Properties

Label 26.3.f.b.15.1
Level $26$
Weight $3$
Character 26.15
Analytic conductor $0.708$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [26,3,Mod(7,26)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(26, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([11]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("26.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 26.f (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.708448687337\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.612074651904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 15.1
Root \(4.71318 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 26.15
Dual form 26.3.f.b.7.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(-2.78960 - 4.83174i) q^{3} +(1.73205 + 1.00000i) q^{4} +(0.323893 - 0.323893i) q^{5} +(2.04213 + 7.62134i) q^{6} +(7.67890 - 2.05755i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-11.0638 + 19.1630i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(-2.78960 - 4.83174i) q^{3} +(1.73205 + 1.00000i) q^{4} +(0.323893 - 0.323893i) q^{5} +(2.04213 + 7.62134i) q^{6} +(7.67890 - 2.05755i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-11.0638 + 19.1630i) q^{9} +(-0.560999 + 0.323893i) q^{10} +(1.44868 - 5.40655i) q^{11} -11.1584i q^{12} +(12.8550 - 1.93621i) q^{13} -11.2427 q^{14} +(-2.46850 - 0.661433i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-1.74285 - 1.00623i) q^{17} +(22.1276 - 22.1276i) q^{18} +(1.19911 + 4.47512i) q^{19} +(0.884892 - 0.237106i) q^{20} +(-31.3626 - 31.3626i) q^{21} +(-3.95787 + 6.85523i) q^{22} +(-15.0976 + 8.71663i) q^{23} +(-4.08426 + 15.2427i) q^{24} +24.7902i q^{25} +(-18.2690 - 2.06034i) q^{26} +73.2415 q^{27} +(15.3578 + 4.11511i) q^{28} +(8.25026 + 14.2899i) q^{29} +(3.12993 + 1.80707i) q^{30} +(-9.27353 + 9.27353i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(-30.1643 + 8.08249i) q^{33} +(2.01247 + 2.01247i) q^{34} +(1.82071 - 3.15357i) q^{35} +(-38.3261 + 22.1276i) q^{36} +(9.12370 - 34.0501i) q^{37} -6.55204i q^{38} +(-45.2156 - 56.7107i) q^{39} -1.29557 q^{40} +(58.6217 + 15.7076i) q^{41} +(31.3626 + 54.3217i) q^{42} +(-45.2101 - 26.1020i) q^{43} +(7.91574 - 7.91574i) q^{44} +(2.62329 + 9.79026i) q^{45} +(23.8143 - 6.38102i) q^{46} +(8.73527 + 8.73527i) q^{47} +(11.1584 - 19.3269i) q^{48} +(12.2967 - 7.09948i) q^{49} +(9.07384 - 33.8640i) q^{50} +11.2280i q^{51} +(24.2017 + 9.50138i) q^{52} -23.4425 q^{53} +(-100.050 - 26.8082i) q^{54} +(-1.28193 - 2.22036i) q^{55} +(-19.4729 - 11.2427i) q^{56} +(18.2776 - 18.2776i) q^{57} +(-6.03961 - 22.5401i) q^{58} +(34.0864 - 9.13343i) q^{59} +(-3.61413 - 3.61413i) q^{60} +(-13.9421 + 24.1483i) q^{61} +(16.0622 - 9.27353i) q^{62} +(-45.5287 + 169.915i) q^{63} +8.00000i q^{64} +(3.53652 - 4.79077i) q^{65} +44.1635 q^{66} +(-33.0643 - 8.85955i) q^{67} +(-2.01247 - 3.48570i) q^{68} +(84.2329 + 48.6319i) q^{69} +(-3.64143 + 3.64143i) q^{70} +(19.7955 + 73.8778i) q^{71} +(60.4537 - 16.1985i) q^{72} +(-18.9304 - 18.9304i) q^{73} +(-24.9264 + 43.1738i) q^{74} +(119.780 - 69.1548i) q^{75} +(-2.39821 + 8.95025i) q^{76} -44.4971i q^{77} +(41.0082 + 94.0184i) q^{78} -142.837 q^{79} +(1.76978 + 0.474212i) q^{80} +(-104.741 - 181.416i) q^{81} +(-74.3293 - 42.9141i) q^{82} +(-91.7157 + 91.7157i) q^{83} +(-22.9590 - 85.6843i) q^{84} +(-0.890409 + 0.238584i) q^{85} +(52.2041 + 52.2041i) q^{86} +(46.0299 - 79.7262i) q^{87} +(-13.7105 + 7.91574i) q^{88} +(40.4072 - 150.802i) q^{89} -14.3339i q^{90} +(94.7284 - 41.3178i) q^{91} -34.8665 q^{92} +(70.6767 + 18.9378i) q^{93} +(-8.73527 - 15.1299i) q^{94} +(1.83784 + 1.06108i) q^{95} +(-22.3168 + 22.3168i) q^{96} +(29.1440 + 108.767i) q^{97} +(-19.3961 + 5.19718i) q^{98} +(87.5780 + 87.5780i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 6 q^{5} + 6 q^{6} - 2 q^{7} - 16 q^{8} - 42 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{2} + 6 q^{5} + 6 q^{6} - 2 q^{7} - 16 q^{8} - 42 q^{9} - 18 q^{10} - 18 q^{11} + 36 q^{13} + 20 q^{14} + 66 q^{15} + 16 q^{16} - 42 q^{17} + 84 q^{18} + 46 q^{19} + 24 q^{20} - 102 q^{21} - 42 q^{22} - 36 q^{23} - 12 q^{24} + 40 q^{26} + 72 q^{27} - 4 q^{28} - 6 q^{29} - 192 q^{30} + 32 q^{31} + 16 q^{32} + 42 q^{33} - 60 q^{34} - 78 q^{35} - 48 q^{36} - 106 q^{37} + 12 q^{39} - 24 q^{40} + 132 q^{41} + 102 q^{42} - 108 q^{43} + 84 q^{44} + 240 q^{45} + 90 q^{46} + 60 q^{47} + 258 q^{49} + 194 q^{50} + 32 q^{52} - 132 q^{53} - 270 q^{54} - 162 q^{55} - 12 q^{56} - 294 q^{57} - 24 q^{58} + 18 q^{59} - 120 q^{60} + 36 q^{61} - 12 q^{62} - 72 q^{63} - 300 q^{65} + 108 q^{66} - 74 q^{67} + 60 q^{68} + 258 q^{69} + 156 q^{70} - 174 q^{71} + 132 q^{72} + 166 q^{73} - 32 q^{74} + 6 q^{75} - 92 q^{76} + 126 q^{78} - 96 q^{79} + 48 q^{80} - 12 q^{81} - 252 q^{82} - 240 q^{83} - 132 q^{84} - 24 q^{85} + 132 q^{86} + 360 q^{87} - 12 q^{88} + 294 q^{89} + 298 q^{91} - 216 q^{92} + 270 q^{93} - 60 q^{94} + 714 q^{95} - 58 q^{97} - 250 q^{98} + 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).

