Properties

Label 26.3.f
Level $26$
Weight $3$
Character orbit 26.f
Rep. character $\chi_{26}(7,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $12$
Newform subspaces $2$
Sturm bound $10$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 26.f (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 2 \)
Sturm bound: \(10\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(26, [\chi])\).

Total New Old
Modular forms 36 12 24
Cusp forms 20 12 8
Eisenstein series 16 0 16

Trace form

\( 12 q - 2 q^{2} + 6 q^{5} - 24 q^{7} - 8 q^{8} - 30 q^{9} - 30 q^{10} - 24 q^{11} + 24 q^{13} + 16 q^{14} + 72 q^{15} + 24 q^{16} + 36 q^{17} + 108 q^{18} - 12 q^{19} + 12 q^{20} - 60 q^{21} - 24 q^{22}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(26, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
26.3.f.a 26.f 13.f $4$ $0.708$ \(\Q(\zeta_{12})\) None 26.3.f.a \(2\) \(0\) \(0\) \(-22\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(-\zeta_{12}+\cdots)q^{3}+\cdots\)
26.3.f.b 26.f 13.f $8$ $0.708$ 8.0.\(\cdots\).1 None 26.3.f.b \(-4\) \(0\) \(6\) \(-2\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-\beta _{3}-\beta _{4})q^{2}+(-\beta _{2}+\beta _{4}-\beta _{5}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(26, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(26, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 2}\)