 0.577884i
\(78\) 0 0
\(79\) −142.837 −1.80806 −0.904029 0.427471i \(-0.859404\pi\)
−0.904029 + 0.427471i \(0.859404\pi\)
\(80\) −1.29557 1.29557i −0.0161947 0.0161947i
\(81\) 209.481 2.58619
\(82\) 85.8281i 1.04668i
\(83\) −91.7157 91.7157i −1.10501 1.10501i −0.993797 0.111212i \(-0.964527\pi\)
−0.111212 0.993797i \(-0.535473\pi\)
\(84\) −62.7253 62.7253i −0.746730 0.746730i
\(85\) 0.651824 0.651824i 0.00766852 0.00766852i
\(86\) 52.2041 52.2041i 0.607024 0.607024i
\(87\) −92.0599 −1.05816
\(88\) 15.8315i 0.179903i
\(89\) 110.395 110.395i 1.24039 1.24039i 0.280550 0.959839i \(-0.409483\pi\)
0.959839 0.280550i \(-0.0905168\pi\)
\(90\) 14.3339i 0.159266i
\(91\) 0 0
\(92\) −34.8665 −0.378984
\(93\) −51.7389 51.7389i −0.556333 0.556333i
\(94\) 17.4705 0.185857
\(95\) 2.12216i 0.0223385i
\(96\) −22.3168 22.3168i −0.232467 0.232467i
\(97\) 79.6229 + 79.6229i 0.820855 + 0.820855i 0.986231 0.165376i \(-0.0528837\pi\)
−0.165376 + 0.986231i \(0.552884\pi\)
\(98\) 14.1990 14.1990i 0.144887 0.144887i
\(99\) 87.5780 87.5780i 0.884626 0.884626i
\(100\) 49.5804 0.495804
\(101\) 97.6994i 0.967320i 0.875256 + 0.483660i \(0.160693\pi\)
−0.875256 + 0.483660i \(0.839307\pi\)
\(102\) 11.2280 11.2280i 0.110078 0.110078i
\(103\) 108.442i 1.05284i 0.850226 + 0.526418i \(0.176465\pi\)
−0.850226 + 0.526418i \(0.823535\pi\)
\(104\) 0 0
\(105\) −20.3163 −0.193488
\(106\) −23.4425 23.4425i −0.221155 0.221155i
\(107\) −75.2986 −0.703725 −0.351863 0.936052i \(-0.614452\pi\)
−0.351863 + 0.936052i \(0.614452\pi\)
\(108\) 146.483i 1.35632i
\(109\) 5.83660 + 5.83660i 0.0535468 + 0.0535468i 0.733373 0.679826i \(-0.237945\pi\)
−0.679826 + 0.733373i \(0.737945\pi\)
\(110\) 2.56385 + 2.56385i 0.0233077 + 0.0233077i
\(111\) 139.070 139.070i 1.25288 1.25288i
\(112\) 22.4854 22.4854i 0.200762 0.200762i
\(113\) −114.487 −1.01316 −0.506580 0.862193i \(-0.669090\pi\)
−0.506580 + 0.862193i \(0.669090\pi\)
\(114\) 36.5552i 0.320660i
\(115\) −5.64651 + 5.64651i −0.0491001 + 0.0491001i
\(116\) 33.0010i 0.284492i
\(117\) 0 0
\(118\) −49.9060 −0.422932
\(119\) 11.3128 + 11.3128i 0.0950653 + 0.0950653i
\(120\) −7.22827 −0.0602356
\(121\) 89.6706i 0.741079i
\(122\) 27.8841 + 27.8841i 0.228558 + 0.228558i
\(123\) −239.427 239.427i −1.94656 1.94656i
\(124\) 18.5471 18.5471i 0.149573 0.149573i
\(125\) 16.1267 16.1267i 0.129014 0.129014i
\(126\) −248.773 −1.97439
\(127\) 96.7733i 0.761994i −0.924576 0.380997i \(-0.875581\pi\)
0.924576 0.380997i \(-0.124419\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) 291.258i 2.25781i
\(130\) 0 0
\(131\) 159.613 1.21842 0.609212 0.793008i \(-0.291486\pi\)
0.609212 + 0.793008i \(0.291486\pi\)
\(132\) 44.1635 + 44.1635i 0.334572 + 0.334572i
\(133\) −36.8312 −0.276927
\(134\) 48.4095i 0.361265i
\(135\) 23.7224 + 23.7224i 0.175722 + 0.175722i
\(136\) 4.02494 + 4.02494i 0.0295951 + 0.0295951i
\(137\) 89.4742 89.4742i 0.653096 0.653096i −0.300641 0.953737i \(-0.597201\pi\)
0.953737 + 0.300641i \(0.0972007\pi\)
\(138\) −97.2638 + 97.2638i −0.704810 + 0.704810i
\(139\) 60.4469 0.434870 0.217435 0.976075i \(-0.430231\pi\)
0.217435 + 0.976075i \(0.430231\pi\)
\(140\) 7.28285i 0.0520204i
\(141\) 48.7359 48.7359i 0.345645 0.345645i
\(142\) 108.165i 0.761723i
\(143\) 0 0
\(144\) −88.5103 −0.614655
\(145\) −5.34441 5.34441i −0.0368580 0.0368580i
\(146\) −37.8608 −0.259320
\(147\) 79.2190i 0.538905i
\(148\) 49.8528 + 49.8528i 0.336843 + 0.336843i
\(149\) −154.374 154.374i −1.03607 1.03607i −0.999325 0.0367407i \(-0.988302\pi\)
−0.0367407 0.999325i \(-0.511698\pi\)
\(150\) 138.310 138.310i 0.922064 0.922064i
\(151\) 73.7140 73.7140i 0.488172 0.488172i −0.419557 0.907729i \(-0.637815\pi\)
0.907729 + 0.419557i \(0.137815\pi\)
\(152\) −13.1041 −0.0862110
\(153\) 44.5310i 0.291053i
\(154\) −44.4971 + 44.4971i −0.288942 + 0.288942i
\(155\) 6.00726i 0.0387565i
\(156\) 0 0
\(157\) −127.109 −0.809611 −0.404805 0.914403i \(-0.632661\pi\)
−0.404805 + 0.914403i \(0.632661\pi\)
\(158\) −142.837 142.837i −0.904029 0.904029i
\(159\) −130.790 −0.822581
\(160\) 2.59114i 0.0161947i
\(161\) −97.9983 97.9983i −0.608685 0.608685i
\(162\) 209.481 + 209.481i 1.29310 + 1.29310i
\(163\) −119.548 + 119.548i −0.733426 + 0.733426i −0.971297 0.237871i \(-0.923551\pi\)
0.237871 + 0.971297i \(0.423551\pi\)
\(164\) 85.8281 85.8281i 0.523342 0.523342i
\(165\) 14.3043 0.0866925
\(166\) 183.431i 1.10501i
\(167\) 117.897 117.897i 0.705971 0.705971i −0.259714 0.965686i \(-0.583628\pi\)
0.965686 + 0.259714i \(0.0836283\pi\)
\(168\) 125.451i 0.746730i
\(169\) 0 0
\(170\) 1.30365 0.00766852
\(171\) 72.4904 + 72.4904i 0.423920 + 0.423920i
\(172\) 104.408 0.607024
\(173\) 140.484i 0.812045i −0.913863 0.406023i \(-0.866915\pi\)
0.913863 0.406023i \(-0.133085\pi\)
\(174\) −92.0599 92.0599i −0.529080 0.529080i
\(175\) 139.354 + 139.354i 0.796309 + 0.796309i
\(176\) −15.8315 + 15.8315i −0.0899515 + 0.0899515i
\(177\) −139.218 + 139.218i −0.786543 + 0.786543i
\(178\) 220.789 1.24039
\(179\) 316.003i 1.76538i 0.469955 + 0.882691i \(0.344270\pi\)
−0.469955 + 0.882691i \(0.655730\pi\)
\(180\) −14.3339 + 14.3339i −0.0796330 + 0.0796330i
\(181\) 83.6580i 0.462199i 0.972930 + 0.231099i \(0.0742323\pi\)
−0.972930 + 0.231099i \(0.925768\pi\)
\(182\) 0 0
\(183\) 155.571 0.850116
\(184\) −34.8665 34.8665i −0.189492 0.189492i
\(185\) 16.1470 0.0872810
\(186\) 103.478i 0.556333i
\(187\) −7.96508 7.96508i −0.0425940 0.0425940i
\(188\) 17.4705 + 17.4705i 0.0929284 + 0.0929284i
\(189\) −411.715 + 411.715i −2.17839 + 2.17839i
\(190\) −2.12216 + 2.12216i −0.0111693 + 0.0111693i
\(191\) 69.1133 0.361850 0.180925 0.983497i \(-0.442091\pi\)