\(n\) \(15\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) −2.78960 4.83174i −0.929868 1.61058i −0.783539 0.621343i \(-0.786587\pi\)
−0.146330 0.989236i \(-0.546746\pi\)
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 0.323893 0.323893i 0.0647786 0.0647786i −0.673975 0.738754i \(-0.735415\pi\)
0.738754 + 0.673975i \(0.235415\pi\)
\(6\) 2.04213 + 7.62134i 0.340355 + 1.27022i
\(7\) 7.67890 2.05755i 1.09699 0.293936i 0.335449 0.942058i \(-0.391112\pi\)
0.761536 + 0.648122i \(0.224445\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −11.0638 + 19.1630i −1.22931 + 2.12923i
\(10\) −0.560999 + 0.323893i −0.0560999 + 0.0323893i
\(11\) 1.44868 5.40655i 0.131698 0.491504i −0.868291 0.496054i \(-0.834782\pi\)
0.999990 + 0.00455003i \(0.00144833\pi\)
\(12\) 11.1584i 0.929868i
\(13\) 12.8550 1.93621i 0.988846 0.148939i
\(14\) −11.2427 −0.803049
\(15\) −2.46850 0.661433i −0.164567 0.0440955i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −1.74285 1.00623i −0.102520 0.0591902i 0.447863 0.894102i \(-0.352185\pi\)
−0.550384 + 0.834912i \(0.685519\pi\)
\(18\) 22.1276 22.1276i 1.22931 1.22931i
\(19\) 1.19911 + 4.47512i 0.0631108 + 0.235533i 0.990275 0.139122i \(-0.0444279\pi\)
−0.927164 + 0.374655i \(0.877761\pi\)
\(20\) 0.884892 0.237106i 0.0442446 0.0118553i
\(21\) −31.3626 31.3626i −1.49346 1.49346i
\(22\) −3.95787 + 6.85523i −0.179903 + 0.311601i
\(23\) −15.0976 + 8.71663i −0.656419 + 0.378984i −0.790911 0.611931i \(-0.790393\pi\)
0.134492 + 0.990915i \(0.457060\pi\)
\(24\) −4.08426 + 15.2427i −0.170178 + 0.635112i
\(25\) 24.7902i 0.991607i
\(26\) −18.2690 2.06034i −0.702652 0.0792439i
\(27\) 73.2415 2.71265
\(28\) 15.3578 + 4.11511i 0.548493 + 0.146968i
\(29\) 8.25026 + 14.2899i 0.284492 + 0.492754i 0.972486 0.232962i \(-0.0748418\pi\)
−0.687994 + 0.725716i \(0.741508\pi\)
\(30\) 3.12993 + 1.80707i 0.104331 + 0.0602356i
\(31\) −9.27353 + 9.27353i −0.299146 + 0.299146i −0.840679 0.541533i \(-0.817844\pi\)
0.541533 + 0.840679i \(0.317844\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) −30.1643 + 8.08249i −0.914069 + 0.244924i
\(34\) 2.01247 + 2.01247i 0.0591902 + 0.0591902i
\(35\) 1.82071 3.15357i 0.0520204 0.0901020i
\(36\) −38.3261 + 22.1276i −1.06461 + 0.614655i
\(37\) 9.12370 34.0501i 0.246586 0.920273i −0.725993 0.687702i \(-0.758620\pi\)
0.972579 0.232571i \(-0.0747138\pi\)
\(38\) 6.55204i 0.172422i
\(39\) −45.2156 56.7107i −1.15938 1.45412i
\(40\) −1.29557 −0.0323893
\(41\) 58.6217 + 15.7076i 1.42980 + 0.383113i 0.888949 0.458007i \(-0.151436\pi\)
0.540849 + 0.841120i \(0.318103\pi\)
\(42\) 31.3626 + 54.3217i 0.746730 + 1.29337i
\(43\) −45.2101 26.1020i −1.05140 0.607024i −0.128357 0.991728i \(-0.540970\pi\)
−0.923040 + 0.384704i \(0.874304\pi\)
\(44\) 7.91574 7.91574i 0.179903 0.179903i
\(45\) 2.62329 + 9.79026i 0.0582954 + 0.217561i
\(46\) 23.8143 6.38102i 0.517702 0.138718i
\(47\) 8.73527 + 8.73527i 0.185857 + 0.185857i 0.793902 0.608045i \(-0.208046\pi\)
−0.608045 + 0.793902i \(0.708046\pi\)
\(48\) 11.1584 19.3269i 0.232467 0.402645i
\(49\) 12.2967 7.09948i 0.250952 0.144887i
\(50\) 9.07384 33.8640i 0.181477 0.677280i
\(51\) 11.2280i 0.220156i
\(52\) 24.2017 + 9.50138i 0.465418 + 0.182719i
\(53\) −23.4425 −0.442311 −0.221155 0.975239i \(-0.570983\pi\)
−0.221155 + 0.975239i \(0.570983\pi\)
\(54\) −100.050 26.8082i −1.85277 0.496449i
\(55\) −1.28193 2.22036i −0.0233077 0.0403702i
\(56\) −19.4729 11.2427i −0.347730 0.200762i
\(57\) 18.2776 18.2776i 0.320660 0.320660i
\(58\) −6.03961 22.5401i −0.104131 0.388623i
\(59\) 34.0864 9.13343i 0.577736 0.154804i 0.0418940 0.999122i \(-0.486661\pi\)
0.535842 + 0.844318i \(0.319994\pi\)
\(60\) −3.61413 3.61413i −0.0602356 0.0602356i
\(61\) −13.9421 + 24.1483i −0.228558 + 0.395875i −0.957381 0.288828i \(-0.906734\pi\)
0.728823 + 0.684702i \(0.240068\pi\)
\(62\) 16.0622 9.27353i 0.259068 0.149573i
\(63\) −45.5287 + 169.915i −0.722677 + 2.69707i
\(64\) 8.00000i 0.125000i
\(65\) 3.53652 4.79077i 0.0544080 0.0737042i
\(66\) 44.1635 0.669145
\(67\) −33.0643 8.85955i −0.493497 0.132232i 0.00348324 0.999994i \(-0.498891\pi\)
−0.496980 + 0.867762i \(0.665558\pi\)
\(68\) −2.01247 3.48570i −0.0295951 0.0512602i
\(69\) 84.2329 + 48.6319i 1.22077 + 0.704810i
\(70\) −3.64143 + 3.64143i −0.0520204 + 0.0520204i
\(71\) 19.7955 + 73.8778i 0.278810 + 1.04053i 0.953245 + 0.302198i \(0.0977205\pi\)
−0.674435 + 0.738334i \(0.735613\pi\)
\(72\) 60.4537 16.1985i 0.839634 0.224979i
\(73\) −18.9304 18.9304i −0.259320 0.259320i 0.565457 0.824778i \(-0.308700\pi\)
−0.824778 + 0.565457i \(0.808700\pi\)
\(74\) −24.9264 + 43.1738i −0.336843 + 0.583430i
\(75\) 119.780 69.1548i 1.59706 0.922064i
\(76\) −2.39821 + 8.95025i −0.0315554 + 0.117766i
\(77\) 44.4971i 0.577884i
\(78\) 41.0082 + 94.0184i 0.525746 + 1.20536i
\(79\) −142.837 −1.80806 −0.904029 0.427471i \(-0.859404\pi\)
−0.904029 + 0.427471i \(0.859404\pi\)
\(80\) 1.76978 + 0.474212i 0.0221223 + 0.00592766i
\(81\) −104.741 181.416i −1.29310 2.23971i
\(82\) −74.3293 42.9141i −0.906455 0.523342i
\(83\) −91.7157 + 91.7157i −1.10501 + 1.10501i −0.111212 + 0.993797i \(0.535473\pi\)
−0.993797 + 0.111212i \(0.964527\pi\)
\(84\) −22.9590 85.6843i −0.273322 1.02005i
\(85\) −0.890409 + 0.238584i −0.0104754 + 0.00280687i
\(86\) 52.2041 + 52.2041i 0.607024 + 0.607024i
\(87\) 46.0299 79.7262i 0.529080 0.916393i
\(88\) −13.7105 + 7.91574i −0.155801 + 0.0899515i
\(89\) 40.4072 150.802i 0.454014 1.69440i −0.236956 0.971520i \(-0.576150\pi\)
0.690970 0.722883i \(-0.257183\pi\)
\(90\) 14.3339i 0.159266i
\(91\) 94.7284 41.3178i 1.04097 0.454042i
\(92\) −34.8665 −0.378984
\(93\) 70.6767 + 18.9378i 0.759965 + 0.203632i
\(94\) −8.73527 15.1299i −0.0929284 0.160957i
\(95\) 1.83784 + 1.06108i 0.0193457 + 0.0111693i
\(96\) −22.3168 + 22.3168i −0.232467 + 0.232467i
\(97\) 29.1440 + 108.767i 0.300454 + 1.12131i 0.936789 + 0.349896i \(0.113783\pi\)
−0.636335 + 0.771413i \(0.719550\pi\)
\(98\) −19.3961 + 5.19718i −0.197920 + 0.0530325i
\(99\) 87.5780 + 87.5780i 0.884626 + 0.884626i
\(100\) −24.7902 + 42.9379i −0.247902 + 0.429379i
\(101\) −84.6101 + 48.8497i −0.837724 + 0.483660i −0.856490 0.516164i \(-0.827360\pi\)
0.0187659 + 0.999824i \(0.494026\pi\)
\(102\) 4.10973 15.3377i 0.0402914 0.150370i
\(103\) 108.442i 1.05284i −0.850226 0.526418i \(-0.823535\pi\)
