Newspace parameters
Level: | \( N \) | \(=\) | \( 26 = 2 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 26.f (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.708448687337\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{12})\) |
Coefficient field: | 8.0.612074651904.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{9}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 74x^{6} + 2067x^{4} - 25778x^{2} + 121801 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{4} - 37\nu^{2} + 4\nu + 349 ) / 8 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{4} + 37\nu^{2} + 4\nu - 349 ) / 8 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{7} - 74\nu^{5} + 1718\nu^{3} - 12865\nu + 1396 ) / 2792 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 40\nu^{7} - 349\nu^{6} - 2262\nu^{5} + 19195\nu^{4} + 44290\nu^{3} - 345859\nu^{2} - 296126\nu + 2024898 ) / 86552 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -40\nu^{7} - 349\nu^{6} + 2262\nu^{5} + 19195\nu^{4} - 44290\nu^{3} - 345859\nu^{2} + 296126\nu + 2024898 ) / 86552 \)
|
\(\beta_{6}\) | \(=\) |
\( ( \nu^{6} - 55\nu^{4} + 1053\nu^{2} - 6980 ) / 62 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 318 \nu^{7} + 698 \nu^{6} + 16901 \nu^{5} - 38390 \nu^{4} - 292601 \nu^{3} + 734994 \nu^{2} + 1626083 \nu - 4828764 ) / 86552 \)
|
\(\nu\) | \(=\) |
\( \beta_{2} + \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{6} + 2\beta_{5} + 2\beta_{4} + 19 \)
|
\(\nu^{3}\) | \(=\) |
\( 4\beta_{7} - 2\beta_{6} - 19\beta_{5} + 19\beta_{4} - 8\beta_{3} + 18\beta_{2} + 18\beta _1 + 2 \)
|
\(\nu^{4}\) | \(=\) |
\( 37\beta_{6} + 74\beta_{5} + 74\beta_{4} - 4\beta_{2} + 4\beta _1 + 354 \)
|
\(\nu^{5}\) | \(=\) |
\( 140\beta_{7} - 70\beta_{6} - 727\beta_{5} + 727\beta_{4} - 440\beta_{3} + 317\beta_{2} + 317\beta _1 + 150 \)
|
\(\nu^{6}\) | \(=\) |
\( 1044\beta_{6} + 1964\beta_{5} + 1964\beta_{4} - 220\beta_{2} + 220\beta _1 + 6443 \)
|
\(\nu^{7}\) | \(=\) |
\( 3488 \beta_{7} - 1744 \beta_{6} - 21156 \beta_{5} + 21156 \beta_{4} - 16024 \beta_{3} + 5399 \beta_{2} + 5399 \beta _1 + 6268 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).
\(n\) | \(15\) |
\(\chi(n)\) | \(\beta_{5}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
−1.36603 | + | 0.366025i | −2.78960 | + | 4.83174i | 1.73205 | − | 1.00000i | 0.323893 | + | 0.323893i | 2.04213 | − | 7.62134i | 7.67890 | + | 2.05755i | −2.00000 | + | 2.00000i | −11.0638 | − | 19.1630i | −0.560999 | − | 0.323893i | ||||||||||||||||||||||||
7.2 | −1.36603 | + | 0.366025i | 1.92358 | − | 3.33174i | 1.73205 | − | 1.00000i | 3.77418 | + | 3.77418i | −1.40816 | + | 5.25532i | −9.91095 | − | 2.65563i | −2.00000 | + | 2.00000i | −2.90031 | − | 5.02349i | −6.53708 | − | 3.77418i | |||||||||||||||||||||||||
11.1 | 0.366025 | − | 1.36603i | −1.52185 | − | 2.63592i | −1.73205 | − | 1.00000i | 4.79174 | + | 4.79174i | −4.15776 | + | 1.11407i | 1.13983 | + | 4.25390i | −2.00000 | + | 2.00000i | −0.132034 | + | 0.228689i | 8.29953 | − | 4.79174i | |||||||||||||||||||||||||
11.2 | 0.366025 | − | 1.36603i | 2.38787 | + | 4.13592i | −1.73205 | − | 1.00000i | −5.88981 | − | 5.88981i | 6.52379 | − | 1.74804i | 0.0922225 | + | 0.344179i | −2.00000 | + | 2.00000i | −6.90386 | + | 11.9578i | −10.2015 | + | 5.88981i | |||||||||||||||||||||||||
15.1 | −1.36603 | − | 0.366025i | −2.78960 | − | 4.83174i | 1.73205 | + | 1.00000i | 0.323893 | − | 0.323893i | 2.04213 | + | 7.62134i | 7.67890 | − | 2.05755i | −2.00000 | − | 2.00000i | −11.0638 | + | 19.1630i | −0.560999 | + | 0.323893i | |||||||||||||||||||||||||
15.2 | −1.36603 | − | 0.366025i | 1.92358 | + | 3.33174i | 1.73205 | + | 1.00000i | 3.77418 | − | 3.77418i | −1.40816 | − | 5.25532i | −9.91095 | + | 2.65563i | −2.00000 | − | 2.00000i | −2.90031 | + | 5.02349i | −6.53708 | + | 3.77418i | |||||||||||||||||||||||||