0.180925 + 0.983497i \(0.442091\pi\)
\(192\) 44.6337i 0.232467i
\(193\) −229.573 + 229.573i −1.18950 + 1.18950i −0.212293 + 0.977206i \(0.568093\pi\)
−0.977206 + 0.212293i \(0.931907\pi\)
\(194\) 159.246i 0.820855i
\(195\) 0 0
\(196\) 28.3979 0.144887
\(197\) 226.374 + 226.374i 1.14911 + 1.14911i 0.986729 + 0.162377i \(0.0519160\pi\)
0.162377 + 0.986729i \(0.448084\pi\)
\(198\) 175.156 0.884626
\(199\) 172.820i 0.868443i 0.900806 + 0.434221i \(0.142976\pi\)
−0.900806 + 0.434221i \(0.857024\pi\)
\(200\) 49.5804 + 49.5804i 0.247902 + 0.247902i
\(201\) 135.043 + 135.043i 0.671858 + 0.671858i
\(202\) −97.6994 + 97.6994i −0.483660 + 0.483660i
\(203\) 92.7551 92.7551i 0.456922 0.456922i
\(204\) 22.4560 0.110078
\(205\) 27.7991i 0.135606i
\(206\) −108.442 + 108.442i −0.526418 + 0.526418i
\(207\) 385.756i 1.86355i
\(208\) 0 0
\(209\) 25.9321 0.124077
\(210\) −20.3163 20.3163i −0.0967442 0.0967442i
\(211\) 230.179 1.09089 0.545447 0.838145i \(-0.316360\pi\)
0.545447 + 0.838145i \(0.316360\pi\)
\(212\) 46.8849i 0.221155i
\(213\) 301.736 + 301.736i 1.41660 + 1.41660i
\(214\) −75.2986 75.2986i −0.351863 0.351863i
\(215\) 16.9085 16.9085i 0.0786444 0.0786444i
\(216\) −146.483 + 146.483i −0.678162 + 0.678162i
\(217\) 104.259 0.480458
\(218\) 11.6732i 0.0535468i
\(219\) −105.617 + 105.617i −0.482268 + 0.482268i
\(220\) 5.12770i 0.0233077i
\(221\) 0 0
\(222\) 278.139 1.25288
\(223\) 186.092 + 186.092i 0.834493 + 0.834493i 0.988128 0.153635i \(-0.0490980\pi\)
−0.153635 + 0.988128i \(0.549098\pi\)
\(224\) 44.9707 0.200762
\(225\) 548.547i 2.43799i
\(226\) −114.487 114.487i −0.506580 0.506580i
\(227\) 84.2608 + 84.2608i 0.371193 + 0.371193i 0.867912 0.496719i \(-0.165462\pi\)
−0.496719 + 0.867912i \(0.665462\pi\)
\(228\) −36.5552 + 36.5552i −0.160330 + 0.160330i
\(229\) −224.372 + 224.372i −0.979791 + 0.979791i −0.999800 0.0200093i \(-0.993630\pi\)
0.0200093 + 0.999800i \(0.493630\pi\)
\(230\) −11.2930 −0.0491001
\(231\) 248.258i 1.07471i
\(232\) 33.0010 33.0010i 0.142246 0.142246i
\(233\) 230.683i 0.990054i −0.868878 0.495027i \(-0.835158\pi\)
0.868878 0.495027i \(-0.164842\pi\)
\(234\) 0 0
\(235\) 5.65859 0.0240791
\(236\) −49.9060 49.9060i −0.211466 0.211466i
\(237\) −796.915 −3.36251
\(238\) 22.6255i 0.0950653i
\(239\) 184.518 + 184.518i 0.772041 + 0.772041i 0.978463 0.206422i \(-0.0661820\pi\)
−0.206422 + 0.978463i \(0.566182\pi\)
\(240\) −7.22827 7.22827i −0.0301178 0.0301178i
\(241\) −157.292 + 157.292i −0.652665 + 0.652665i −0.953634 0.300969i \(-0.902690\pi\)
0.300969 + 0.953634i \(0.402690\pi\)
\(242\) −89.6706 + 89.6706i −0.370540 + 0.370540i
\(243\) 509.567 2.09698
\(244\) 55.7682i 0.228558i
\(245\) 4.59895 4.59895i 0.0187712 0.0187712i
\(246\) 478.853i 1.94656i
\(247\) 0 0
\(248\) 37.0941 0.149573
\(249\) −511.701 511.701i −2.05502 2.05502i
\(250\) 32.2534 0.129014
\(251\) 251.968i 1.00386i 0.864909 + 0.501929i \(0.167376\pi\)
−0.864909 + 0.501929i \(0.832624\pi\)
\(252\) −248.773 248.773i −0.987196 0.987196i
\(253\) 68.9985 + 68.9985i 0.272721 + 0.272721i
\(254\) 96.7733 96.7733i 0.380997 0.380997i
\(255\) 3.63666 3.63666i 0.0142614 0.0142614i
\(256\) 16.0000 0.0625000
\(257\) 290.290i 1.12953i −0.825251 0.564767i \(-0.808966\pi\)
0.825251 0.564767i \(-0.191034\pi\)
\(258\) 291.258 291.258i 1.12891 1.12891i
\(259\) 280.240i 1.08201i
\(260\) 0 0
\(261\) −365.117 −1.39891
\(262\) 159.613 + 159.613i 0.609212 + 0.609212i
\(263\) −107.867 −0.410143 −0.205071 0.978747i \(-0.565743\pi\)
−0.205071 + 0.978747i \(0.565743\pi\)
\(264\) 88.3271i 0.334572i
\(265\) −7.59285 7.59285i −0.0286523 0.0286523i
\(266\) −36.8312 36.8312i −0.138463 0.138463i
\(267\) 615.915 615.915i 2.30680 2.30680i
\(268\) −48.4095 + 48.4095i −0.180632 + 0.180632i
\(269\) −435.423 −1.61867 −0.809337 0.587345i \(-0.800173\pi\)
−0.809337 + 0.587345i \(0.800173\pi\)
\(270\) 47.4448i 0.175722i
\(271\) 59.4776 59.4776i 0.219475 0.219475i −0.588802 0.808277i \(-0.700400\pi\)
0.808277 + 0.588802i \(0.200400\pi\)
\(272\) 8.04987i 0.0295951i
\(273\) 0 0
\(274\) 178.948 0.653096
\(275\) −98.1163 98.1163i −0.356786 0.356786i
\(276\) −194.528 −0.704810
\(277\) 36.8115i 0.132893i −0.997790 0.0664467i \(-0.978834\pi\)
0.997790 0.0664467i \(-0.0211662\pi\)
\(278\) 60.4469 + 60.4469i 0.217435 + 0.217435i
\(279\) −205.201 205.201i −0.735486 0.735486i
\(280\) 7.28285 7.28285i 0.0260102 0.0260102i
\(281\) −30.1080 + 30.1080i −0.107146 + 0.107146i −0.758647 0.651501i \(-0.774139\pi\)
0.651501 + 0.758647i \(0.274139\pi\)
\(282\) 97.4718 0.345645
\(283\) 104.960i 0.370882i 0.982655 + 0.185441i \(0.0593714\pi\)
−0.982655 + 0.185441i \(0.940629\pi\)
\(284\) −108.165 + 108.165i −0.380861 + 0.380861i
\(285\) 11.8400i 0.0415438i
\(286\) 0 0
\(287\) 482.469 1.68108
\(288\) −88.5103 88.5103i −0.307327 0.307327i
\(289\) 284.950 0.985986
\(290\) 10.6888i 0.0368580i
\(291\) 444.233 + 444.233i 1.52657 + 1.52657i
\(292\) −37.8608 37.8608i −0.129660 0.129660i
\(293\) −88.8706 + 88.8706i −0.303313 + 0.303313i −0.842308 0.538996i \(-0.818804\pi\)
0.538996 + 0.842308i \(0.318804\pi\)
\(294\) 79.2190 79.2190i 0.269452 0.269452i
\(295\) −16.1642 −0.0547939
\(296\) 99.7056i 0.336843i
\(297\) 289.880 289.880i 0.976027 0.976027i
\(298\) 308.748i 1.03607i
\(299\) 0 0
\(300\) 276.619 0.922064
\(301\) 293.457 + 293.457i 0.974940 + 0.974940i
\(302\) 147.428 0.488172
\(303\) 545.085i 1.79896i
\(304\) −13.1041 13.1041i −0.0431055 0.0431055i
\(305\) 9.03147 + 9.03147i 0.0296114 + 0.0296114i
\(306\) 44.5310 44.5310i 0.145526 0.145526i
\(307\) −159.407 + 159.407i −0.519242 + 0.519242i −0.917342 0.398100i \(-0.869670\pi\)