0.850226 0.526418i \(-0.176465\pi\)
\(104\) −29.5824 21.8376i −0.284446 0.209977i
\(105\) −20.3163 −0.193488
\(106\) 32.0230 + 8.58054i 0.302104 + 0.0809485i
\(107\) 37.6493 + 65.2105i 0.351863 + 0.609444i 0.986576 0.163304i \(-0.0522151\pi\)
−0.634713 + 0.772748i \(0.718882\pi\)
\(108\) 126.858 + 73.2415i 1.17461 + 0.678162i
\(109\) 5.83660 5.83660i 0.0535468 0.0535468i −0.679826 0.733373i \(-0.737945\pi\)
0.733373 + 0.679826i \(0.237945\pi\)
\(110\) 0.938435 + 3.50229i 0.00853123 + 0.0318390i
\(111\) −189.973 + 50.9030i −1.71147 + 0.458586i
\(112\) 22.4854 + 22.4854i 0.200762 + 0.200762i
\(113\) 57.2435 99.1486i 0.506580 0.877422i −0.493391 0.869807i \(-0.664243\pi\)
0.999971 0.00761416i \(-0.00242369\pi\)
\(114\) −31.6577 + 18.2776i −0.277699 + 0.160330i
\(115\) −2.06677 + 7.71328i −0.0179719 + 0.0670720i
\(116\) 33.0010i 0.284492i
\(117\) −105.121 + 267.763i −0.898473 + 2.28857i
\(118\) −49.9060 −0.422932
\(119\) −15.4535 4.14076i −0.129862 0.0347963i
\(120\) 3.61413 + 6.25986i 0.0301178 + 0.0521655i
\(121\) 77.6570 + 44.8353i 0.641793 + 0.370540i
\(122\) 27.8841 27.8841i 0.228558 0.228558i
\(123\) −87.6362 327.063i −0.712489 2.65905i
\(124\) −25.3357 + 6.78869i −0.204321 + 0.0547475i
\(125\) 16.1267 + 16.1267i 0.129014 + 0.129014i
\(126\) 124.387 215.444i 0.987196 1.70987i
\(127\) 83.8081 48.3866i 0.659906 0.380997i −0.132335 0.991205i \(-0.542247\pi\)
0.792241 + 0.610208i \(0.208914\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) 291.258i 2.25781i
\(130\) −6.58452 + 5.24986i −0.0506502 + 0.0403835i
\(131\) 159.613 1.21842 0.609212 0.793008i \(-0.291486\pi\)
0.609212 + 0.793008i \(0.291486\pi\)
\(132\) −60.3285 16.1650i −0.457034 0.122462i
\(133\) 18.4156 + 31.8968i 0.138463 + 0.239825i
\(134\) 41.9239 + 24.2048i 0.312865 + 0.180632i
\(135\) 23.7224 23.7224i 0.175722 0.175722i
\(136\) 1.47323 + 5.49816i 0.0108326 + 0.0404277i
\(137\) −122.224 + 32.7498i −0.892146 + 0.239050i −0.675640 0.737232i \(-0.736133\pi\)
−0.216506 + 0.976281i \(0.569466\pi\)
\(138\) −97.2638 97.2638i −0.704810 0.704810i
\(139\) −30.2234 + 52.3485i −0.217435 + 0.376608i −0.954023 0.299733i \(-0.903102\pi\)
0.736588 + 0.676341i \(0.236436\pi\)
\(140\) 6.30714 3.64143i 0.0450510 0.0260102i
\(141\) 17.8386 66.5745i 0.126515 0.472159i
\(142\) 108.165i 0.761723i
\(143\) 8.15456 72.3061i 0.0570249 0.505637i
\(144\) −88.5103 −0.614655
\(145\) 7.30059 + 1.95619i 0.0503489 + 0.0134910i
\(146\) 18.9304 + 32.7884i 0.129660 + 0.224578i
\(147\) −68.6056 39.6095i −0.466705 0.269452i
\(148\) 49.8528 49.8528i 0.336843 0.336843i
\(149\) −56.5047 210.878i −0.379226 1.41529i −0.847070 0.531481i \(-0.821636\pi\)
0.467844 0.883811i \(-0.345031\pi\)
\(150\) −188.934 + 50.6248i −1.25956 + 0.337499i
\(151\) 73.7140 + 73.7140i 0.488172 + 0.488172i 0.907729 0.419557i \(-0.137815\pi\)
−0.419557 + 0.907729i \(0.637815\pi\)
\(152\) 6.55204 11.3485i 0.0431055 0.0746609i
\(153\) 38.5650 22.2655i 0.252059 0.145526i
\(154\) −16.2871 + 60.7841i −0.105760 + 0.394702i
\(155\) 6.00726i 0.0387565i
\(156\) −21.6051 143.441i −0.138494 0.919497i
\(157\) −127.109 −0.809611 −0.404805 0.914403i \(-0.632661\pi\)
−0.404805 + 0.914403i \(0.632661\pi\)
\(158\) 195.118 + 52.2818i 1.23493 + 0.330898i
\(159\) 65.3952 + 113.268i 0.411291 + 0.712376i
\(160\) −2.24400 1.29557i −0.0140250 0.00809733i
\(161\) −97.9983 + 97.9983i −0.608685 + 0.608685i
\(162\) 76.6755 + 286.157i 0.473306 + 1.76640i
\(163\) 163.306 43.7578i 1.00188 0.268453i 0.279646 0.960103i \(-0.409783\pi\)
0.722232 + 0.691650i \(0.243116\pi\)
\(164\) 85.8281 + 85.8281i 0.523342 + 0.523342i
\(165\) −7.15213 + 12.3879i −0.0433463 + 0.0750779i
\(166\) 158.856 91.7157i 0.956965 0.552504i
\(167\) 43.1534 161.051i 0.258403 0.964375i −0.707762 0.706451i \(-0.750295\pi\)
0.966165 0.257924i \(-0.0830383\pi\)
\(168\) 125.451i 0.746730i
\(169\) 161.502 49.7800i 0.955634 0.294556i
\(170\) 1.30365 0.00766852
\(171\) −99.0237 26.5333i −0.579086 0.155166i
\(172\) −52.2041 90.4201i −0.303512 0.525698i
\(173\) −121.663 70.2419i −0.703252 0.406023i 0.105305 0.994440i \(-0.466418\pi\)
−0.808557 + 0.588417i \(0.799751\pi\)
\(174\) −92.0599 + 92.0599i −0.529080 + 0.529080i
\(175\) 51.0071 + 190.361i 0.291469 + 1.08778i
\(176\) 21.6262 5.79472i 0.122876 0.0329245i
\(177\) −139.218 139.218i −0.786543 0.786543i
\(178\) −110.395 + 191.209i −0.620195 + 1.07421i
\(179\) −273.667 + 158.002i −1.52886 + 0.882691i −0.529455 + 0.848338i \(0.677604\pi\)
−0.999410 + 0.0343526i \(0.989063\pi\)
\(180\) −5.24659 + 19.5805i −0.0291477 + 0.108781i
\(181\) 83.6580i 0.462199i −0.972930 0.231099i \(-0.925768\pi\)
0.972930 0.231099i \(-0.0742323\pi\)
\(182\) −144.525 + 21.7682i −0.794092 + 0.119606i
\(183\) 155.571 0.850116
\(184\) 47.6285 + 12.7620i 0.258851 + 0.0693589i
\(185\) −8.07349 13.9837i −0.0436405 0.0755876i
\(186\) −89.6145 51.7389i −0.481798 0.278166i
\(187\) −7.96508 + 7.96508i −0.0425940 + 0.0425940i
\(188\) 6.39466 + 23.8652i 0.0340142 + 0.126943i
\(189\) 562.414 150.698i 2.97573 0.797346i
\(190\) −2.12216 2.12216i −0.0111693 0.0111693i
\(191\) −34.5567 + 59.8539i −0.180925 + 0.313371i −0.942196 0.335063i \(-0.891242\pi\)
0.761271 + 0.648434i \(0.224576\pi\)
\(192\) 38.6539 22.3168i 0.201322 0.116234i
\(193\) −84.0297 + 313.603i −0.435387 + 1.62489i 0.304752 + 0.952432i \(0.401426\pi\)
−0.740139 + 0.672454i \(0.765240\pi\)
\(194\) 159.246i 0.820855i
\(195\) −33.0132 3.72318i −0.169299 0.0190932i
\(196\) 28.3979 0.144887
\(197\) −309.232 82.8586i −1.56971 0.420602i −0.633987 0.773344i \(-0.718583\pi\)
−0.935721 + 0.352742i \(0.885249\pi\)
\(198\) −87.5780 151.690i −0.442313 0.766109i
\(199\) 149.667 + 86.4100i 0.752093 + 0.434221i 0.826450 0.563010i \(-0.190357\pi\)
−0.0743564 + 0.997232i \(0.523690\pi\)
\(200\) 49.5804 49.5804i 0.247902 0.247902i
\(201\) 49.4293 + 184.473i 0.245917 + 0.917775i
\(202\) 133.460 35.7604i 0.660692 0.177032i
\(203\) 92.7551 + 92.7551i 0.456922 + 0.456922i
\(204\) −11.2280 + 19.4474i −0.0550391 + 0.0953305i
\(205\) 24.0748 13.8996i 0.117438 0.0678028i
\(206\) −39.6926 + 148.135i −0.192682 + 0.719101i
\(207\) 385.756i 1.86355i
\(208\) 32.4172 + 40.6586i 0.155852 + 0.195474i
\(209\) 25.9321 0.124077
\(210\) 27.7526 + 7.43628i 0.132155 + 0.0354108i