19.1 | 0.366025 | + | 1.36603i | −1.52185 | + | 2.63592i | −1.73205 | + | 1.00000i | 4.79174 | − | 4.79174i | −4.15776 | − | 1.11407i | 1.13983 | − | 4.25390i | −2.00000 | − | 2.00000i | −0.132034 | − | 0.228689i | 8.29953 | + | 4.79174i | |||||||||||||||||||||||||
19.2 | 0.366025 | + | 1.36603i | 2.38787 | − | 4.13592i | −1.73205 | + | 1.00000i | −5.88981 | + | 5.88981i | 6.52379 | + | 1.74804i | 0.0922225 | − | 0.344179i | −2.00000 | − | 2.00000i | −6.90386 | − | 11.9578i | −10.2015 | − | 5.88981i | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.f | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 26.3.f.b | ✓ | 8 |
3.b | odd | 2 | 1 | 234.3.bb.f | 8 | ||
4.b | odd | 2 | 1 | 208.3.bd.f | 8 | ||
13.b | even | 2 | 1 | 338.3.f.i | 8 | ||
13.c | even | 3 | 1 | 338.3.d.g | 8 | ||
13.c | even | 3 | 1 | 338.3.f.h | 8 | ||
13.d | odd | 4 | 1 | 338.3.f.h | 8 | ||
13.d | odd | 4 | 1 | 338.3.f.j | 8 | ||
13.e | even | 6 | 1 | 338.3.d.f | 8 | ||
13.e | even | 6 | 1 | 338.3.f.j | 8 | ||
13.f | odd | 12 | 1 | inner | 26.3.f.b | ✓ | 8 |
13.f | odd | 12 | 1 | 338.3.d.f | 8 | ||
13.f | odd | 12 | 1 | 338.3.d.g | 8 | ||
13.f | odd | 12 | 1 | 338.3.f.i | 8 | ||
39.k | even | 12 | 1 | 234.3.bb.f | 8 | ||
52.l | even | 12 | 1 | 208.3.bd.f | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
26.3.f.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
26.3.f.b | ✓ | 8 | 13.f | odd | 12 | 1 | inner |
208.3.bd.f | 8 | 4.b | odd | 2 | 1 | ||
208.3.bd.f | 8 | 52.l | even | 12 | 1 | ||
234.3.bb.f | 8 | 3.b | odd | 2 | 1 | ||
234.3.bb.f | 8 | 39.k | even | 12 | 1 | ||
338.3.d.f | 8 | 13.e | even | 6 | 1 | ||
338.3.d.f | 8 | 13.f | odd | 12 | 1 | ||
338.3.d.g | 8 | 13.c | even | 3 | 1 | ||
338.3.d.g | 8 | 13.f | odd | 12 | 1 | ||
338.3.f.h | 8 | 13.c | even | 3 | 1 | ||
338.3.f.h | 8 | 13.d | odd | 4 | 1 | ||
338.3.f.i | 8 | 13.b | even | 2 | 1 | ||
338.3.f.i | 8 | 13.f | odd | 12 | 1 | ||
338.3.f.j | 8 | 13.d | odd | 4 | 1 | ||
338.3.f.j | 8 | 13.e | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{8} + 39T_{3}^{6} - 24T_{3}^{5} + 1209T_{3}^{4} - 468T_{3}^{3} + 12312T_{3}^{2} + 3744T_{3} + 97344 \)
acting on \(S_{3}^{\mathrm{new}}(26, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} + 2 T^{3} + 2 T^{2} + 4 T + 4)^{2} \)
$3$
\( T^{8} + 39 T^{6} - 24 T^{5} + \cdots + 97344 \)
$5$
\( T^{8} - 6 T^{7} + 18 T^{6} + \cdots + 19044 \)
$7$
\( T^{8} + 2 T^{7} - 127 T^{6} + \cdots + 16384 \)
$11$
\( T^{8} + 18 T^{7} + 105 T^{6} + \cdots + 389376 \)
$13$
\( T^{8} - 36 T^{7} + \cdots + 815730721 \)
$17$
\( T^{8} + 42 T^{7} + 570 T^{6} + \cdots + 471969 \)
$19$
\( T^{8} - 46 T^{7} + \cdots + 1228362304 \)
$23$
\( T^{8} + 36 T^{7} + \cdots + 2508807744 \)
$29$
\( T^{8} + 6 T^{7} + \cdots + 25455883401 \)
$31$
\( T^{8} - 32 T^{7} + \cdots + 8111524096 \)
$37$
\( T^{8} + 106 T^{7} + \cdots + 321419829721 \)
$41$
\( T^{8} - 132 T^{7} + \cdots + 326485389321 \)
$43$
\( T^{8} + 108 T^{7} + \cdots + 325666531584 \)
$47$
\( T^{8} - 60 T^{7} + \cdots + 1853819136 \)
$53$
\( (T^{4} + 66 T^{3} - 5319 T^{2} + \cdots - 5234376)^{2} \)
$59$
\( T^{8} - 18 T^{7} + \cdots + 70410089309184 \)
$61$
\( T^{8} - 36 T^{7} + \cdots + 313453297161 \)
$67$
\( T^{8} + 74 T^{7} + \cdots + 2456391674944 \)
$71$
\( T^{8} + 174 T^{7} + \cdots + 950999436864 \)
$73$
\( T^{8} - 166 T^{7} + \cdots + 3554348548804 \)
$79$
\( (T^{4} + 48 T^{3} - 14880 T^{2} + \cdots + 2312448)^{2} \)
$83$
\( T^{8} + \cdots + 154848357540864 \)
$89$
\( T^{8} - 294 T^{7} + \cdots + 14950765690884 \)
$97$
\( T^{8} + 58 T^{7} + \cdots + 9988090235236 \)
show more
show less