0.398100 + 0.917342i \(0.369670\pi\)
\(308\) −88.9941 −0.288942
\(309\) 605.022i 1.95800i
\(310\) 6.00726 6.00726i 0.0193783 0.0193783i
\(311\) 461.756i 1.48475i −0.669986 0.742374i \(-0.733700\pi\)
0.669986 0.742374i \(-0.266300\pi\)
\(312\) 0 0
\(313\) 8.16759 0.0260945 0.0130473 0.999915i \(-0.495847\pi\)
0.0130473 + 0.999915i \(0.495847\pi\)
\(314\) −127.109 127.109i −0.404805 0.404805i
\(315\) −80.5760 −0.255797
\(316\) 285.673i 0.904029i
\(317\) −91.6127 91.6127i −0.288999 0.288999i 0.547685 0.836684i \(-0.315509\pi\)
−0.836684 + 0.547685i \(0.815509\pi\)
\(318\) −130.790 130.790i −0.411291 0.411291i
\(319\) −65.3069 + 65.3069i −0.204724 + 0.204724i
\(320\) 2.59114 2.59114i 0.00809733 0.00809733i
\(321\) −420.107 −1.30874
\(322\) 195.997i 0.608685i
\(323\) 6.59288 6.59288i 0.0204114 0.0204114i
\(324\) 418.963i 1.29310i
\(325\) 0 0
\(326\) −239.097 −0.733426
\(327\) 32.5636 + 32.5636i 0.0995828 + 0.0995828i
\(328\) 171.656 0.523342
\(329\) 98.2079i 0.298504i
\(330\) 14.3043 + 14.3043i 0.0433463 + 0.0433463i
\(331\) 105.739 + 105.739i 0.319454 + 0.319454i 0.848557 0.529103i \(-0.177472\pi\)
−0.529103 + 0.848557i \(0.677472\pi\)
\(332\) 183.431 183.431i 0.552504 0.552504i
\(333\) 551.561 551.561i 1.65634 1.65634i
\(334\) 235.794 0.705971
\(335\) 15.6795i 0.0468045i
\(336\) 125.451 125.451i 0.373365 0.373365i
\(337\) 61.7332i 0.183185i 0.995797 + 0.0915923i \(0.0291956\pi\)
−0.995797 + 0.0915923i \(0.970804\pi\)
\(338\) 0 0
\(339\) −638.747 −1.88421
\(340\) 1.30365 + 1.30365i 0.00383426 + 0.00383426i
\(341\) −73.4068 −0.215269
\(342\) 144.981i 0.423920i
\(343\) −195.629 195.629i −0.570346 0.570346i
\(344\) 104.408 + 104.408i 0.303512 + 0.303512i
\(345\) −31.5031 + 31.5031i −0.0913133 + 0.0913133i
\(346\) 140.484 140.484i 0.406023 0.406023i
\(347\) 220.862 0.636490 0.318245 0.948009i \(-0.396907\pi\)
0.318245 + 0.948009i \(0.396907\pi\)
\(348\) 184.120i 0.529080i
\(349\) −205.786 + 205.786i −0.589645 + 0.589645i −0.937535 0.347890i \(-0.886898\pi\)
0.347890 + 0.937535i \(0.386898\pi\)
\(350\) 278.708i 0.796309i
\(351\) 0 0
\(352\) −31.6629 −0.0899515
\(353\) −13.9392 13.9392i −0.0394877 0.0394877i 0.687087 0.726575i \(-0.258889\pi\)
−0.726575 + 0.687087i \(0.758889\pi\)
\(354\) −278.436 −0.786543
\(355\) 35.0338i 0.0986867i
\(356\) 220.789 + 220.789i 0.620195 + 0.620195i
\(357\) 63.1163 + 63.1163i 0.176796 + 0.176796i
\(358\) −316.003 + 316.003i −0.882691 + 0.882691i
\(359\) −275.618 + 275.618i −0.767738 + 0.767738i −0.977708 0.209970i \(-0.932663\pi\)
0.209970 + 0.977708i \(0.432663\pi\)
\(360\) −28.6679 −0.0796330
\(361\) 339.535i 0.940541i
\(362\) −83.6580 + 83.6580i −0.231099 + 0.231099i
\(363\) 500.291i 1.37821i
\(364\) 0 0
\(365\) −12.2628 −0.0335968
\(366\) 155.571 + 155.571i 0.425058 + 0.425058i
\(367\) 468.735 1.27721 0.638603 0.769536i \(-0.279513\pi\)
0.638603 + 0.769536i \(0.279513\pi\)
\(368\) 69.7330i 0.189492i
\(369\) −949.584 949.584i −2.57340 2.57340i
\(370\) 16.1470 + 16.1470i 0.0436405 + 0.0436405i
\(371\) 131.778 131.778i 0.355197 0.355197i
\(372\) 103.478 103.478i 0.278166 0.278166i
\(373\) 260.814 0.699234 0.349617 0.936893i \(-0.386312\pi\)
0.349617 + 0.936893i \(0.386312\pi\)
\(374\) 15.9302i 0.0425940i
\(375\) 89.9742 89.9742i 0.239931 0.239931i
\(376\) 34.9411i 0.0929284i
\(377\) 0 0
\(378\) −823.431 −2.17839
\(379\) −151.457 151.457i −0.399622 0.399622i 0.478478 0.878100i \(-0.341189\pi\)
−0.878100 + 0.478478i \(0.841189\pi\)
\(380\) −4.24432 −0.0111693
\(381\) 539.918i 1.41711i
\(382\) 69.1133 + 69.1133i 0.180925 + 0.180925i
\(383\) −485.035 485.035i −1.26641 1.26641i −0.947929 0.318482i \(-0.896827\pi\)
−0.318482 0.947929i \(-0.603173\pi\)
\(384\) 44.6337 44.6337i 0.116234 0.116234i
\(385\) −14.4123 + 14.4123i −0.0374345 + 0.0374345i
\(386\) −459.147 −1.18950
\(387\) 1155.15i 2.98488i
\(388\) −159.246 + 159.246i −0.410427 + 0.410427i
\(389\) 374.691i 0.963216i −0.876387 0.481608i \(-0.840053\pi\)
0.876387 0.481608i \(-0.159947\pi\)
\(390\) 0 0
\(391\) 35.0839 0.0897286
\(392\) 28.3979 + 28.3979i 0.0724437 + 0.0724437i
\(393\) 890.517 2.26595
\(394\) 452.748i 1.14911i
\(395\) −46.2638 46.2638i −0.117123 0.117123i
\(396\) 175.156 + 175.156i 0.442313 + 0.442313i
\(397\) −461.388 + 461.388i −1.16219 + 1.16219i −0.178191 + 0.983996i \(0.557024\pi\)
−0.983996 + 0.178191i \(0.942976\pi\)
\(398\) −172.820 + 172.820i −0.434221 + 0.434221i
\(399\) −205.489 −0.515011
\(400\) 99.1607i 0.247902i
\(401\) −305.660 + 305.660i −0.762244 + 0.762244i −0.976728 0.214483i \(-0.931193\pi\)
0.214483 + 0.976728i \(0.431193\pi\)
\(402\) 270.087i 0.671858i
\(403\) 0 0
\(404\) −195.399 −0.483660
\(405\) 67.8496 + 67.8496i 0.167530 + 0.167530i
\(406\) 185.510 0.456922
\(407\) 197.311i 0.484793i
\(408\) 22.4560 + 22.4560i 0.0550391 + 0.0550391i
\(409\) 197.379 + 197.379i 0.482588 + 0.482588i 0.905957 0.423369i \(-0.139153\pi\)
−0.423369 + 0.905957i \(0.639153\pi\)
\(410\) 27.7991 27.7991i 0.0678028 0.0678028i
\(411\) 499.195 499.195i 1.21459 1.21459i
\(412\) −216.884 −0.526418
\(413\) 280.539i 0.679270i
\(414\) −385.756 + 385.756i −0.931777 + 0.931777i
\(415\) 59.4122i 0.143162i
\(416\) 0 0
\(417\) 337.246 0.808743
\(418\) 25.9321 + 25.9321i 0.0620385 + 0.0620385i
\(419\) 187.590 0.447709 0.223855 0.974623i \(-0.428136\pi\)
0.223855 + 0.974623i \(0.428136\pi\)
\(420\) 40.6326i 0.0967442i
\(421\) 410.480 + 410.480i 0.975013 + 0.975013i 0.999695 0.0246826i \(-0.00785752\pi\)
−0.0246826 + 0.999695i \(0.507858\pi\)
\(422\) 230.179 + 230.179i 0.545447 + 0.545447i
\(423\) 193.290 193.290i 0.456951 0.456951i