\(211\) −115.089 199.341i −0.545447 0.944743i −0.998579 0.0532988i \(-0.983026\pi\)
0.453131 0.891444i \(-0.350307\pi\)
\(212\) −40.6035 23.4425i −0.191526 0.110578i
\(213\) 301.736 301.736i 1.41660 1.41660i
\(214\) −27.5612 102.860i −0.128791 0.480653i
\(215\) −23.0975 + 6.18896i −0.107430 + 0.0287858i
\(216\) −146.483 146.483i −0.678162 0.678162i
\(217\) −52.1297 + 90.2912i −0.240229 + 0.416089i
\(218\) −10.1093 + 5.83660i −0.0463728 + 0.0267734i
\(219\) −38.6584 + 144.275i −0.176522 + 0.658790i
\(220\) 5.12770i 0.0233077i
\(221\) −24.3526 9.56062i −0.110193 0.0432607i
\(222\) 278.139 1.25288
\(223\) −254.206 68.1143i −1.13994 0.305445i −0.361012 0.932561i \(-0.617569\pi\)
−0.778926 + 0.627116i \(0.784235\pi\)
\(224\) −22.4854 38.9458i −0.100381 0.173865i
\(225\) −475.055 274.273i −2.11136 1.21899i
\(226\) −114.487 + 114.487i −0.506580 + 0.506580i
\(227\) 30.8416 + 115.102i 0.135866 + 0.507059i 0.999993 + 0.00378487i \(0.00120476\pi\)
−0.864127 + 0.503274i \(0.832129\pi\)
\(228\) 49.9353 13.3801i 0.219015 0.0586848i
\(229\) −224.372 224.372i −0.979791 0.979791i 0.0200093 0.999800i \(-0.493630\pi\)
−0.999800 + 0.0200093i \(0.993630\pi\)
\(230\) 5.64651 9.78005i 0.0245501 0.0425219i
\(231\) −214.998 + 124.129i −0.930727 + 0.537356i
\(232\) 12.0792 45.0803i 0.0520656 0.194311i
\(233\) 230.683i 0.990054i 0.868878 + 0.495027i \(0.164842\pi\)
−0.868878 + 0.495027i \(0.835158\pi\)
\(234\) 241.606 327.294i 1.03251 1.39869i
\(235\) 5.65859 0.0240791
\(236\) 68.1729 + 18.2669i 0.288868 + 0.0774020i
\(237\) 398.458 + 690.149i 1.68126 + 2.91202i
\(238\) 19.5943 + 11.3128i 0.0823290 + 0.0475326i
\(239\) 184.518 184.518i 0.772041 0.772041i −0.206422 0.978463i \(-0.566182\pi\)
0.978463 + 0.206422i \(0.0661820\pi\)
\(240\) −2.64573 9.87400i −0.0110239 0.0411417i
\(241\) 214.865 57.5730i 0.891557 0.238892i 0.216170 0.976356i \(-0.430643\pi\)
0.675387 + 0.737464i \(0.263977\pi\)
\(242\) −89.6706 89.6706i −0.370540 0.370540i
\(243\) −254.784 + 441.298i −1.04849 + 1.81604i
\(244\) −48.2967 + 27.8841i −0.197937 + 0.114279i
\(245\) 1.68333 6.28228i 0.00687074 0.0256419i
\(246\) 478.853i 1.94656i
\(247\) 24.0793 + 55.2060i 0.0974871 + 0.223506i
\(248\) 37.0941 0.149573
\(249\) 698.997 + 187.296i 2.80722 + 0.752191i
\(250\) −16.1267 27.9323i −0.0645068 0.111729i
\(251\) 218.211 + 125.984i 0.869366 + 0.501929i 0.867138 0.498069i \(-0.165957\pi\)
0.00222866 + 0.999998i \(0.499291\pi\)
\(252\) −248.773 + 248.773i −0.987196 + 0.987196i
\(253\) 25.2552 + 94.2537i 0.0998230 + 0.372544i
\(254\) −132.195 + 35.4215i −0.520452 + 0.139455i
\(255\) 3.63666 + 3.63666i 0.0142614 + 0.0142614i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 251.399 145.145i 0.978204 0.564767i 0.0764769 0.997071i \(-0.475633\pi\)
0.901728 + 0.432305i \(0.142300\pi\)
\(258\) 106.608 397.865i 0.413208 1.54211i
\(259\) 280.240i 1.08201i
\(260\) 10.9162 4.76134i 0.0419854 0.0183128i
\(261\) −365.117 −1.39891
\(262\) −218.036 58.4226i −0.832199 0.222987i
\(263\) 53.9337 + 93.4160i 0.205071 + 0.355194i 0.950155 0.311777i \(-0.100924\pi\)
−0.745084 + 0.666970i \(0.767591\pi\)
\(264\) 76.4935 + 44.1635i 0.289748 + 0.167286i
\(265\) −7.59285 + 7.59285i −0.0286523 + 0.0286523i
\(266\) −13.4812 50.3124i −0.0506811 0.189144i
\(267\) −841.355 + 225.440i −3.15114 + 0.844346i
\(268\) −48.4095 48.4095i −0.180632 0.180632i
\(269\) 217.712 377.087i 0.809337 1.40181i −0.103987 0.994579i \(-0.533160\pi\)
0.913324 0.407234i \(-0.133507\pi\)
\(270\) −41.0884 + 23.7224i −0.152179 + 0.0878608i
\(271\) 21.7703 81.2480i 0.0803333 0.299808i −0.914056 0.405587i \(-0.867067\pi\)
0.994390 + 0.105779i \(0.0337337\pi\)
\(272\) 8.04987i 0.0295951i
\(273\) −463.892 342.442i −1.69924 1.25437i
\(274\) 178.948 0.653096
\(275\) 134.029 + 35.9131i 0.487379 + 0.130593i
\(276\) 97.2638 + 168.466i 0.352405 + 0.610383i
\(277\) −31.8797 18.4057i −0.115089 0.0664467i 0.441350 0.897335i \(-0.354500\pi\)
−0.556439 + 0.830888i \(0.687833\pi\)
\(278\) 60.4469 60.4469i 0.217435 0.217435i
\(279\) −75.1086 280.309i −0.269207 1.00469i
\(280\) −9.94856 + 2.66571i −0.0355306 + 0.00952039i
\(281\) −30.1080 30.1080i −0.107146 0.107146i 0.651501 0.758647i \(-0.274139\pi\)
−0.758647 + 0.651501i \(0.774139\pi\)
\(282\) −48.7359 + 84.4131i −0.172822 + 0.299337i
\(283\) −90.8978 + 52.4799i −0.321194 + 0.185441i −0.651924 0.758284i \(-0.726038\pi\)
0.330731 + 0.943725i \(0.392705\pi\)
\(284\) −39.5910 + 147.756i −0.139405 + 0.520266i
\(285\) 11.8400i 0.0415438i
\(286\) −37.6052 + 95.7872i −0.131487 + 0.334920i
\(287\) 482.469 1.68108
\(288\) 120.907 + 32.3970i 0.419817 + 0.112490i
\(289\) −142.475 246.774i −0.492993 0.853889i
\(290\) −9.25678 5.34441i −0.0319199 0.0184290i
\(291\) 444.233 444.233i 1.52657 1.52657i
\(292\) −13.8580 51.7188i −0.0474589 0.177119i
\(293\) 121.399 32.5289i 0.414333 0.111020i −0.0456298 0.998958i \(-0.514529\pi\)
0.459963 + 0.887938i \(0.347863\pi\)
\(294\) 79.2190 + 79.2190i 0.269452 + 0.269452i
\(295\) 8.08211 13.9986i 0.0273970 0.0474529i
\(296\) −86.3476 + 49.8528i −0.291715 + 0.168422i
\(297\) 106.103 395.984i 0.357251 1.33328i
\(298\) 308.748i 1.03607i
\(299\) −177.203 + 141.285i −0.592652 + 0.472524i
\(300\) 276.619 0.922064
\(301\) −400.870 107.413i −1.33179 0.356853i
\(302\) −73.7140 127.676i −0.244086 0.422769i
\(303\) 472.058 + 272.543i 1.55795 + 0.899480i
\(304\) −13.1041 + 13.1041i −0.0431055 + 0.0431055i
\(305\) 3.30575 + 12.3372i 0.0108385 + 0.0404499i
\(306\) −60.8305 + 16.2995i −0.198793 + 0.0532663i
\(307\) −159.407 159.407i −0.519242 0.519242i 0.398100 0.917342i \(-0.369670\pi\)
−0.917342 + 0.398100i \(0.869670\pi\)
\(308\) 44.4971 77.0712i 0.144471 0.250231i
\(309\) −523.964 + 302.511i −1.69568 + 0.978999i
\(310\) 2.19881 8.20607i 0.00709294 0.0264712i
\(311\) 461.756i 1.48475i 0.669986 + 0.742374i \(0.266300\pi\)
−0.669986 + 0.742374i \(0.733700\pi\)
\(312\) −22.9902 + 203.853i −0.0736864 + 0.653374i
\(313\) 8.16759 0.0260945 0.0130473 0.999915i \(-0.495847\pi\)
0.0130473 + 0.999915i \(0.495847\pi\)
\(314\) 173.634 + 46.5251i 0.552974 + 0.148169i
\(315\) 40.2880 + 69.7808i 0.127898 + 0.221526i
\(316\) −247.400 142.837i −0.782912 0.452014i
\(317\) −91.6127 + 91.6127i −0.288999 + 0.288999i −0.836684 0.547685i \(-0.815509\pi\)
0.547685 + 0.836684i \(0.315509\pi\)