\(424\) 46.8849 46.8849i 0.110578 0.110578i
\(425\) −49.8895 −0.117387
\(426\) 603.473i 1.41660i
\(427\) −156.746 + 156.746i −0.367087 + 0.367087i
\(428\) 150.597i 0.351863i
\(429\) 0 0
\(430\) 33.8171 0.0786444
\(431\) 378.330 + 378.330i 0.877795 + 0.877795i 0.993306 0.115511i \(-0.0368507\pi\)
−0.115511 + 0.993306i \(0.536851\pi\)
\(432\) −292.966 −0.678162
\(433\) 161.880i 0.373857i 0.982374 + 0.186928i \(0.0598532\pi\)
−0.982374 + 0.186928i \(0.940147\pi\)
\(434\) 104.259 + 104.259i 0.240229 + 0.240229i
\(435\) −29.8176 29.8176i −0.0685461 0.0685461i
\(436\) −11.6732 + 11.6732i −0.0267734 + 0.0267734i
\(437\) −57.1117 + 57.1117i −0.130690 + 0.130690i
\(438\) −211.233 −0.482268
\(439\) 164.262i 0.374172i 0.982344 + 0.187086i \(0.0599043\pi\)
−0.982344 + 0.187086i \(0.940096\pi\)
\(440\) −5.12770 + 5.12770i −0.0116539 + 0.0116539i
\(441\) 314.189i 0.712446i
\(442\) 0 0
\(443\) 309.912 0.699575 0.349788 0.936829i \(-0.386254\pi\)
0.349788 + 0.936829i \(0.386254\pi\)
\(444\) 278.139 + 278.139i 0.626440 + 0.626440i
\(445\) 71.5121 0.160701
\(446\) 372.184i 0.834493i
\(447\) −861.284 861.284i −1.92681 1.92681i
\(448\) 44.9707 + 44.9707i 0.100381 + 0.100381i
\(449\) 96.2206 96.2206i 0.214300 0.214300i −0.591791 0.806091i \(-0.701579\pi\)
0.806091 + 0.591791i \(0.201579\pi\)
\(450\) 548.547 548.547i 1.21899 1.21899i
\(451\) −339.696 −0.753207
\(452\) 228.974i 0.506580i
\(453\) 411.266 411.266i 0.907871 0.907871i
\(454\) 168.522i 0.371193i
\(455\) 0 0
\(456\) −73.1104 −0.160330
\(457\) −160.576 160.576i −0.351371 0.351371i 0.509249 0.860619i \(-0.329923\pi\)
−0.860619 + 0.509249i \(0.829923\pi\)
\(458\) −448.744 −0.979791
\(459\) 147.396i 0.321124i
\(460\) −11.2930 11.2930i −0.0245501 0.0245501i
\(461\) −483.636 483.636i −1.04910 1.04910i −0.998731 0.0503703i \(-0.983960\pi\)
−0.0503703 0.998731i \(-0.516040\pi\)
\(462\) −248.258 + 248.258i −0.537356 + 0.537356i
\(463\) 557.281 557.281i 1.20363 1.20363i 0.230575 0.973055i \(-0.425939\pi\)
0.973055 0.230575i \(-0.0740607\pi\)
\(464\) 66.0021 0.142246
\(465\) 33.5158i 0.0720769i
\(466\) 230.683 230.683i 0.495027 0.495027i
\(467\) 91.0355i 0.194937i −0.995239 0.0974684i \(-0.968926\pi\)
0.995239 0.0974684i \(-0.0310745\pi\)
\(468\) 0 0
\(469\) −272.126 −0.580227
\(470\) 5.65859 + 5.65859i 0.0120395 + 0.0120395i
\(471\) −709.167 −1.50566
\(472\) 99.8120i 0.211466i
\(473\) −206.617 206.617i −0.436822 0.436822i
\(474\) −796.915 796.915i −1.68126 1.68126i
\(475\) 81.2131 81.2131i 0.170975 0.170975i
\(476\) −22.6255 + 22.6255i −0.0475326 + 0.0475326i
\(477\) −518.725 −1.08747
\(478\) 369.036i 0.772041i
\(479\) 522.586 522.586i 1.09099 1.09099i 0.0955700 0.995423i \(-0.469533\pi\)
0.995423 0.0955700i \(-0.0304674\pi\)
\(480\) 14.4565i 0.0301178i
\(481\) 0 0
\(482\) −314.584 −0.652665
\(483\) −546.753 546.753i −1.13199 1.13199i
\(484\) −179.341 −0.370540
\(485\) 51.5786i 0.106348i
\(486\) 509.567 + 509.567i 1.04849 + 1.04849i
\(487\) 424.789 + 424.789i 0.872257 + 0.872257i 0.992718 0.120461i \(-0.0384372\pi\)
−0.120461 + 0.992718i \(0.538437\pi\)
\(488\) −55.7682 + 55.7682i −0.114279 + 0.114279i
\(489\) −666.986 + 666.986i −1.36398 + 1.36398i
\(490\) 9.19789 0.0187712
\(491\) 557.000i 1.13442i 0.823573 + 0.567210i \(0.191977\pi\)
−0.823573 + 0.567210i \(0.808023\pi\)
\(492\) 478.853 478.853i 0.973279 0.973279i
\(493\) 33.2068i 0.0673565i
\(494\) 0 0
\(495\) 56.7318 0.114610
\(496\) 37.0941 + 37.0941i 0.0747865 + 0.0747865i
\(497\) −608.030 −1.22340
\(498\) 1023.40i 2.05502i
\(499\) 92.7376 + 92.7376i 0.185847 + 0.185847i 0.793898 0.608051i \(-0.208048\pi\)
−0.608051 + 0.793898i \(0.708048\pi\)
\(500\) 32.2534 + 32.2534i 0.0645068 + 0.0645068i
\(501\) 657.773 657.773i 1.31292 1.31292i
\(502\) −251.968 + 251.968i −0.501929 + 0.501929i
\(503\) −136.856 −0.272079 −0.136039 0.990703i \(-0.543437\pi\)
−0.136039 + 0.990703i \(0.543437\pi\)
\(504\) 497.547i 0.987196i
\(505\) −31.6441 + 31.6441i −0.0626617 + 0.0626617i
\(506\) 137.997i 0.272721i
\(507\) 0 0
\(508\) 193.547 0.380997
\(509\) −119.875 119.875i −0.235511 0.235511i 0.579478 0.814988i \(-0.303257\pi\)
−0.814988 + 0.579478i \(0.803257\pi\)
\(510\) 7.27333 0.0142614
\(511\) 212.828i 0.416494i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 239.940 + 239.940i 0.467720 + 0.467720i
\(514\) 290.290 290.290i 0.564767 0.564767i
\(515\) −35.1237 + 35.1237i −0.0682013 + 0.0682013i
\(516\) 582.515 1.12891
\(517\) 69.1461i 0.133745i
\(518\) −280.240 + 280.240i −0.541003 + 0.541003i
\(519\) 783.789i 1.51019i
\(520\) 0 0
\(521\) 161.073 0.309161 0.154580 0.987980i \(-0.450597\pi\)
0.154580 + 0.987980i \(0.450597\pi\)
\(522\) −365.117 365.117i −0.699457 0.699457i
\(523\) 135.412 0.258915 0.129457 0.991585i \(-0.458676\pi\)
0.129457 + 0.991585i \(0.458676\pi\)
\(524\) 319.227i 0.609212i
\(525\) 777.486 + 777.486i 1.48093 + 1.48093i
\(526\) −107.867 107.867i −0.205071 0.205071i
\(527\) −18.6627 + 18.6627i −0.0354130 + 0.0354130i
\(528\) −88.3271 + 88.3271i −0.167286 + 0.167286i
\(529\) 225.081 0.425485
\(530\) 15.1857i 0.0286523i
\(531\) −552.149 + 552.149i −1.03983 + 1.03983i
\(532\) 73.6625i 0.138463i
\(533\) 0 0
\(534\) 1231.83 2.30680
\(535\) −24.3887 24.3887i −0.0455864 0.0455864i
\(536\) −96.8190 −0.180632
\(537\) 1763.05i 3.28314i
\(538\) −435.423 435.423i −0.809337 0.809337i
\(539\) −56.1976 56.1976i −0.104263 0.104263i
\(540\) −47.4448 + 47.4448i −0.0878608 + 0.0878608i
\(541\) −127.802 + 127.802i −0.236233 + 0.236233i −0.815288 0.579055i \(-0.803422\pi\)
0.579055 + 0.815288i \(0.303422\pi\)
\(542\) 118.955 0.219475
\(543\) 466.745i 0.859568i
\(544\) −8.04987 + 8.04987i −0.0147976 + 0.0147976i
\(545\) 3.78087i 0.00693737i
\(546\) 0 0
\(547\) −161.504 −0.295254 −0.147627 0.989043i \(-0.547163\pi\)
−0.147627 + 0.989043i \(0.547163\pi\)
\(548\) 178.948 + 178.948i 0.326548 + 0.326548i
\(549\) 617.008 1.12388
\(550\) 196.233i 0.356786i
\(551\) −54.0560 54.0560i −0.0981053 0.0981053i
\(552\) −194.528 194.528i −0.352405 0.352405i
\(553\) 802.933 802.933i 1.45196 1.45196i
\(554\) 36.8115 36.8115i 0.0664467 0.0664467i
\(555\) 90.0874 0.162320
\(556\) 120.894i 0.217435i
\(557\) −420.771 + 420.771i −0.755423 + 0.755423i −0.975486 0.220063i \(-0.929374\pi\)
0.220063 + 0.975486i \(0.429374\pi\)
\(558\) 410.401i 0.735486i
\(559\) 0 0
\(560\) 14.5657 0.0260102
\(561\) −44.4389 44.4389i −0.0792136 0.0792136i
\(562\) −60.2161 −0.107146
\(563\) 622.301i 1.10533i −0.833403 0.552665i \(-0.813611\pi\)
0.833403 0.552665i \(-0.186389\pi\)
\(564\) 97.4718 + 97.4718i 0.172822 + 0.172822i
\(565\) −37.0815 37.0815i −0.0656310 0.0656310i
\(566\) −104.960 + 104.960i −0.185441 + 0.185441i
\(567\) −1177.57 + 1177.57i −2.07684 + 2.07684i
\(568\) −216.329 −0.380861
\(569\) 779.992i 1.37081i −0.728161 0.685406i \(-0.759625\pi\)
0.728161 0.685406i \(-0.240375\pi\)
\(570\) −11.8400 + 11.8400i −0.0207719 + 0.0207719i
\(571\) 556.142i 0.973980i 0.873408 + 0.486990i \(0.161905\pi\)
−0.873408 + 0.486990i \(0.838095\pi\)
\(572\) 0 0
\(573\) 385.598 0.672945
\(574\) 482.469 + 482.469i 0.840539 + 0.840539i
\(575\) 432.174 0.751606
\(576\) 177.021i 0.307327i
\(577\) 401.975 + 401.975i 0.696663 + 0.696663i 0.963689 0.267026i \(-0.0860409\pi\)
−0.267026 + 0.963689i \(0.586041\pi\)
\(578\) 284.950 + 284.950i 0.492993 + 0.492993i
\(579\) −1280.84 + 1280.84i −2.21215 + 2.21215i
\(580\) 10.6888 10.6888i 0.0184290 0.0184290i
\(581\) 1031.13 1.77475
\(582\) 888.466i 1.52657i
\(583\) −92.7822 + 92.7822i −0.159146 + 0.159146i
\(584\) 75.7216i 0.129660i
\(585\) 0 0
\(586\) −177.741 −0.303313
\(587\) −474.205 474.205i −0.807845 0.807845i 0.176462 0.984307i \(-0.443535\pi\)
−0.984307 + 0.176462i \(0.943535\pi\)
\(588\) 158.438 0.269452
\(589\) 60.7605i 0.103159i
\(590\) −16.1642 16.1642i −0.0273970 0.0273970i
\(591\) 1262.99 + 1262.99i 2.13703 + 2.13703i
\(592\) −99.7056 + 99.7056i −0.168422 + 0.168422i
\(593\) −185.442 + 185.442i −0.312719 + 0.312719i −0.845962 0.533243i \(-0.820973\pi\)
0.533243 + 0.845962i \(0.320973\pi\)
\(594\) 579.760 0.976027
\(595\) 7.32826i 0.0123164i
\(596\) 308.748 308.748i 0.518033 0.518033i
\(597\) 964.199i 1.61507i
\(598\) 0 0
\(599\) −171.466 −0.286254 −0.143127 0.989704i \(-0.545716\pi\)
−0.143127 + 0.989704i \(0.545716\pi\)
\(600\) 276.619 + 276.619i 0.461032 + 0.461032i
\(601\) 107.652 0.179121 0.0895606 0.995981i \(-0.471454\pi\)
0.0895606 + 0.995981i \(0.471454\pi\)
\(602\) 586.914i 0.974940i
\(603\) 535.593 + 535.593i 0.888213 + 0.888213i
\(604\) 147.428 + 147.428i 0.244086 + 0.244086i
\(605\) −29.0437 + 29.0437i −0.0480061 + 0.0480061i
\(606\) −545.085 + 545.085i −0.899480 + 0.899480i
\(607\) 433.595 0.714324 0.357162 0.934042i \(-0.383744\pi\)
0.357162 + 0.934042i \(0.383744\pi\)
\(608\) 26.2081i 0.0431055i
\(609\) 517.500 517.500i 0.849754 0.849754i
\(610\) 18.0629i 0.0296114i
\(611\) 0 0
\(612\) 89.0621 0.145526
\(613\) −454.202 454.202i −0.740949 0.740949i 0.231812 0.972761i \(-0.425535\pi\)
−0.972761 + 0.231812i \(0.925535\pi\)
\(614\) −318.815 −0.519242
\(615\) 155.097i 0.252191i
\(616\) −88.9941 88.9941i −0.144471 0.144471i
\(617\) −292.823 292.823i −0.474592 0.474592i 0.428805 0.903397i \(-0.358935\pi\)
−0.903397 + 0.428805i \(0.858935\pi\)
\(618\) −605.022 + 605.022i −0.978999 + 0.978999i
\(619\) 693.205 693.205i 1.11988 1.11988i 0.128120 0.991759i \(-0.459106\pi\)
0.991759 0.128120i \(-0.0408943\pi\)
\(620\) 12.0145 0.0193783
\(621\) 1276.84i 2.05610i
\(622\) 461.756 461.756i 0.742374 0.742374i
\(623\) 1241.13i 1.99219i
\(624\) 0 0
\(625\) −609.308 −0.974893
\(626\) 8.16759 + 8.16759i 0.0130473 + 0.0130473i
\(627\) 144.681 0.230751
\(628\) 254.218i 0.404805i
\(629\) −50.1636 50.1636i −0.0797513 0.0797513i
\(630\) −80.5760 80.5760i −0.127898 0.127898i
\(631\) −371.741 + 371.741i −0.589130 + 0.589130i −0.937396 0.348266i \(-0.886771\pi\)
0.348266 + 0.937396i \(0.386771\pi\)
\(632\) 285.673 285.673i 0.452014 0.452014i
\(633\) 1284.22 2.02878
\(634\) 183.225i 0.288999i
\(635\) 31.3442 31.3442i 0.0493609 0.0493609i
\(636\) 261.581i 0.411291i
\(637\) 0 0
\(638\) −130.614 −0.204724
\(639\) 1196.71 + 1196.71i 1.87279 + 1.87279i
\(640\) 5.18229 0.00809733
\(641\) 1081.26i 1.68683i −0.537260 0.843416i \(-0.680541\pi\)
0.537260 0.843416i \(-0.319459\pi\)
\(642\) −420.107 420.107i −0.654372 0.654372i
\(643\) −279.195 279.195i −0.434207 0.434207i 0.455850 0.890057i \(-0.349335\pi\)
−0.890057 + 0.455850i \(0.849335\pi\)
\(644\) 195.997 195.997i 0.304343 0.304343i
\(645\) 94.3363 94.3363i 0.146258 0.146258i
\(646\) 13.1858 0.0204114
\(647\) 318.067i 0.491603i −0.969320 0.245801i \(-0.920949\pi\)
0.969320 0.245801i \(-0.0790511\pi\)
\(648\) −418.963 + 418.963i −0.646548 + 0.646548i
\(649\) 197.521i 0.304347i
\(650\) 0 0
\(651\) 581.685 0.893525
\(652\) −239.097 239.097i −0.366713 0.366713i
\(653\) −402.230 −0.615972 −0.307986 0.951391i \(-0.599655\pi\)
−0.307986 + 0.951391i \(0.599655\pi\)
\(654\) 65.1272i 0.0995828i
\(655\) 51.6977 + 51.6977i 0.0789278 + 0.0789278i
\(656\) 171.656 + 171.656i 0.261671 + 0.261671i
\(657\) −418.884 + 418.884i −0.637570 + 0.637570i
\(658\) −98.2079 + 98.2079i −0.149252 + 0.149252i
\(659\) 585.747 0.888842 0.444421 0.895818i \(-0.353409\pi\)