\(318\) −47.8726 178.663i −0.150543 0.561833i
\(319\) 89.2109 23.9040i 0.279658 0.0749341i
\(320\) 2.59114 + 2.59114i 0.00809733 + 0.00809733i
\(321\) 210.053 363.823i 0.654372 1.13341i
\(322\) 169.738 97.9983i 0.527137 0.304343i
\(323\) 2.41316 9.00604i 0.00747109 0.0278825i
\(324\) 418.963i 1.29310i
\(325\) 47.9991 + 318.678i 0.147689 + 0.980547i
\(326\) −239.097 −0.733426
\(327\) −44.4827 11.9191i −0.136033 0.0364499i
\(328\) −85.8281 148.659i −0.261671 0.453228i
\(329\) 85.0505 + 49.1039i 0.258512 + 0.149252i
\(330\) 14.3043 14.3043i 0.0433463 0.0433463i
\(331\) 38.7033 + 144.443i 0.116928 + 0.436382i 0.999424 0.0339382i \(-0.0108049\pi\)
−0.882496 + 0.470321i \(0.844138\pi\)
\(332\) −250.572 + 67.1406i −0.754735 + 0.202231i
\(333\) 551.561 + 551.561i 1.65634 + 1.65634i
\(334\) −117.897 + 204.204i −0.352986 + 0.611389i
\(335\) −13.5789 + 7.83975i −0.0405339 + 0.0234022i
\(336\) 45.9181 171.369i 0.136661 0.510026i
\(337\) 61.7332i 0.183185i −0.995797 0.0915923i \(-0.970804\pi\)
0.995797 0.0915923i \(-0.0291956\pi\)
\(338\) −238.837 + 8.88689i −0.706618 + 0.0262926i
\(339\) −638.747 −1.88421
\(340\) −1.78082 0.477169i −0.00523770 0.00140344i
\(341\) 36.7034 + 63.5721i 0.107635 + 0.186429i
\(342\) 125.557 + 72.4904i 0.367126 + 0.211960i
\(343\) −195.629 + 195.629i −0.570346 + 0.570346i
\(344\) 38.2160 + 142.624i 0.111093 + 0.414605i
\(345\) 43.0340 11.5309i 0.124736 0.0334230i
\(346\) 140.484 + 140.484i 0.406023 + 0.406023i
\(347\) −110.431 + 191.272i −0.318245 + 0.551216i −0.980122 0.198396i \(-0.936427\pi\)
0.661877 + 0.749612i \(0.269760\pi\)
\(348\) 159.452 92.0599i 0.458196 0.264540i
\(349\) −75.3230 + 281.109i −0.215825 + 0.805470i 0.770049 + 0.637984i \(0.220232\pi\)
−0.985874 + 0.167486i \(0.946435\pi\)
\(350\) 278.708i 0.796309i
\(351\) 941.520 141.811i 2.68239 0.404020i
\(352\) −31.6629 −0.0899515
\(353\) 19.0412 + 5.10208i 0.0539412 + 0.0144535i 0.285689 0.958322i \(-0.407778\pi\)
−0.231748 + 0.972776i \(0.574444\pi\)
\(354\) 139.218 + 241.133i 0.393271 + 0.681166i
\(355\) 30.3401 + 17.5169i 0.0854652 + 0.0493433i
\(356\) 220.789 220.789i 0.620195 0.620195i
\(357\) 23.1022 + 86.2185i 0.0647120 + 0.241508i
\(358\) 431.668 115.665i 1.20578 0.323087i
\(359\) −275.618 275.618i −0.767738 0.767738i 0.209970 0.977708i \(-0.432663\pi\)
−0.977708 + 0.209970i \(0.932663\pi\)
\(360\) 14.3339 24.8271i 0.0398165 0.0689642i
\(361\) 294.046 169.768i 0.814533 0.470271i
\(362\) −30.6210 + 114.279i −0.0845883 + 0.315688i
\(363\) 500.291i 1.37821i
\(364\) 205.392 + 23.1638i 0.564264 + 0.0636367i
\(365\) −12.2628 −0.0335968
\(366\) −212.514 56.9430i −0.580640 0.155582i
\(367\) −234.367 405.936i −0.638603 1.10609i −0.985739 0.168278i \(-0.946179\pi\)
0.347136 0.937815i \(-0.387154\pi\)
\(368\) −60.3906 34.8665i −0.164105 0.0947460i
\(369\) −949.584 + 949.584i −2.57340 + 2.57340i
\(370\) 5.91021 + 22.0572i 0.0159735 + 0.0596140i
\(371\) −180.012 + 48.2341i −0.485208 + 0.130011i
\(372\) 103.478 + 103.478i 0.278166 + 0.278166i
\(373\) −130.407 + 225.872i −0.349617 + 0.605555i −0.986181 0.165669i \(-0.947022\pi\)
0.636564 + 0.771224i \(0.280355\pi\)
\(374\) 13.7959 7.96508i 0.0368875 0.0212970i
\(375\) 32.9329 122.907i 0.0878209 0.327752i
\(376\) 34.9411i 0.0929284i
\(377\) 133.725 + 167.722i 0.354709 + 0.444886i
\(378\) −823.431 −2.17839
\(379\) 206.894 + 55.4370i 0.545893 + 0.146272i 0.521218 0.853424i \(-0.325478\pi\)
0.0246758 + 0.999696i \(0.492145\pi\)
\(380\) 2.12216 + 3.67569i 0.00558463 + 0.00967286i
\(381\) −467.583 269.959i −1.22725 0.708554i
\(382\) 69.1133 69.1133i 0.180925 0.180925i
\(383\) −177.535 662.570i −0.463538 1.72995i −0.661690 0.749778i \(-0.730160\pi\)
0.198151 0.980171i \(-0.436506\pi\)
\(384\) −60.9707 + 16.3371i −0.158778 + 0.0425444i
\(385\) −14.4123 14.4123i −0.0374345 0.0374345i
\(386\) 229.573 397.633i 0.594750 1.03014i
\(387\) 1000.39 577.575i 2.58498 1.49244i
\(388\) −58.2880 + 217.534i −0.150227 + 0.560654i
\(389\) 374.691i 0.963216i 0.876387 + 0.481608i \(0.159947\pi\)
−0.876387 + 0.481608i \(0.840053\pi\)
\(390\) 43.7342 + 17.1696i 0.112139 + 0.0440247i
\(391\) 35.0839 0.0897286
\(392\) −38.7923 10.3944i −0.0989599 0.0265162i
\(393\) −445.258 771.210i −1.13297 1.96237i
\(394\) 392.091 + 226.374i 0.995155 + 0.574553i
\(395\) −46.2638 + 46.2638i −0.117123 + 0.117123i
\(396\) 64.1116 + 239.268i 0.161898 + 0.604211i
\(397\) 630.268 168.880i 1.58758 0.425390i 0.646316 0.763070i \(-0.276309\pi\)
0.941261 + 0.337680i \(0.109642\pi\)
\(398\) −172.820 172.820i −0.434221 0.434221i
\(399\) 102.745 177.959i 0.257505 0.446012i
\(400\) −85.8757 + 49.5804i −0.214689 + 0.123951i
\(401\) −111.879 + 417.539i −0.279001 + 1.04125i 0.674112 + 0.738629i \(0.264527\pi\)
−0.953113 + 0.302616i \(0.902140\pi\)
\(402\) 270.087i 0.671858i
\(403\) −101.256 + 137.167i −0.251255 + 0.340364i
\(404\) −195.399 −0.483660
\(405\) −92.6843 24.8347i −0.228850 0.0613202i
\(406\) −92.7551 160.656i −0.228461 0.395706i
\(407\) −170.876 98.6554i −0.419843 0.242397i
\(408\) 22.4560 22.4560i 0.0550391 0.0550391i
\(409\) 72.2456 + 269.624i 0.176640 + 0.659228i 0.996267 + 0.0863302i \(0.0275140\pi\)
−0.819627 + 0.572897i \(0.805819\pi\)
\(410\) −37.9743 + 10.1752i −0.0926203 + 0.0248175i
\(411\) 499.195 + 499.195i 1.21459 + 1.21459i
\(412\) 108.442 187.827i 0.263209 0.455892i
\(413\) 242.954 140.269i 0.588265 0.339635i
\(414\) −141.196 + 526.952i −0.341054 + 1.27283i
\(415\) 59.4122i 0.143162i
\(416\) −29.4007 67.4062i −0.0706747 0.162034i
\(417\) 337.246 0.808743
\(418\) −35.4239 9.49181i −0.0847462 0.0227077i
\(419\) −93.7951 162.458i −0.223855 0.387728i 0.732121 0.681175i \(-0.238531\pi\)
−0.955975 + 0.293447i \(0.905197\pi\)
\(420\) −35.1888 20.3163i −0.0837829 0.0483721i
\(421\) 410.480 410.480i 0.975013 0.975013i −0.0246826 0.999695i \(-0.507858\pi\)
0.999695 + 0.0246826i \(0.00785752\pi\)
\(422\) 84.2513 + 314.430i 0.199648 + 0.745095i
\(423\) −264.040 + 70.7492i −0.624207 + 0.167256i
\(424\) 46.8849 + 46.8849i 0.110578 + 0.110578i
\(425\) 24.9447 43.2055i 0.0586935 0.101660i
\(426\) −522.623 + 301.736i −1.22681 + 0.708302i
\(427\) −57.3731 + 214.119i −0.134363 + 0.501450i
\(428\) 150.597i 0.351863i
\(429\) −372.112 + 162.305i −0.867394 + 0.378333i
\(430\) 33.8171 0.0786444
\(431\) −516.808 138.478i −1.19909 0.321295i −0.396617 0.917984i \(-0.629816\pi\)