0.444421 + 0.895818i \(0.353409\pi\)
\(660\) 28.6085i 0.0433463i
\(661\) 571.835 571.835i 0.865105 0.865105i −0.126821 0.991926i \(-0.540477\pi\)
0.991926 + 0.126821i \(0.0404772\pi\)
\(662\) 211.479i 0.319454i
\(663\) 0 0
\(664\) 366.863 0.552504
\(665\) −11.9294 11.9294i −0.0179389 0.0179389i
\(666\) 1103.12 1.65634
\(667\) 287.658i 0.431271i
\(668\) 235.794 + 235.794i 0.352986 + 0.352986i
\(669\) 1038.25 + 1038.25i 1.55194 + 1.55194i
\(670\) −15.6795 + 15.6795i −0.0234022 + 0.0234022i
\(671\) 110.362 110.362i 0.164473 0.164473i
\(672\) 250.901 0.373365
\(673\) 431.251i 0.640788i 0.947284 + 0.320394i \(0.103815\pi\)
−0.947284 + 0.320394i \(0.896185\pi\)
\(674\) −61.7332 + 61.7332i −0.0915923 + 0.0915923i
\(675\) 1815.67i 2.68988i
\(676\) 0 0
\(677\) 6.72056 0.00992697 0.00496348 0.999988i \(-0.498420\pi\)
0.00496348 + 0.999988i \(0.498420\pi\)
\(678\) −638.747 638.747i −0.942104 0.942104i
\(679\) −895.175 −1.31837
\(680\) 2.60730i 0.00383426i
\(681\) 470.109 + 470.109i 0.690321 + 0.690321i
\(682\) −73.4068 73.4068i −0.107635 0.107635i
\(683\) −86.6845 + 86.6845i −0.126917 + 0.126917i −0.767712 0.640795i \(-0.778605\pi\)
0.640795 + 0.767712i \(0.278605\pi\)
\(684\) −144.981 + 144.981i −0.211960 + 0.211960i
\(685\) 57.9601 0.0846133
\(686\) 391.257i 0.570346i
\(687\) −1251.82 + 1251.82i −1.82215 + 1.82215i
\(688\) 208.816i 0.303512i
\(689\) 0 0
\(690\) −63.0061 −0.0913133
\(691\) −66.5361 66.5361i −0.0962896 0.0962896i 0.657321 0.753611i \(-0.271690\pi\)
−0.753611 + 0.657321i \(0.771690\pi\)
\(692\) 280.968 0.406023
\(693\) 984.612i 1.42080i
\(694\) 220.862 + 220.862i 0.318245 + 0.318245i
\(695\) 19.5783 + 19.5783i 0.0281703 + 0.0281703i
\(696\) 184.120 184.120i 0.264540 0.264540i
\(697\) −86.3632 + 86.3632i −0.123907 + 0.123907i
\(698\) −411.572 −0.589645
\(699\) 1287.03i 1.84124i
\(700\) −278.708 + 278.708i −0.398155 + 0.398155i
\(701\) 716.506i 1.02212i −0.859545 0.511060i \(-0.829253\pi\)
0.859545 0.511060i \(-0.170747\pi\)
\(702\) 0 0
\(703\) 163.319 0.232317
\(704\) −31.6629 31.6629i −0.0449758 0.0449758i
\(705\) 31.5704 0.0447808
\(706\) 27.8783i 0.0394877i
\(707\) −549.201 549.201i −0.776805 0.776805i
\(708\) −278.436 278.436i −0.393271 0.393271i
\(709\) 700.605 700.605i 0.988160 0.988160i −0.0117707 0.999931i \(-0.503747\pi\)
0.999931 + 0.0117707i \(0.00374682\pi\)
\(710\) −35.0338 + 35.0338i −0.0493433 + 0.0493433i
\(711\) −3160.63 −4.44533
\(712\) 441.579i 0.620195i
\(713\) 161.668 161.668i 0.226743 0.226743i
\(714\) 126.233i 0.176796i
\(715\) 0 0
\(716\) −632.006 −0.882691
\(717\) 1029.46 + 1029.46i 1.43579 + 1.43579i
\(718\) −551.236 −0.767738
\(719\) 173.887i 0.241846i 0.992662 + 0.120923i \(0.0385854\pi\)
−0.992662 + 0.120923i \(0.961415\pi\)
\(720\) −28.6679 28.6679i −0.0398165 0.0398165i
\(721\) −609.591 609.591i −0.845479 0.845479i
\(722\) 339.535 339.535i 0.470271 0.470271i
\(723\) −877.566 + 877.566i −1.21378 + 1.21378i
\(724\) −167.316 −0.231099
\(725\) 409.051i 0.564208i
\(726\) −500.291 + 500.291i −0.689106 + 0.689106i
\(727\) 729.011i 1.00277i −0.865225 0.501383i \(-0.832825\pi\)
0.865225 0.501383i \(-0.167175\pi\)
\(728\) 0 0
\(729\) 957.649 1.31365
\(730\) −12.2628 12.2628i −0.0167984 0.0167984i
\(731\) −105.059 −0.143720
\(732\) 311.143i 0.425058i
\(733\) −762.465 762.465i −1.04020 1.04020i −0.999157 0.0410404i \(-0.986933\pi\)
−0.0410404 0.999157i \(-0.513067\pi\)
\(734\) 468.735 + 468.735i 0.638603 + 0.638603i
\(735\) 25.6585 25.6585i 0.0349095 0.0349095i
\(736\) 69.7330 69.7330i 0.0947460 0.0947460i
\(737\) 191.598 0.259971
\(738\) 1899.17i 2.57340i
\(739\) 433.888 433.888i 0.587129 0.587129i −0.349724 0.936853i \(-0.613725\pi\)
0.936853 + 0.349724i \(0.113725\pi\)
\(740\) 32.2940i 0.0436405i
\(741\) 0 0
\(742\) 263.556 0.355197
\(743\) −117.752 117.752i −0.158482 0.158482i 0.623412 0.781894i \(-0.285746\pi\)
−0.781894 + 0.623412i \(0.785746\pi\)
\(744\) 206.956 0.278166
\(745\) 100.001i 0.134230i
\(746\) 260.814 + 260.814i 0.349617 + 0.349617i
\(747\) −2029.45 2029.45i −2.71680 2.71680i
\(748\) 15.9302 15.9302i 0.0212970 0.0212970i
\(749\) 423.279 423.279i 0.565126 0.565126i
\(750\) 179.948 0.239931
\(751\) 134.259i 0.178774i 0.995997 + 0.0893871i \(0.0284908\pi\)
−0.995997 + 0.0893871i \(0.971509\pi\)
\(752\) −34.9411 + 34.9411i −0.0464642 + 0.0464642i
\(753\) 1405.78i 1.86691i
\(754\) 0 0
\(755\) 47.7509 0.0632462
\(756\) −823.431 823.431i −1.08919 1.08919i
\(757\) −1196.43 −1.58049 −0.790247 0.612788i \(-0.790048\pi\)
−0.790247 + 0.612788i \(0.790048\pi\)
\(758\) 302.913i 0.399622i
\(759\) 384.957 + 384.957i 0.507190 + 0.507190i
\(760\) −4.24432 4.24432i −0.00558463 0.00558463i
\(761\) 24.7365 24.7365i 0.0325053 0.0325053i −0.690667 0.723173i \(-0.742683\pi\)
0.723173 + 0.690667i \(0.242683\pi\)
\(762\) 539.918 539.918i 0.708554 0.708554i
\(763\) −65.6190 −0.0860013
\(764\) 138.227i 0.180925i
\(765\) 14.4233 14.4233i 0.0188540 0.0188540i
\(766\) 970.071i 1.26641i
\(767\) 0 0
\(768\) 89.2673 0.116234
\(769\) −176.417 176.417i −0.229410 0.229410i 0.583036 0.812446i \(-0.301865\pi\)
−0.812446 + 0.583036i \(0.801865\pi\)
\(770\) −28.8246 −0.0374345
\(771\) 1619.59i 2.10063i
\(772\) −459.147 459.147i −0.594750 0.594750i
\(773\) −390.198 390.198i −0.504784 0.504784i 0.408137 0.912921i \(-0.366179\pi\)
−0.912921 + 0.408137i \(0.866179\pi\)
\(774\) 1155.15 1155.15i 1.49244 1.49244i
\(775\) −229.892 + 229.892i −0.296635 + 0.296635i
\(776\) −318.492 −0.410427
\(777\) 1563.52i 2.01225i
\(778\) 374.691 374.691i 0.481608 0.481608i
\(779\) 281.175i 0.360943i
\(780\) 0 0
\(781\) 428.101 0.548145
\(782\) 35.0839 + 35.0839i 0.0448643 + 0.0448643i
\(783\) −1208.52 −1.54345
\(784\) 56.7958i 0.0724437i
\(785\) −41.1697 41.1697i −0.0524455 0.0524455i
\(786\) 890.517 + 890.517i 1.13297 + 1.13297i
\(787\) −498.109 + 498.109i −0.632922 + 0.632922i −0.948800 0.315878i \(-0.897701\pi\)
0.315878 + 0.948800i \(0.397701\pi\)
\(788\) −452.748 + 452.748i −0.574553 + 0.574553i
\(789\) −601.815 −0.762757
\(790\) 92.5276i 0.117123i
\(791\) 643.570 643.570i 0.813616 0.813616i
\(792\) 350.312i 0.442313i
\(793\) 0 0
\(794\) −922.776 −1.16219
\(795\) −42.3621 42.3621i −0.0532857 0.0532857i
\(796\) −345.640 −0.434221
\(797\) 136.438i 0.171189i 0.996330 + 0.0855945i \(0.0272789\pi\)
−0.996330 + 0.0855945i \(0.972721\pi\)
\(798\) −205.489 205.489i −0.257505 0.257505i
\(799\) −17.5795 17.5795i −0.0220018 0.0220018i
\(800\) −99.1607 + 99.1607i −0.123951 + 0.123951i
\(801\) 2442.77 2442.77i 3.04965 3.04965i
\(802\) −611.320 −0.762244
\(803\) 149.848i 0.186610i
\(804\) −270.087 + 270.087i −0.335929 + 0.335929i
\(805\) 63.4819i 0.0788596i
\(806\) 0 0
\(807\) −2429.32 −3.01031
\(808\) −195.399 195.399i −0.241830 0.241830i
\(809\) −100.101 −0.123735 −0.0618674 0.998084i \(-0.519706\pi\)
−0.0618674 + 0.998084i \(0.519706\pi\)
\(810\) 135.699i 0.167530i
\(811\) −143.367 143.367i −0.176778 0.176778i 0.613172 0.789950i \(-0.289893\pi\)
−0.789950 + 0.613172i \(0.789893\pi\)
\(812\) 185.510 + 185.510i 0.228461 + 0.228461i
\(813\) 331.838 331.838i 0.408165 0.408165i
\(814\) 197.311 197.311i 0.242397 0.242397i
\(815\) −77.4419 −0.0950207
\(816\) 44.9119i 0.0550391i
\(817\) 171.022 171.022i 0.209329 0.209329i
\(818\) 394.757i 0.482588i
\(819\) 0 0
\(820\) 55.5983 0.0678028
\(821\) −209.254 209.254i −0.254877 0.254877i 0.568090 0.822967i \(-0.307683\pi\)
−0.822967 + 0.568090i \(0.807683\pi\)
\(822\) 998.390 1.21459
\(823\) 246.944i 0.300054i 0.988682 + 0.150027i \(0.0479361\pi\)
−0.988682 + 0.150027i \(0.952064\pi\)
\(824\) −216.884 216.884i −0.263209 0.263209i
\(825\) −547.411 547.411i −0.663529 0.663529i
\(826\) 280.539 280.539i 0.339635 0.339635i
\(827\) 450.766 450.766i 0.545062 0.545062i −0.379947 0.925008i \(-0.624058\pi\)
0.925008 + 0.379947i \(0.124058\pi\)
\(828\) −771.511 −0.931777
\(829\) 903.915i 1.09037i −0.838316 0.545184i \(-0.816460\pi\)
0.838316 0.545184i \(-0.183540\pi\)
\(830\) 59.4122 59.4122i 0.0715809 0.0715809i
\(831\) 205.379i 0.247147i
\(832\) 0 0
\(833\) −28.5750 −0.0343037
\(834\) 337.246 + 337.246i 0.404371 + 0.404371i
\(835\) 76.3722 0.0914637
\(836\) 51.8642i 0.0620385i
\(837\) −679.207 679.207i −0.811478 0.811478i
\(838\) 187.590 + 187.590i 0.223855 + 0.223855i
\(839\) −682.338 + 682.338i −0.813276 + 0.813276i −0.985124 0.171848i \(-0.945026\pi\)
0.171848 + 0.985124i \(0.445026\pi\)
\(840\) 40.6326 40.6326i 0.0483721 0.0483721i
\(841\) −568.733 −0.676258
\(842\) 820.961i 0.975013i
\(843\) −167.979 + 167.979i −0.199263 + 0.199263i
\(844\) 460.358i 0.545447i
\(845\) 0 0
\(846\) 386.581 0.456951
\(847\) −504.069 504.069i −0.595123 0.595123i
\(848\) 93.7699 0.110578
\(849\) 585.592i 0.689743i
\(850\) −49.8895 49.8895i −0.0586935 0.0586935i
\(851\) 434.549 + 434.549i 0.510633 + 0.510633i
\(852\) −603.473 + 603.473i −0.708302 + 0.708302i
\(853\) −103.615 + 103.615i −0.121471 + 0.121471i −0.765229 0.643758i \(-0.777374\pi\)
0.643758 + 0.765229i \(0.277374\pi\)
\(854\) −313.492 −0.367087
\(855\) 46.9582i 0.0549219i
\(856\) 150.597 150.597i 0.175931 0.175931i
\(857\) 497.605i 0.580636i 0.956930 + 0.290318i \(0.0937612\pi\)
−0.956930 + 0.290318i \(0.906239\pi\)
\(858\) 0 0
\(859\) 763.167 0.888437 0.444218 0.895918i \(-0.353481\pi\)
0.444218 + 0.895918i \(0.353481\pi\)
\(860\) 33.8171 + 33.8171i 0.0393222 + 0.0393222i
\(861\) 2691.80 3.12636
\(862\) 756.659i 0.877795i
\(863\) 299.561 + 299.561i 0.347115 + 0.347115i 0.859034 0.511919i \(-0.171065\pi\)
−0.511919 + 0.859034i \(0.671065\pi\)
\(864\) −292.966 292.966i −0.339081 0.339081i
\(865\) 45.5018 45.5018i 0.0526032 0.0526032i
\(866\) −161.880 + 161.880i −0.186928 + 0.186928i
\(867\) 1589.80 1.83367
\(868\) 208.519i 0.240229i
\(869\) −565.328 + 565.328i −0.650550 + 0.650550i
\(870\) 59.6351i 0.0685461i
\(871\) 0 0
\(872\) −23.3464 −0.0267734
\(873\) 1761.86 + 1761.86i 2.01817 + 2.01817i
\(874\) −114.223 −0.130690
\(875\) 181.307i 0.207208i
\(876\) −211.233 211.233i −0.241134 0.241134i
\(877\) −887.711 887.711i −1.01221 1.01221i −0.999924 0.0122887i \(-0.996088\pi\)
−0.0122887 0.999924i \(-0.503912\pi\)
\(878\) −164.262 + 164.262i −0.187086 + 0.187086i
\(879\) −495.828 + 495.828i −0.564082 + 0.564082i
\(880\) −10.2554 −0.0116539
\(881\) 562.408i 0.638374i −0.947692 0.319187i \(-0.896590\pi\)
0.947692 0.319187i \(-0.103410\pi\)
\(882\) 314.189 314.189i 0.356223 0.356223i
\(883\) 325.309i 0.368413i −0.982888 0.184207i \(-0.941028\pi\)
0.982888 0.184207i \(-0.0589715\pi\)
\(884\) 0 0
\(885\) −90.1835 −0.101902
\(886\) 309.912 + 309.912i 0.349788 + 0.349788i
\(887\) 1488.80 1.67846 0.839231 0.543775i \(-0.183006\pi\)
0.839231 + 0.543775i \(0.183006\pi\)
\(888\) 556.279i 0.626440i
\(889\) 543.996 + 543.996i 0.611919 + 0.611919i
\(890\) 71.5121 + 71.5121i 0.0803507 + 0.0803507i
\(891\) 829.100 829.100i 0.930527 0.930527i
\(892\) −372.184 + 372.184i −0.417246 + 0.417246i
\(893\) 57.2338 0.0640916
\(894\) 1722.57i 1.92681i
\(895\) −102.351 + 102.351i −0.114359 + 0.114359i
\(896\) 89.9415i 0.100381i
\(897\) 0 0
\(898\) 192.441 0.214300
\(899\) 153.018 + 153.018i 0.170209 + 0.170209i
\(900\) 1097.09 1.21899
\(901\) 47.1772i 0.0523609i
\(902\) −339.696 339.696i −0.376603 0.376603i