−0.802473 + 0.596689i \(0.796483\pi\)
\(432\) 146.483 + 253.716i 0.339081 + 0.587305i
\(433\) 140.192 + 80.9400i 0.323769 + 0.186928i 0.653071 0.757296i \(-0.273480\pi\)
−0.329302 + 0.944225i \(0.606813\pi\)
\(434\) 104.259 104.259i 0.240229 0.240229i
\(435\) −10.9140 40.7315i −0.0250896 0.0936357i
\(436\) 15.9459 4.27268i 0.0365731 0.00979974i
\(437\) −57.1117 57.1117i −0.130690 0.130690i
\(438\) 105.617 182.933i 0.241134 0.417656i
\(439\) −142.255 + 82.1308i −0.324043 + 0.187086i −0.653193 0.757191i \(-0.726571\pi\)
0.329150 + 0.944277i \(0.393238\pi\)
\(440\) −1.87687 + 7.00457i −0.00426561 + 0.0159195i
\(441\) 314.189i 0.712446i
\(442\) 29.7668 + 21.9737i 0.0673458 + 0.0497143i
\(443\) 309.912 0.699575 0.349788 0.936829i \(-0.386254\pi\)
0.349788 + 0.936829i \(0.386254\pi\)
\(444\) −379.945 101.806i −0.855733 0.229293i
\(445\) −35.7561 61.9313i −0.0803507 0.139172i
\(446\) 322.321 + 186.092i 0.722692 + 0.417246i
\(447\) −861.284 + 861.284i −1.92681 + 1.92681i
\(448\) 16.4604 + 61.4312i 0.0367420 + 0.137123i
\(449\) −131.440 + 35.2192i −0.292739 + 0.0784392i −0.402200 0.915552i \(-0.631754\pi\)
0.109461 + 0.993991i \(0.465088\pi\)
\(450\) 548.547 + 548.547i 1.21899 + 1.21899i
\(451\) 169.848 294.186i 0.376603 0.652296i
\(452\) 198.297 114.487i 0.438711 0.253290i
\(453\) 150.534 561.799i 0.332304 1.24018i
\(454\) 168.522i 0.371193i
\(455\) 17.2993 44.0644i 0.0380204 0.0968449i
\(456\) −73.1104 −0.160330
\(457\) 219.352 + 58.7751i 0.479981 + 0.128611i 0.490694 0.871332i \(-0.336743\pi\)
−0.0107126 + 0.999943i \(0.503410\pi\)
\(458\) 224.372 + 388.624i 0.489895 + 0.848523i
\(459\) −127.649 73.6981i −0.278102 0.160562i
\(460\) −11.2930 + 11.2930i −0.0245501 + 0.0245501i
\(461\) −177.023 660.658i −0.383998 1.43310i −0.839741 0.542987i \(-0.817293\pi\)
0.455743 0.890111i \(-0.349373\pi\)
\(462\) 339.127 90.8689i 0.734042 0.196686i
\(463\) 557.281 + 557.281i 1.20363 + 1.20363i 0.973055 + 0.230575i \(0.0740607\pi\)
0.230575 + 0.973055i \(0.425939\pi\)
\(464\) −33.0010 + 57.1595i −0.0711229 + 0.123189i
\(465\) 29.0255 16.7579i 0.0624205 0.0360385i
\(466\) 84.4357 315.118i 0.181192 0.676219i
\(467\) 91.0355i 0.194937i 0.995239 + 0.0974684i \(0.0310745\pi\)
−0.995239 + 0.0974684i \(0.968926\pi\)
\(468\) −449.838 + 358.657i −0.961193 + 0.766362i
\(469\) −272.126 −0.580227
\(470\) −7.72977 2.07119i −0.0164463 0.00440678i
\(471\) 354.583 + 614.157i 0.752831 + 1.30394i
\(472\) −86.4397 49.9060i −0.183135 0.105733i
\(473\) −206.617 + 206.617i −0.436822 + 0.436822i
\(474\) −291.691 1088.61i −0.615382 2.29664i
\(475\) −110.939 + 29.7261i −0.233556 + 0.0625812i
\(476\) −22.6255 22.6255i −0.0475326 0.0475326i
\(477\) 259.362 449.229i 0.543737 0.941780i
\(478\) −319.594 + 184.518i −0.668607 + 0.386021i
\(479\) 191.280 713.865i 0.399331 1.49032i −0.414945 0.909846i \(-0.636199\pi\)
0.814276 0.580477i \(-0.197134\pi\)
\(480\) 14.4565i 0.0301178i
\(481\) 51.3569 455.380i 0.106771 0.946735i
\(482\) −314.584 −0.652665
\(483\) 746.879 + 200.125i 1.54633 + 0.414338i
\(484\) 89.6706 + 155.314i 0.185270 + 0.320897i
\(485\) 44.6684 + 25.7893i 0.0920998 + 0.0531738i
\(486\) 509.567 509.567i 1.04849 1.04849i
\(487\) 155.484 + 580.273i 0.319268 + 1.19153i 0.919949 + 0.392037i \(0.128230\pi\)
−0.600681 + 0.799489i \(0.705104\pi\)
\(488\) 76.1808 20.4126i 0.156108 0.0418291i
\(489\) −666.986 666.986i −1.36398 1.36398i
\(490\) −4.59895 + 7.96561i −0.00938560 + 0.0162563i
\(491\) −482.376 + 278.500i −0.982436 + 0.567210i −0.903005 0.429631i \(-0.858644\pi\)
−0.0794313 + 0.996840i \(0.525310\pi\)
\(492\) 175.272 654.125i 0.356245 1.32952i
\(493\) 33.2068i 0.0673565i
\(494\) −12.6861 84.2265i −0.0256804 0.170499i
\(495\) 56.7318 0.114610
\(496\) −50.6715 13.5774i −0.102160 0.0273738i
\(497\) 304.015 + 526.570i 0.611700 + 1.05950i
\(498\) −886.292 511.701i −1.77970 1.02751i
\(499\) 92.7376 92.7376i 0.185847 0.185847i −0.608051 0.793898i \(-0.708048\pi\)
0.793898 + 0.608051i \(0.208048\pi\)
\(500\) 11.8056 + 44.0590i 0.0236111 + 0.0881179i
\(501\) −898.535 + 240.762i −1.79348 + 0.480562i
\(502\) −251.968 251.968i −0.501929 0.501929i
\(503\) 68.4278 118.520i 0.136039 0.235627i −0.789955 0.613165i \(-0.789896\pi\)
0.925994 + 0.377538i \(0.123229\pi\)
\(504\) 430.888 248.773i 0.854937 0.493598i
\(505\) −11.5826 + 43.2267i −0.0229358 + 0.0855974i
\(506\) 137.997i 0.272721i
\(507\) −691.051 641.469i −1.36302 1.26523i
\(508\) 193.547 0.380997
\(509\) 163.752 + 43.8773i 0.321713 + 0.0862029i 0.416062 0.909336i \(-0.363410\pi\)
−0.0943482 + 0.995539i \(0.530077\pi\)
\(510\) −3.63666 6.29889i −0.00713072 0.0123508i
\(511\) −184.315 106.414i −0.360694 0.208247i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 87.8243 + 327.765i 0.171197 + 0.638918i
\(514\) −396.544 + 106.254i −0.771486 + 0.206719i
\(515\) −35.1237 35.1237i −0.0682013 0.0682013i
\(516\) −291.258 + 504.473i −0.564453 + 0.977661i
\(517\) 59.8823 34.5730i 0.115826 0.0668724i
\(518\) −102.575 + 382.815i −0.198021 + 0.739024i
\(519\) 783.789i 1.51019i
\(520\) −16.6546 + 2.50850i −0.0320281 + 0.00482404i
\(521\) 161.073 0.309161 0.154580 0.987980i \(-0.450597\pi\)
0.154580 + 0.987980i \(0.450597\pi\)
\(522\) 498.758 + 133.642i 0.955476 + 0.256019i
\(523\) −67.7062 117.271i −0.129457 0.224227i 0.794009 0.607906i \(-0.207990\pi\)
−0.923466 + 0.383679i \(0.874657\pi\)
\(524\) 276.459 + 159.613i 0.527593 + 0.304606i
\(525\) 777.486 777.486i 1.48093 1.48093i
\(526\) −39.4822 147.350i −0.0750613 0.280133i
\(527\) 25.4937 6.83101i 0.0483751 0.0129621i
\(528\) −88.3271 88.3271i −0.167286 0.167286i
\(529\) −112.541 + 194.926i −0.212742 + 0.368481i
\(530\) 13.1512 7.59285i 0.0248136 0.0143261i
\(531\) −202.101 + 754.250i −0.380604 + 1.42043i
\(532\) 73.6625i 0.138463i
\(533\) 783.995 + 88.4177i 1.47091 + 0.165887i
\(534\) 1231.83 2.30680
\(535\) 33.3156 + 8.92689i 0.0622721 + 0.0166858i
\(536\) 48.4095 + 83.8477i 0.0903162 + 0.156432i
\(537\) 1526.84 + 881.524i 2.84329 + 1.64157i
\(538\) −435.423 + 435.423i −0.809337 + 0.809337i
\(539\) −20.5698 76.7674i −0.0381628 0.142426i
\(540\) 64.8108 17.3660i 0.120020 0.0321593i
\(541\) −127.802 127.802i −0.236233 0.236233i 0.579055 0.815288i \(-0.303422\pi\)
−0.815288 + 0.579055i \(0.803422\pi\)
\(542\) −59.4776 + 103.018i −0.109737 + 0.190071i
\(543\) −404.213 + 233.373i −0.744408 + 0.429784i
\(544\) −2.94646 + 10.9963i −0.00541628 + 0.0202138i
\(545\) 3.78087i 0.00693737i
\(546\) 508.345 + 637.581i 0.931035 + 1.16773i
\(547\) −161.504 −0.295254 −0.147627 0.989043i \(-0.547163\pi\)
−0.147627 + 0.989043i \(0.547163\pi\)
\(548\) −244.448 65.4996i −0.446073 0.119525i
\(549\) −308.504 534.344i −0.561938 0.973305i
\(550\) −169.942 98.1163i −0.308986 0.178393i
\(551\) −54.0560 + 54.0560i −0.0981053 + 0.0981053i
\(552\) −71.2020 265.730i −0.128989 0.481394i
\(553\) −1096.83 + 293.894i −1.98341 + 0.531454i
\(554\) 36.8115 + 36.8115i 0.0664467 + 0.0664467i
\(555\) −45.0437 + 78.0180i −0.0811598 + 0.140573i
\(556\) −104.697 + 60.4469i −0.188304 + 0.108717i
\(557\) −154.013 + 574.784i −0.276504 + 1.03193i 0.678323 + 0.734764i \(0.262707\pi\)
−0.954827 + 0.297163i \(0.903959\pi\)
\(558\) 410.401i 0.735486i
\(559\) −631.715 248.006i −1.13008 0.443659i
\(560\) 14.5657 0.0260102
\(561\) 60.7046 + 16.2658i 0.108208 + 0.0289942i
\(562\) 30.1080 + 52.1486i 0.0535730 + 0.0927912i
\(563\) −538.929 311.151i −0.957244 0.552665i −0.0619205 0.998081i \(-0.519723\pi\)
−0.895324 + 0.445416i \(0.853056\pi\)
\(564\) 97.4718 97.4718i 0.172822 0.172822i
\(565\) −13.5728 50.6543i −0.0240226 0.0896537i
\(566\) 143.378 38.4179i 0.253317 0.0678762i
\(567\) −1177.57 1177.57i −2.07684 2.07684i
\(568\) 108.165 187.347i 0.190431 0.329836i
\(569\) 675.493 389.996i 1.18716 0.685406i 0.229499 0.973309i \(-0.426291\pi\)
0.957660 + 0.287903i \(0.0929580\pi\)
\(570\) −4.33373 + 16.1737i −0.00760304 + 0.0283749i
\(571\) 556.142i 0.973980i −0.873408 0.486990i \(-0.838095\pi\)
0.873408 0.486990i \(-0.161905\pi\)
\(572\) 86.4303 117.083i 0.151102 0.204691i
\(573\) 385.598 0.672945
\(574\) −659.065 176.596i −1.14820 0.307659i
\(575\) −216.087 374.273i −0.375803 0.650910i
\(576\) −153.304 88.5103i −0.266153 0.153664i
\(577\) 401.975 401.975i 0.696663 0.696663i −0.267026 0.963689i \(-0.586041\pi\)
0.963689 + 0.267026i \(0.0860409\pi\)
\(578\) 104.299 + 389.249i 0.180448 + 0.673441i
\(579\) 1749.66 468.819i 3.02186 0.809705i
\(580\) 10.6888 + 10.6888i 0.0184290 + 0.0184290i
\(581\) −515.565 + 892.985i −0.887376 + 1.53698i
\(582\) −769.434 + 444.233i −1.32205 + 0.763287i
\(583\) −33.9606 + 126.743i −0.0582515 + 0.217398i
\(584\) 75.7216i 0.129660i
\(585\) 52.6785 + 120.775i 0.0900486 + 0.206452i
\(586\) −177.741 −0.303313
\(587\) 647.776 + 173.571i 1.10354 + 0.295692i 0.764204 0.644974i \(-0.223132\pi\)
0.339333 + 0.940666i \(0.389799\pi\)
\(588\) −79.2190 137.211i −0.134726 0.233353i
\(589\) −52.6201 30.3802i −0.0893381 0.0515794i
\(590\) −16.1642 + 16.1642i −0.0273970 + 0.0273970i
\(591\) 462.285 + 1725.27i 0.782209 + 2.91924i
\(592\) 136.200 36.4948i 0.230068 0.0616466i
\(593\) −185.442 185.442i −0.312719 0.312719i 0.533243 0.845962i \(-0.320973\pi\)
−0.845962 + 0.533243i \(0.820973\pi\)
\(594\) −289.880 + 502.087i −0.488014 + 0.845264i
\(595\) −6.34646 + 3.66413i −0.0106663 + 0.00615820i
\(596\) 113.009 421.757i 0.189613 0.707646i
\(597\) 964.199i 1.61507i
\(598\) 293.778 128.137i 0.491267 0.214277i
\(599\) −171.466 −0.286254 −0.143127 0.989704i \(-0.545716\pi\)
−0.143127 + 0.989704i \(0.545716\pi\)
\(600\) −377.869 101.250i −0.629782 0.168749i
\(601\) −53.8259 93.2293i −0.0895606 0.155124i 0.817765 0.575552i \(-0.195213\pi\)
−0.907325 + 0.420429i \(0.861880\pi\)
\(602\) 508.282 + 293.457i 0.844323 + 0.487470i
\(603\) 535.593 535.593i 0.888213 0.888213i
\(604\) 53.9624 + 201.390i 0.0893417 + 0.333428i
\(605\) 39.6744 10.6307i 0.0655775 0.0175714i
\(606\) −545.085 545.085i −0.899480 0.899480i
\(607\) −216.797 + 375.504i −0.357162 + 0.618623i −0.987486 0.157710i \(-0.949589\pi\)
0.630323 + 0.776333i \(0.282922\pi\)
\(608\) 22.6969 13.1041i 0.0373305 0.0215528i
\(609\) 189.418 706.918i 0.311031 1.16078i
\(610\) 18.0629i 0.0296114i
\(611\) 129.205 + 95.3786i 0.211465 + 0.156102i
\(612\) 89.0621 0.145526
\(613\) 620.451 + 166.249i 1.01216 + 0.271206i 0.726530 0.687135i \(-0.241132\pi\)
0.285626 + 0.958341i \(0.407799\pi\)
\(614\) 159.407 + 276.102i 0.259621 + 0.449677i
\(615\) −134.318 77.5486i −0.218403 0.126095i
\(616\) −88.9941 + 88.9941i −0.144471 + 0.144471i
\(617\) −107.181 400.004i −0.173713 0.648304i −0.996767 0.0803421i \(-0.974399\pi\)
0.823055 0.567962i \(-0.192268\pi\)
\(618\) 826.475 221.453i 1.33734 0.358339i
\(619\) 693.205 + 693.205i 1.11988 + 1.11988i 0.991759 + 0.128120i \(0.0408943\pi\)
0.128120 + 0.991759i \(0.459106\pi\)
\(620\) −6.00726 + 10.4049i −0.00968913 + 0.0167821i
\(621\) −1105.77 + 638.419i −1.78063 + 1.02805i
\(622\) 169.015 630.771i 0.271728 1.01410i
\(623\) 1241.13i 1.99219i
\(624\) 106.020 270.053i 0.169905 0.432777i
\(625\) −609.308 −0.974893
\(626\) −11.1571 2.98955i −0.0178229 0.00477563i
\(627\) −72.3403 125.297i −0.115375 0.199836i
\(628\) −220.159 127.109i −0.350572 0.202403i
\(629\) −50.1636 + 50.1636i −0.0797513 + 0.0797513i
\(630\) −29.4928 110.069i −0.0468140 0.174712i
\(631\) 507.808 136.067i 0.804767 0.215637i 0.167091 0.985941i \(-0.446563\pi\)
0.637676 + 0.770305i \(0.279896\pi\)
\(632\) 285.673 + 285.673i 0.452014 + 0.452014i
\(633\) −642.108 + 1112.16i −1.01439 + 1.75697i
\(634\) 158.678 91.6127i 0.250281 0.144500i
\(635\) 11.4728 42.8170i 0.0180674 0.0674283i
\(636\) 261.581i 0.411291i
\(637\) 144.328 115.073i 0.226574 0.180648i
\(638\) −130.614 −0.204724
\(639\) −1634.74 438.026i −2.55827 0.685487i
\(640\) −2.59114 4.48799i −0.00404866 0.00701249i
\(641\) −936.399 540.630i −1.46084 0.843416i −0.461790 0.886989i \(-0.652793\pi\)
−0.999050 + 0.0435728i \(0.986126\pi\)
\(642\) −420.107 + 420.107i −0.654372 + 0.654372i
\(643\) −102.193 381.388i −0.158931 0.593138i −0.998737 0.0502511i \(-0.983998\pi\)
0.839806 0.542887i \(-0.182669\pi\)
\(644\) −267.736 + 71.7397i −0.415740 + 0.111397i
\(645\) 94.3363 + 94.3363i 0.146258 + 0.146258i
\(646\) −6.59288 + 11.4192i −0.0102057 + 0.0176768i
\(647\) 275.454 159.033i 0.425740 0.245801i −0.271790 0.962357i \(-0.587616\pi\)
0.697530 + 0.716555i \(0.254282\pi\)
\(648\) −153.351 + 572.314i −0.236653 + 0.883200i
\(649\) 197.521i 0.304347i
\(650\) 51.0763 452.891i 0.0785789 0.696755i
\(651\) 581.685 0.893525
\(652\) 326.613 + 87.5156i 0.500939 + 0.134226i