\(903\) 1637.26 + 1637.26i 1.81313 + 1.81313i
\(904\) 228.974 228.974i 0.253290 0.253290i
\(905\) −27.0962 + 27.0962i −0.0299406 + 0.0299406i
\(906\) 822.531 0.907871
\(907\) 262.849i 0.289801i 0.989446 + 0.144900i \(0.0462861\pi\)
−0.989446 + 0.144900i \(0.953714\pi\)
\(908\) −168.522 + 168.522i −0.185597 + 0.185597i
\(909\) 2161.85i 2.37827i
\(910\) 0 0
\(911\) −1043.25 −1.14517 −0.572584 0.819846i \(-0.694059\pi\)
−0.572584 + 0.819846i \(0.694059\pi\)
\(912\) −73.1104 73.1104i −0.0801649 0.0801649i
\(913\) −725.997 −0.795178
\(914\) 321.153i 0.351371i
\(915\) 50.3885 + 50.3885i 0.0550694 + 0.0550694i
\(916\) −448.744 448.744i −0.489895 0.489895i
\(917\) −897.242 + 897.242i −0.978453 + 0.978453i
\(918\) 147.396 147.396i 0.160562 0.160562i
\(919\) −816.955 −0.888961 −0.444481 0.895788i \(-0.646612\pi\)
−0.444481 + 0.895788i \(0.646612\pi\)
\(920\) 22.5860i 0.0245501i
\(921\) −889.367 + 889.367i −0.965654 + 0.965654i
\(922\) 967.271i 1.04910i
\(923\) 0 0
\(924\) −496.517 −0.537356
\(925\) −617.930 617.930i −0.668033 0.668033i
\(926\) 1114.56 1.20363
\(927\) 2399.56i 2.58852i
\(928\) 66.0021 + 66.0021i 0.0711229 + 0.0711229i
\(929\) 1058.03 + 1058.03i 1.13889 + 1.13889i 0.988649 + 0.150242i \(0.0480054\pi\)
0.150242 + 0.988649i \(0.451995\pi\)
\(930\) 33.5158 33.5158i 0.0360385 0.0360385i
\(931\) 46.5161 46.5161i 0.0499635 0.0499635i
\(932\) 461.365 0.495027
\(933\) 2576.24i 2.76124i
\(934\) 91.0355 91.0355i 0.0974684 0.0974684i
\(935\) 5.15967i 0.00551836i
\(936\) 0 0
\(937\) −1671.65 −1.78404 −0.892020 0.451996i \(-0.850712\pi\)
−0.892020 + 0.451996i \(0.850712\pi\)
\(938\) −272.126 272.126i −0.290113 0.290113i
\(939\) 45.5687 0.0485290
\(940\) 11.3172i 0.0120395i
\(941\) 87.2271 + 87.2271i 0.0926962 + 0.0926962i 0.751934 0.659238i \(-0.229121\pi\)
−0.659238 + 0.751934i \(0.729121\pi\)
\(942\) −709.167 709.167i −0.752831 0.752831i
\(943\) 748.132 748.132i 0.793353 0.793353i
\(944\) 99.8120 99.8120i 0.105733 0.105733i
\(945\) −266.704 −0.282226
\(946\) 413.234i 0.436822i
\(947\) 1046.94 1046.94i 1.10554 1.10554i 0.111806 0.993730i \(-0.464336\pi\)
0.993730 0.111806i \(-0.0356635\pi\)
\(948\) 1593.83i 1.68126i
\(949\) 0 0
\(950\) 162.426 0.170975
\(951\) −511.127 511.127i −0.537462 0.537462i
\(952\) −45.2511 −0.0475326
\(953\) 850.534i 0.892481i −0.894913 0.446240i \(-0.852763\pi\)
0.894913 0.446240i \(-0.147237\pi\)
\(954\) −518.725 518.725i −0.543737 0.543737i
\(955\) 22.3853 + 22.3853i 0.0234401 + 0.0234401i
\(956\) −369.036 + 369.036i −0.386021 + 0.386021i
\(957\) −364.361 + 364.361i −0.380732 + 0.380732i
\(958\) 1045.17 1.09099
\(959\) 1005.93i 1.04894i
\(960\) 14.4565 14.4565i 0.0150589 0.0150589i
\(961\) 789.003i 0.821023i
\(962\) 0 0
\(963\) −1666.18 −1.73019
\(964\) −314.584 314.584i −0.326332 0.326332i
\(965\) −148.714 −0.154108
\(966\) 1093.51i 1.13199i
\(967\) 133.506 + 133.506i 0.138062 + 0.138062i 0.772760 0.634698i \(-0.218875\pi\)
−0.634698 + 0.772760i \(0.718875\pi\)
\(968\) −179.341 179.341i −0.185270 0.185270i
\(969\) 36.7831 36.7831i 0.0379598 0.0379598i
\(970\) −51.5786 + 51.5786i −0.0531738 + 0.0531738i
\(971\) 1387.44 1.42888 0.714439 0.699697i \(-0.246682\pi\)
0.714439 + 0.699697i \(0.246682\pi\)
\(972\) 1019.13i 1.04849i
\(973\) −339.793 + 339.793i −0.349221 + 0.349221i
\(974\) 849.579i 0.872257i
\(975\) 0 0
\(976\) −111.536 −0.114279
\(977\) 990.982 + 990.982i 1.01431 + 1.01431i 0.999896 + 0.0144153i \(0.00458870\pi\)
0.0144153 + 0.999896i \(0.495411\pi\)
\(978\) −1333.97 −1.36398
\(979\) 873.855i 0.892599i
\(980\) 9.19789 + 9.19789i 0.00938560 + 0.00938560i
\(981\) 129.150 + 129.150i 0.131651 + 0.131651i
\(982\) −557.000 + 557.000i −0.567210 + 0.567210i
\(983\) 457.371 457.371i 0.465280 0.465280i −0.435101 0.900382i \(-0.643287\pi\)
0.900382 + 0.435101i \(0.143287\pi\)
\(984\) 957.706 0.973279
\(985\) 146.642i 0.148875i
\(986\) −33.2068 + 33.2068i −0.0336783 + 0.0336783i
\(987\) 547.922i 0.555139i
\(988\) 0 0
\(989\) 910.087 0.920210
\(990\) 56.7318 + 56.7318i 0.0573049 + 0.0573049i
\(991\) −151.629 −0.153007 −0.0765033 0.997069i \(-0.524376\pi\)
−0.0765033 + 0.997069i \(0.524376\pi\)
\(992\) 74.1882i 0.0747865i
\(993\) 589.942 + 589.942i 0.594100 + 0.594100i
\(994\) −608.030 608.030i −0.611700 0.611700i
\(995\) −55.9752 + 55.9752i −0.0562565 + 0.0562565i
\(996\) 1023.40 1023.40i 1.02751 1.02751i
\(997\) −479.802 −0.481245 −0.240623 0.970619i \(-0.577352\pi\)
−0.240623 + 0.970619i \(0.577352\pi\)
\(998\) 185.475i 0.185847i
\(999\) 1825.65 1825.65i 1.82747 1.82747i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.3.d.g.99.4 8
13.2 odd 12 338.3.f.h.19.1 8
13.3 even 3 26.3.f.b.7.1 8
13.4 even 6 338.3.f.j.89.1 8
13.5 odd 4 inner 338.3.d.g.239.4 8
13.6 odd 12 26.3.f.b.15.1 yes 8
13.7 odd 12 338.3.f.i.249.1 8
13.8 odd 4 338.3.d.f.239.4 8
13.9 even 3 338.3.f.h.89.1 8
13.10 even 6 338.3.f.i.319.1 8
13.11 odd 12 338.3.f.j.19.1 8
13.12 even 2 338.3.d.f.99.4 8
39.29 odd 6 234.3.bb.f.163.2 8
39.32 even 12 234.3.bb.f.145.2 8
52.3 odd 6 208.3.bd.f.33.2 8
52.19 even 12 208.3.bd.f.145.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.3.f.b.7.1 8 13.3 even 3
26.3.f.b.15.1 yes 8 13.6 odd 12
208.3.bd.f.33.2 8 52.3 odd 6
208.3.bd.f.145.2 8 52.19 even 12
234.3.bb.f.145.2 8 39.32 even 12
234.3.bb.f.163.2 8 39.29 odd 6
338.3.d.f.99.4 8 13.12 even 2
338.3.d.f.239.4 8 13.8 odd 4
338.3.d.g.99.4 8 1.1 even 1 trivial
338.3.d.g.239.4 8 13.5 odd 4 inner
338.3.f.h.19.1 8 13.2 odd 12
338.3.f.h.89.1 8 13.9 even 3
338.3.f.i.249.1 8 13.7 odd 12
338.3.f.i.319.1 8 13.10 even 6
338.3.f.j.19.1 8 13.11 odd 12
338.3.f.j.89.1 8 13.4 even 6