\(653\) 201.115 + 348.341i 0.307986 + 0.533447i 0.977922 0.208972i \(-0.0670117\pi\)
−0.669936 + 0.742419i \(0.733678\pi\)
\(654\) 56.4018 + 32.5636i 0.0862413 + 0.0497914i
\(655\) 51.6977 51.6977i 0.0789278 0.0789278i
\(656\) 62.8305 + 234.487i 0.0957783 + 0.357449i
\(657\) 572.206 153.322i 0.870937 0.233367i
\(658\) −98.2079 98.2079i −0.149252 0.149252i
\(659\) −292.874 + 507.272i −0.444421 + 0.769760i −0.998012 0.0630290i \(-0.979924\pi\)
0.553591 + 0.832789i \(0.313257\pi\)
\(660\) −24.7757 + 14.3043i −0.0375390 + 0.0216731i
\(661\) 209.306 781.140i 0.316650 1.18176i −0.605793 0.795623i \(-0.707144\pi\)
0.922443 0.386133i \(-0.126189\pi\)
\(662\) 211.479i 0.319454i
\(663\) 21.7398 + 144.336i 0.0327900 + 0.217701i
\(664\) 366.863 0.552504
\(665\) 16.2958 + 4.36646i 0.0245050 + 0.00656610i
\(666\) −551.561 955.332i −0.828170 1.43443i
\(667\) −249.119 143.829i −0.373492 0.215636i
\(668\) 235.794 235.794i 0.352986 0.352986i
\(669\) 380.024 + 1418.27i 0.568048 + 2.11998i
\(670\) 21.4186 5.73910i 0.0319681 0.00856582i
\(671\) 110.362 + 110.362i 0.164473 + 0.164473i
\(672\) −125.451 + 217.287i −0.186682 + 0.323343i
\(673\) −373.474 + 215.625i −0.554939 + 0.320394i −0.751112 0.660175i \(-0.770482\pi\)
0.196173 + 0.980569i \(0.437149\pi\)
\(674\) −22.5959 + 84.3291i −0.0335251 + 0.125117i
\(675\) 1815.67i 2.68988i
\(676\) 329.510 + 75.2806i 0.487441 + 0.111362i
\(677\) 6.72056 0.00992697 0.00496348 0.999988i \(-0.498420\pi\)
0.00496348 + 0.999988i \(0.498420\pi\)
\(678\) 872.544 + 233.798i 1.28694 + 0.344834i
\(679\) 447.588 + 775.244i 0.659186 + 1.14174i
\(680\) 2.25799 + 1.30365i 0.00332057 + 0.00191713i
\(681\) 470.109 470.109i 0.690321 0.690321i
\(682\) −26.8687 100.276i −0.0393970 0.147032i
\(683\) 118.413 31.7287i 0.173372 0.0464549i −0.171089 0.985256i \(-0.554728\pi\)
0.344461 + 0.938801i \(0.388062\pi\)
\(684\) −144.981 144.981i −0.211960 0.211960i
\(685\) −28.9801 + 50.1949i −0.0423067 + 0.0732773i
\(686\) 338.839 195.629i 0.493934 0.285173i
\(687\) −458.197 + 1710.02i −0.666954 + 2.48911i
\(688\) 208.816i 0.303512i
\(689\) −301.353 + 45.3896i −0.437377 + 0.0658775i
\(690\) −63.0061 −0.0913133
\(691\) 90.8900 + 24.3539i 0.131534 + 0.0352444i 0.323985 0.946062i \(-0.394977\pi\)
−0.192451 + 0.981307i \(0.561644\pi\)
\(692\) −140.484 243.325i −0.203011 0.351626i
\(693\) 852.699 + 492.306i 1.23045 + 0.710398i
\(694\) 220.862 220.862i 0.318245 0.318245i
\(695\) 7.16616 + 26.7445i 0.0103110 + 0.0384813i
\(696\) −251.512 + 67.3925i −0.361368 + 0.0968283i
\(697\) −86.3632 86.3632i −0.123907 0.123907i
\(698\) 205.786 356.432i 0.294823 0.510648i
\(699\) 1114.60 643.513i 1.59456 0.920620i
\(700\) −102.014 + 380.722i −0.145735 + 0.543889i
\(701\) 716.506i 1.02212i 0.859545 + 0.511060i \(0.170747\pi\)
−0.859545 + 0.511060i \(0.829253\pi\)
\(702\) −1338.05 150.903i −1.90605 0.214961i
\(703\) 163.319 0.232317
\(704\) 43.2524 + 11.5894i 0.0614380 + 0.0164623i
\(705\) −15.7852 27.3408i −0.0223904 0.0387813i
\(706\) −24.1433 13.9392i −0.0341973 0.0197438i
\(707\) −549.201 + 549.201i −0.776805 + 0.776805i
\(708\) −101.915 380.351i −0.143947 0.537219i
\(709\) −957.045 + 256.439i −1.34985 + 0.361692i −0.860080 0.510159i \(-0.829587\pi\)
−0.489772 + 0.871851i \(0.662920\pi\)
\(710\) −35.0338 35.0338i −0.0493433 0.0493433i
\(711\) 1580.31 2737.18i 2.22266 3.84977i
\(712\) −382.418 + 220.789i −0.537104 + 0.310097i
\(713\) 59.1745 220.842i 0.0829937 0.309737i
\(714\) 126.233i 0.176796i
\(715\) −20.7783 26.0607i −0.0290605 0.0364485i
\(716\) −632.006 −0.882691
\(717\) −1406.27 376.810i −1.96133 0.525537i
\(718\) 275.618 + 477.384i 0.383869 + 0.664881i
\(719\) 150.591 + 86.9435i 0.209445 + 0.120923i 0.601053 0.799209i \(-0.294748\pi\)
−0.391609 + 0.920132i \(0.628081\pi\)
\(720\) −28.6679 + 28.6679i −0.0398165 + 0.0398165i
\(721\) −223.126 832.716i −0.309467 1.15495i
\(722\) −463.814 + 124.279i −0.642402 + 0.172131i
\(723\) −877.566 877.566i −1.21378 1.21378i
\(724\) 83.6580 144.900i 0.115550 0.200138i
\(725\) −354.249 + 204.526i −0.488619 + 0.282104i
\(726\) −183.119 + 683.410i −0.252230 + 0.941336i
\(727\) 729.011i 1.00277i 0.865225 + 0.501383i \(0.167175\pi\)
−0.865225 + 0.501383i \(0.832825\pi\)
\(728\) −272.092 106.821i −0.373753 0.146732i
\(729\) 957.649 1.31365
\(730\) 16.7514 + 4.48851i 0.0229471 + 0.00614865i
\(731\) 52.5295 + 90.9838i 0.0718598 + 0.124465i
\(732\) 269.457 + 155.571i 0.368111 + 0.212529i
\(733\) −762.465 + 762.465i −1.04020 + 1.04020i −0.0410404 + 0.999157i \(0.513067\pi\)
−0.999157 + 0.0410404i \(0.986933\pi\)
\(734\) 171.569 + 640.304i 0.233745 + 0.872348i
\(735\) −35.0501 + 9.39166i −0.0476873 + 0.0127778i
\(736\) 69.7330 + 69.7330i 0.0947460 + 0.0947460i
\(737\) −95.7992 + 165.929i −0.129985 + 0.225141i
\(738\) 1644.73 949.584i 2.22863 1.28670i
\(739\) 158.814 592.703i 0.214904 0.802033i −0.771296 0.636476i \(-0.780391\pi\)
0.986200 0.165557i \(-0.0529421\pi\)
\(740\) 32.2940i 0.0436405i
\(741\) 199.569 270.348i 0.269324 0.364842i
\(742\) 263.556 0.355197
\(743\) 160.852 + 43.1002i 0.216490 + 0.0580084i 0.365434 0.930837i \(-0.380921\pi\)
−0.148944 + 0.988846i \(0.547587\pi\)
\(744\) −103.478 179.229i −0.139083 0.240899i
\(745\) −86.6036 50.0006i −0.116246 0.0671149i
\(746\) 260.814 260.814i 0.349617 0.349617i
\(747\) −742.829 2772.27i −0.994416 3.71121i
\(748\) −21.7610 + 5.83084i −0.0290923 + 0.00779525i
\(749\) 423.279 + 423.279i 0.565126 + 0.565126i
\(750\) −89.9742 + 155.840i −0.119966 + 0.207787i
\(751\) −116.272 + 67.1297i −0.154823 + 0.0893871i −0.575410 0.817865i \(-0.695158\pi\)
0.420587 + 0.907252i \(0.361824\pi\)
\(752\) −12.7893 + 47.7304i −0.0170071 + 0.0634713i
\(753\) 1405.78i 1.86691i
\(754\) −121.282 278.059i −0.160851 0.368779i
\(755\) 47.7509 0.0632462
\(756\) 1124.83 + 301.397i 1.48787 + 0.398673i
\(757\) 598.217 + 1036.14i 0.790247 + 1.36875i 0.925814 + 0.377980i \(0.123381\pi\)
−0.135567 + 0.990768i \(0.543285\pi\)
\(758\) −262.331 151.457i −0.346083 0.199811i
\(759\) 384.957 384.957i 0.507190 0.507190i
\(760\) −1.55353 5.79785i −0.00204412 0.00762875i
\(761\) −33.7907 + 9.05420i −0.0444031 + 0.0118978i −0.280952 0.959722i \(-0.590650\pi\)
0.236549 + 0.971620i \(0.423984\pi\)
\(762\) 539.918 + 539.918i 0.708554 + 0.708554i
\(763\) 32.8095 56.8277i 0.0430007 0.0744793i
\(764\) −119.708 +